औसती फलन: Difference between revisions
No edit summary |
|
(No difference)
|
Revision as of 12:13, 31 May 2023
गणित में और विशेष रूप से माप सिद्धांत में, मापने योग्य कार्य दो मापने योग्य रिक्त स्थान के अंतर्निहित समूहों के मध्य का कार्य है जो रिक्त स्थान की संरचना को संरक्षित करता है। इस प्रकार किसी भी माप (गणित) समूह की पूर्व अनुमान मापने योग्य है। यह परिभाषा के सीधे सादृश्य में है कि टोपोलॉजिकल रिक्त स्थान के मध्य सतत कार्य टोपोलॉजिकल संरचना को संरक्षित करता है। वास्तविक विश्लेषण में, मापने योग्य कार्यों का उपयोग लेबेसेग एकीकरण की परिभाषा में किया जाता है। अतः संभाव्यता सिद्धांत में, संभाव्यता स्थान पर मापने योग्य कार्य को यादृच्छिक चर के रूप में जाना जाता है।
औपचारिक परिभाषा
सामान्यतः और मापने योग्य स्थान है, जिसका अर्थ होता है और संबंधित से सुसज्जित समूह हैं। इस प्रकार -बीजगणित और कार्य को मापने योग्य कहा जाता है यदि प्रत्येक के लिए के पूर्व प्रतिबिम्ब के अंतर्गत में है, अर्थात् सभी के लिए होता है।
शब्द उपयोग विविधताएं
इसका चुनाव उपरोक्त परिभाषा में बीजगणित कभी-कभी अंतनिहित होता है और संदर्भ तक छोड़ दिया जाता है। उदाहरण के लिए, या अन्य सामयिक रिक्त स्थान, बोरेल बीजगणित (सभी खुले समूहों द्वारा उत्पन्न) साधारण पसंद होती है। इस प्रकार कुछ लेखक मापने योग्य कार्यों को बोरेल बीजगणित के संबंध में विशेष रूप से वास्तविक-मूल्यवान कार्यों के रूप में परिभाषित करते हैं।[1]
यदि फ़ंक्शन के मान अनंत-आयामी सदिश अंतरिक्ष में हैं, तब मापनीयता की अन्य गैर-समतुल्य परिभाषाएं, जैसे कमजोर मापनीयता और बोचनर मापनीयता उपस्तिथ होती हैं।
मापने योग्य कार्यों के उल्लेखनीय वर्ग
- यादृच्छिक चर परिभाषा के अनुसार प्रायिकता रिक्त स्थान पर परिभाषित औसत दर्जे के कार्य हैं।
- यदि और मानक बोरेल रिक्त स्थान और कुराटोस्की प्रमेय होते हैं, जो मापने योग्य कार्य को बोरेल कार्य भी कहा जाता है। सतत फलन बोरेल फलन होते हैं किन्तु सभी बोरेल फलन संतत नहीं होते हैं। चूँकि, मापने योग्य कार्य लगभग सतत कार्य होते है। इस प्रकार लुज़िन की प्रमेय देख सकते है। यदि बोरेल फ़ंक्शन मानचित्र का भाग होता है। इसे बोरेल खंड कहा जाता है।
- लेबेस्ग औसत दर्जे का कार्य होता है जहाँ है लेबेस्ग मापने योग्य समूहों का बीजगणित और सम्मिश्र संख्याओं पर बोरेल बीजगणित होता है लेबेस्ग मापने योग्य कार्य गणितीय विश्लेषण में रुचि रखते हैं जिससे कि उन्हें एकीकृत किया जा सकता है। यदि लेबेस्ग मापने योग्य है और यदि सभी के लिए मापने योग्य होता है यह भी इनमें से किसी के समान्तर होता है अतः यह सभी के लिए मापने योग्य होता है और या किसी भी खुले समूह के मापने योग्य होने की पूर्व-छवि निरंतर कार्य, मोनोटोन कार्य, चरण कार्य, अर्ध-सतत कार्य, रीमैन-अभिन्न कार्य और परिबद्ध भिन्नता के कार्य सभी लेबेस्ग मापने योग्य होते हैं।[2] इस प्रकार कार्य के मापनीय होते है और इसके वास्तविक और काल्पनिक भाग भी मापने योग्य होते हैं।
मापने योग्य कार्यों के गुण
- दो जटिल-मूल्यवान मापने योग्य कार्यों का योग और उत्पाद मापने योग्य होता है।[3] अतः भागफल भी ऐसा ही होता है, जब तक कि शून्य से कोई विभाजन नही होता है।[1]
- यदि और मापने योग्य कार्य हैं, तब उनकी संरचना भी होती है [1]
- यदि और मापने योग्य कार्य हैं और उनकी संरचना में की आवश्यकता नहीं होती है मापने योग्य जब तक वास्तव में, दो लेबेस्ग-मापने योग्य कार्यों का निर्माण इस प्रकार से किया जा सकता है कि उनकी रचना को गैर-लेबेस्ग-मापने योग्य बनाया जा सकता है।
- वास्तविक-मूल्यवान मापने योग्य कार्यों के अनुक्रम (अर्थात् गणनीय रूप से अनेक) के (बिंदुवार) अंतिम, सबसे कम, निचली सीमा और सीमा हीन सभी को मापा जा सकता हैं।[1][4]
- मापने योग्य कार्यों के अनुक्रम की बिंदुवार सीमा मापने योग्य होती है, जहां मीट्रिक स्थान (बोरेल बीजगणित के साथ संपन्न) होता है। यह सामान्यतः सत्य नहीं है यदि गैर-मेट्रिजेबल है और निरंतर कार्यों के लिए संबंधित कथनों को बिंदुवार अभिसरण की तुलना में मजबूत स्थितियों की आवश्यकता होती है, जैसे वर्दी अभिसरण इत्यादि।[5][6]
गैर-मापने योग्य कार्य
सामान्यतः अनुप्रयोगों में सामने आने वाले वास्तविक-मूल्यवान कार्य औसत दर्जे के होते हैं; चूँकि, गैर-मापने योग्य कार्यों के अस्तित्व को सिद्ध करना जटिल नहीं होता है। इस प्रकार के प्रमाण आवश्यक प्रकार से पसंद के स्वयंसिद्ध पर निर्भर करते हैं, इस अर्थ में कि ज़र्मेलो-फ्रेंकेल समूह सिद्धांत पसंद के स्वयंसिद्ध के अतिरिक्त ऐसे कार्यों के अस्तित्व को सिद्ध नहीं करता है।
किसी भी माप स्थान में गैर-मापने योग्य समूह के साथ गैर-मापने योग्य संकेतक कार्य का निर्माण कर सकता है।
अन्य उदाहरण के रूप में, कोई भी गैर-निरंतर कार्य तुच्छ के संबंध में मापनीय नहीं होता है। इस प्रकार -बीजगणित चूंकि सीमा में किसी भी बिंदु की पूर्वकल्पना कुछ उचित, गैर-रिक्त उपसमुच्चय होता है अतः जो तुच्छ का तत्व नहीं होता है।
यह भी देखें
- बोचनर औसत दर्जे का कार्य
- बोचनर रिक्त स्थान - गणितीय अवधारणा
- एलपी रिक्त स्थान - मापने योग्य कार्यों के सदिश रिक्त स्थान रिक्त स्थान
- माप-संरक्षण गतिशील प्रणाली
- सदिश माप
- निर्बल औसत दर्जे का कार्य
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 1.3 Strichartz, Robert (2000). विश्लेषण का तरीका. Jones and Bartlett. ISBN 0-7637-1497-6.
- ↑ Carothers, N. L. (2000). वास्तविक विश्लेषण. Cambridge University Press. ISBN 0-521-49756-6.
- ↑ Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0.
- ↑ Royden, H. L. (1988). वास्तविक विश्लेषण. Prentice Hall. ISBN 0-02-404151-3.
- ↑ Dudley, R. M. (2002). वास्तविक विश्लेषण और संभावना (2 ed.). Cambridge University Press. ISBN 0-521-00754-2.
- ↑ Aliprantis, Charalambos D.; Border, Kim C. (2006). अनंत आयामी विश्लेषण, एक सहयात्री की मार्गदर्शिका (3 ed.). Springer. ISBN 978-3-540-29587-7.