विस्तृत कार्डिनल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ समुच्चय सिद्धान्त |समुच्चय सिद्धान्त]] के गणितीय क्षेत्र में, '''विस्तृत कार्डिनल''' एक निश्चित प्रकार की [[पारलौकिक संख्या|पारलौकिक]] [[ बुनियादी संख्या |बुनियादी संख्या]] होती है। इस तरह के गुणों वाले कार्डिनल से पता चलता है कि, सामान्यतः यह बहुत "बड़ा" होता है (उदाहरण के लिए, कम से कम α से बड़ा होता है जैसे कि α=ωα)। इस तरह के कार्डिनल वहा उपस्थित होते है, जहाँ सेट सिद्धांत के सबसे सामान्य स्वयंसिद्ध में सिद्ध नहीं किया जा सकता है, अर्थात् [[ZFC|जेडएफसी]], और इस तरह के प्रस्तावों को जेडएफसी से परे मापने के विधियों के रूप में देखा जा सकता है, किसी को कुछ वांछित सिद्ध करने में सक्षम होने के परिणाम की आवश्यकता होती है। दूसरे शब्दों में, उन्हें डाना स्कॉट के वाक्यांश में, इस तथ्य को मापने के रूप में देखा जा सकता है कि "यदि आप अधिक चाहते है तो आपको अधिक ग्रहण करना होता है"।<ref>{{cite book|last=Bell|first=J. L.|title=सेट थ्योरी में बूलियन-वैल्यूड मॉडल और इंडिपेंडेंस प्रूफ|url=https://archive.org/details/booleanvaluedmod0000bell|url-access=registration|pages=viii|publisher=Oxford University Press|year=1985|isbn=0-19-853241-5|no-pp=true}}</ref> | [[ समुच्चय सिद्धान्त |समुच्चय सिद्धान्त]] के गणितीय क्षेत्र में, '''विस्तृत कार्डिनल''' एक निश्चित प्रकार की [[पारलौकिक संख्या|पारलौकिक]] [[ बुनियादी संख्या |बुनियादी संख्या]] होती है। इस तरह के गुणों वाले कार्डिनल से पता चलता है कि, सामान्यतः यह बहुत "बड़ा" होता है (उदाहरण के लिए, कम से कम α से बड़ा होता है जैसे कि α=ωα)। इस तरह के कार्डिनल वहा उपस्थित होते है, जहाँ सेट सिद्धांत के सबसे सामान्य स्वयंसिद्ध में सिद्ध नहीं किया जा सकता है, अर्थात् [[ZFC|जेडएफसी]], और इस तरह के प्रस्तावों को जेडएफसी से परे मापने के विधियों के रूप में देखा जा सकता है, किसी को कुछ वांछित सिद्ध करने में सक्षम होने के परिणाम की आवश्यकता होती है। दूसरे शब्दों में, उन्हें डाना स्कॉट के वाक्यांश में, इस तथ्य को मापने के रूप में देखा जा सकता है कि "यदि आप अधिक चाहते है तो आपको अधिक ग्रहण करना होता है"।<ref>{{cite book|last=Bell|first=J. L.|title=सेट थ्योरी में बूलियन-वैल्यूड मॉडल और इंडिपेंडेंस प्रूफ|url=https://archive.org/details/booleanvaluedmod0000bell|url-access=registration|pages=viii|publisher=Oxford University Press|year=1985|isbn=0-19-853241-5|no-pp=true}}</ref> | ||
केवल जेडएफसी से सिद्ध होने वाले परिणाम परिकल्पना के बिना बताया जा सकता है, लेकिन प्रमाण के लिए अन्य मान्यताओं (जैसे विस्तृत कार्डिनल्स के अस्तित्व) की आवश्यकता होती है। क्या यह केवल एक भाषाई फलन होता है, या कुछ और, अलग-अलग दार्शनिक विद्यालयों के बीच एक विवादास्पद बिंदु होती | केवल जेडएफसी से सिद्ध होने वाले परिणाम परिकल्पना के बिना बताया जा सकता है, लेकिन प्रमाण के लिए अन्य मान्यताओं (जैसे विस्तृत कार्डिनल्स के अस्तित्व) की आवश्यकता होती है। क्या यह केवल एक भाषाई फलन होता है, या कुछ और, अलग-अलग दार्शनिक विद्यालयों के बीच एक विवादास्पद बिंदु होती है। | ||
एक विस्तृत कार्डिनल स्वयंसिद्ध होता है जिसमें कहा गया है कि कुछ निर्दिष्ट विस्तृत कार्डिनल के साथ एक कार्डिनल (या संभवतः उनमें से कई) उपस्थित होता है। | एक विस्तृत कार्डिनल स्वयंसिद्ध होता है जिसमें कहा गया है कि कुछ निर्दिष्ट विस्तृत कार्डिनल के साथ एक कार्डिनल (या संभवतः उनमें से कई) उपस्थित होता है। |
Revision as of 10:34, 30 May 2023
समुच्चय सिद्धान्त के गणितीय क्षेत्र में, विस्तृत कार्डिनल एक निश्चित प्रकार की पारलौकिक बुनियादी संख्या होती है। इस तरह के गुणों वाले कार्डिनल से पता चलता है कि, सामान्यतः यह बहुत "बड़ा" होता है (उदाहरण के लिए, कम से कम α से बड़ा होता है जैसे कि α=ωα)। इस तरह के कार्डिनल वहा उपस्थित होते है, जहाँ सेट सिद्धांत के सबसे सामान्य स्वयंसिद्ध में सिद्ध नहीं किया जा सकता है, अर्थात् जेडएफसी, और इस तरह के प्रस्तावों को जेडएफसी से परे मापने के विधियों के रूप में देखा जा सकता है, किसी को कुछ वांछित सिद्ध करने में सक्षम होने के परिणाम की आवश्यकता होती है। दूसरे शब्दों में, उन्हें डाना स्कॉट के वाक्यांश में, इस तथ्य को मापने के रूप में देखा जा सकता है कि "यदि आप अधिक चाहते है तो आपको अधिक ग्रहण करना होता है"।[1]
केवल जेडएफसी से सिद्ध होने वाले परिणाम परिकल्पना के बिना बताया जा सकता है, लेकिन प्रमाण के लिए अन्य मान्यताओं (जैसे विस्तृत कार्डिनल्स के अस्तित्व) की आवश्यकता होती है। क्या यह केवल एक भाषाई फलन होता है, या कुछ और, अलग-अलग दार्शनिक विद्यालयों के बीच एक विवादास्पद बिंदु होती है।
एक विस्तृत कार्डिनल स्वयंसिद्ध होता है जिसमें कहा गया है कि कुछ निर्दिष्ट विस्तृत कार्डिनल के साथ एक कार्डिनल (या संभवतः उनमें से कई) उपस्थित होता है।
अधिकांश कामकाजी सेट सिद्धांतकारों का मानना है कि वर्तमान में जिन विस्तृत कार्डिनल सिद्धांतों पर विचार किया जाता है, वे जेडएफसी के अनुरूप होते है। ये स्वयंसिद्ध जेडएफसी की निरंतरता को दर्शाने के लिए पर्याप्त मजबूत होता है। इसका परिणाम है (गोडेल की दूसरी अपूर्णता प्रमेय के माध्यम से) कि जेडएफसी के साथ उनकी निरंतरता जेडएफसी में सिद्ध नहीं की जा सकती है (यह मानते हुए कि जेडएफसी संगत है)।
एक विस्तृत कार्डिनल संपत्ति क्या होती है, इसकी कोई सामान्यतः सहमत त्रुटिहीन परिभाषा नही होती है, चूंकि अनिवार्य रूप से सभी सहमत होते है कि विस्तृत कार्डिनल गुणों की सूची में विस्तृत कार्डिनल गुण होते है।
आंशिक परिभाषा
कार्डिनल अक्षरों की संपत्ति के लिए एक विस्तृत कार्डिनल संपत्ति होने के लिए एक आवश्यक शर्त यह होती है कि ऐसे कार्डिनल का अस्तित्व जेडएफ के साथ असंगत नही होता है और ऐसा कार्डिनल Κ एक बेशुमार प्रारंभिक क्रमसूचक होता है जिसके लिए LΚ एक जेडएफसी मॉडल होता है। यदि जेडएफसी संगत है, तो जेडएफसी का अर्थ यह नही है कि इस तरह के विस्तृत कार्डिनल उपस्थित होते है।
स्थिरता ऊर्जा का पदानुक्रम
विस्तृत कार्डिनल स्वयंसिद्धों के बारे में एक उल्लेखनीय अवलोकन यह है कि वे स्थिरता ऊर्जा द्वारा सख्त रैखिक क्रम में प्रकट होते है। अर्थात्, निम्नलिखित के लिए कोई अपवाद ज्ञात नहीं होता है: दो विस्तृत कार्डिनल स्वयंसिद्धों A1 और A2 को देखते हुए, तीन चीजों में से एक होता है:
- जब तक जेडएफसी असंगत नही होता है, जेडएफसी+A1 संगत होता है अगर जेडएफसी+A2 संगत होता है,
- जेडएफसी+A1 सिद्ध करता है कि जेडएफसी+A2 संगत होता है, या
- जेडएफसी+A2 सिद्ध करता है कि जेडएफसी+A1 संगत होता है।
ये परस्पर अनन्य होता है, जब तक कि विचाराधीन सिद्धांतों में से एक वास्तव में असंगत नही होता है।
स्थिति 1 में, हम कहते है कि A1 और A2 समान है। स्थिति 2 में, हम कहते है कि A1 स्थिरता के माध्यम से A2 से अधिक मजबूत होता है (इसके विपरीत स्थिति 3 के लिए होता है)। यदि A2, A1 से अधिक मजबूत होता है, तो जेडएफसी+A1 सिद्ध नहीं कर सकता कि जेडएफसी+A2 संगत है, यहां तक कि अतिरिक्त परिकल्पना के साथ भी जेडएफसी+A1 स्वयं संगत होता है। यह गोडेल की दूसरी अपूर्णता प्रमेय से आता है।
अवलोकन कि विस्तृत कार्डिनल स्वयंसिद्धों को स्थिरता ऊर्जा द्वारा रैखिक रूप से आदेश दिया जाता है, यह केवल एक अवलोकन है, प्रमेय नही है। (विस्तृत कार्डिनल की स्वीकृत परिभाषा के बिना, यह सामान्य अर्थों में प्रमाण के अधीन नही होते है।) साथ ही, यह हर स्थिति में ज्ञात नहीं होते है कि तीन स्थितियों में से कौनसा है। सहारन शेलाह ने पूछा है, "[i] क्या कोई प्रमेय इसे समझा रहा है, या क्या हमारी दृष्टि हमारे एहसास से कहीं अधिक समान है?" वुडिन, चूंकि, इसे Ω-अनुमान से घटाते है, जो उनके Ω-तर्क की मुख्य अनसुलझी समस्या होती है। यह भी उल्लेखनीय है कि कई संयोजी कथन के बीच मध्यवर्ती होने के अतिरिक्त, कुछ विस्तृत कार्डिनल के साथ बिल्कुल समतुल्य होते है।
स्थिरता ऊर्जा का क्रम जरूरी नहीं कि एक विस्तृत कार्डिनल स्वयंसिद्ध के सबसे छोटे प्रमाण के आकार के क्रम के समान होते है। उदाहरण के लिए, एक सुपरकॉम्पैक्ट कार्डिनल के अस्तित्व की तुलना में, एक विशाल कार्डिनल का अस्तित्व स्थिरता ऊर्जा के स्थिति में बहुत मजबूत होता है, लेकिन यह मानते हुए कि दोनों उपस्थित होते है, पहला विशाल कार्डिनल पहले सुपरकॉम्पैक्ट कार्डिनल से छोटा होता है।
प्रेरणा और महामारी की स्थिति
विस्तृत कार्डिनल्स को वॉन न्यूमैन वी के संदर्भ में समझा जाता है, जो किसी दिए गए सेट के सभी सबसेट को एक साथ इकट्ठा करता है। सामान्यतः, मॉडल सिद्धांत जिसमें विस्तृत कार्डिनल स्वयंसिद्ध विफल होते है, कुछ प्राकृतिक विधियों से उन लोगों के सबमॉडल के रूप में देखा जा सकता है। उदाहरण के लिए, पहले कार्डिनल ऊंचाई पर कोई दुर्गम कार्डिनल नही होता है। यदि कोई औसत दर्जे का कार्डिनल होता है, तो पूर्ण के अतिरिक्त परिभाषित पावरसेट ऑपरेशन को दोहराते हुए गोडेल के रचनात्मक, एल, जो इस कथन को संतुष्ट नहीं करता है एक औसत दर्जे का कार्डिनल होता है (यदि इसमें औसत दर्जे का कार्डिनल एक क्रमसूचक के रूप में होता है)।
इस प्रकार, कई सेट सिद्धांतकारों द्वारा आयोजित एक निश्चित दृष्टिकोण से, विस्तृत कार्डिनल स्वयंसिद्ध "कहते है" कि हम उन सभी सेटों पर विचार करते है, जबकि उनके निषेध "प्रतिबंधात्मक" होते है और कहते है कि हम उनमें से केवल कुछ सेटों पर विचार करते है। इसके अतिरिक्त विस्तृत कार्डिनल स्वयंसिद्धों के परिणाम प्राकृतिक पैटर्न में आते प्रतीत होते है (देखें मैडी, "बिलीविंग द एक्सिओम्स, II")। इन कारणों से, इस तरह के सेट सिद्धांतकार जेडएफसी के विस्तार के बीच एक पसंदीदा स्थिति के लिए विस्तृत कार्डिनल स्वयंसिद्धों पर विचार करते है, जो कम स्पष्ट प्रेरणा के स्वयंसिद्धों (जैसे मार्टिन के स्वयंसिद्ध) या अन्य लोगों द्वारा साझा नहीं किया जाता है, जिन्हें वे सहज रूप से असंभावित मानते है (जैसे V = एल)। इस समूह में कट्टर यथार्थवादी अधिक सरलता से कहते है कि विस्तृत कार्डिनल स्वयंसिद्ध सत्य होते है।
यह दृष्टिकोण किसी भी तरह से सेट सिद्धांतकारों के बीच सार्वभौमिक नही होते है। कुछ औपचारिकतावादी यह प्रमाण करते है कि मानक सेट सिद्धांत जेडएफसी के परिणामों के अध्ययन की परिभाषा के अनुसार होते है, और जब वे अन्य प्रणालियों के परिणामों का अध्ययन करने के लिए सिद्धांत रूप में विरोध नहीं कर सकते है, तो विस्तृत कार्डिनल को पसंद करने का कोई कारण नही होता है। ऐसे यथार्थवादी भी होते है जो इस बात से इनकार करते है कि सत्तामूलक अधिकतावाद एक उचित प्रेरणा है, और यहाँ तक कि यह भी मानते है कि विस्तृत कार्डिनल स्वयंसिद्ध झूठे होते है। अंत में, कुछ ऐसे होते है जो इस बात से इनकार करते है कि विस्तृत कार्डिनल स्वयंसिद्धों की उपेक्षा प्रतिबंधात्मक है, यह इंगित करते हुए L में एक सकर्मक सेट मॉडल हो सकता है जो मानता है कि एक औसत दर्जे का कार्डिनल उपस्थित है, चूंकि L स्वयं संतुष्ट प्रस्ताव नही होता है।
यह भी देखें
- विस्तृत कार्डिनल गुणों की सूची
टिप्पणियाँ
- ↑ Bell, J. L. (1985). सेट थ्योरी में बूलियन-वैल्यूड मॉडल और इंडिपेंडेंस प्रूफ. Oxford University Press. viii. ISBN 0-19-853241-5.
संदर्भ
- Drake, F. R. (1974). Set Theory: An Introduction to Large Cardinals (Studies in Logic and the Foundations of Mathematics ; V. 76). Elsevier Science Ltd. ISBN 0-444-10535-2.
- Jech, Thomas (2002). Set theory, third millennium edition (revised and expanded). Springer. ISBN 3-540-44085-2.
- Kanamori, Akihiro (2003). The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings (2nd ed.). Springer. ISBN 3-540-00384-3.
- Kanamori, Akihiro; Magidor, M. (1978), "The evolution of large cardinal axioms in set theory" (PDF), Higher Set Theory, Lecture Notes in Mathematics, vol. 669, Springer Berlin / Heidelberg, pp. 99–275, doi:10.1007/BFb0103104, ISBN 978-3-540-08926-1, retrieved September 25, 2022
- Maddy, Penelope (1988). "Believing the Axioms, I". Journal of Symbolic Logic. 53 (2): 481–511. doi:10.2307/2274520. JSTOR 2274520.
- Maddy, Penelope (1988). "Believing the Axioms, II". Journal of Symbolic Logic. 53 (3): 736–764. doi:10.2307/2274569. JSTOR 2274569. S2CID 16544090.
- Shelah, Saharon (2002). "The Future of Set Theory". arXiv:math/0211397.
- Solovay, Robert M.; William N. Reinhardt; Akihiro Kanamori (1978). "Strong axioms of infinity and elementary embeddings" (PDF). Annals of Mathematical Logic. 13 (1): 73–116. doi:10.1016/0003-4843(78)90031-1.
- Woodin, W. Hugh (2001). "The continuum hypothesis, part II". Notices of the American Mathematical Society. 48 (7): 681–690.