समूह योजना: Difference between revisions
No edit summary |
No edit summary |
||
Line 21: | Line 21: | ||
* [[योजनाओं के फाइबर उत्पाद]] का अस्तित्व एक को कई संरचना करने की अनुमति देता है। समूह योजनाओं के परिमित प्रत्यक्ष उत्पादों में एक विहित समूह योजना संसंघटक होती है। स्वसमाकृतिकता द्वारा एक समूह योजना की दूसरे पर कार्रवाई को देखते हुए, सामान्य समुच्चय -सैद्धांतिक संरचना का पालन करके अर्ध-प्रत्यक्ष उत्पाद बना सकते हैं। आधार से यूनिट मैप पर फाइबर उत्पाद लेकर समूह पद्धति होमोमोर्फिज्म के गुठली समूह पद्धति हैं। गणित में, एक समूह योजना [[बीजगणितीय ज्यामिति]] से एक प्रकार की विषय सूची है जो संघटक नियम से सुसज्जित है। आधार परिवर्तन समूह योजनाओं को समूह योजनाओं में भेजता है। | * [[योजनाओं के फाइबर उत्पाद]] का अस्तित्व एक को कई संरचना करने की अनुमति देता है। समूह योजनाओं के परिमित प्रत्यक्ष उत्पादों में एक विहित समूह योजना संसंघटक होती है। स्वसमाकृतिकता द्वारा एक समूह योजना की दूसरे पर कार्रवाई को देखते हुए, सामान्य समुच्चय -सैद्धांतिक संरचना का पालन करके अर्ध-प्रत्यक्ष उत्पाद बना सकते हैं। आधार से यूनिट मैप पर फाइबर उत्पाद लेकर समूह पद्धति होमोमोर्फिज्म के गुठली समूह पद्धति हैं। गणित में, एक समूह योजना [[बीजगणितीय ज्यामिति]] से एक प्रकार की विषय सूची है जो संघटक नियम से सुसज्जित है। आधार परिवर्तन समूह योजनाओं को समूह योजनाओं में भेजता है। | ||
* आधार योजनाओं के कुछ आकारिकी के संबंध में स्केलरों के प्रतिबंध को लेकर छोटे समूह की योजनाओं से समूह योजनाएं बनाई जा सकती हैं, हालांकि परिणामी प्रकार्यक की प्रतिनिधित्व क्षमता सुनिश्चित करने के लिए किसी को परिमितता की स्थिति की आवश्यकता होती है। जब यह रूपवाद खेतों के परिमित विस्तार के साथ होता है, तो इसे [[वील प्रतिबंध]] के रूप में जाना जाता है। | * आधार योजनाओं के कुछ आकारिकी के संबंध में स्केलरों के प्रतिबंध को लेकर छोटे समूह की योजनाओं से समूह योजनाएं बनाई जा सकती हैं, हालांकि परिणामी प्रकार्यक की प्रतिनिधित्व क्षमता सुनिश्चित करने के लिए किसी को परिमितता की स्थिति की आवश्यकता होती है। जब यह रूपवाद खेतों के परिमित विस्तार के साथ होता है, तो इसे [[वील प्रतिबंध]] के रूप में जाना जाता है। | ||
* किसी भी विनिमेय समूह | * किसी भी विनिमेय समूह A के लिए, D(A) (T) को समुच्चय करके विनिमेय समूह होमोमोर्फिज्म का समुच्चय होने के लिए विनिमेय समूह होमोमोर्फिज्म का समुच्चय होने के लिए एक संबंधित विकर्ण समूह D(A) बना सकता है। प्रत्येक S -पद्धति T के लिए। वैकल्पिक रूप से, इसे 2''n''<sup>2</sup> का उपयोग करके बनाया जा सकता है चर, संबंधों के साथ पारस्परिक रूप से व्युत्क्रम मैट्रिसेस की एक क्रमबद्ध जोड़ी का वर्णन करते हुए बनाया जा सकता है। यदि S एफ़िन है, तो D (A) को समूह रिंग के स्पेक्ट्रम के रूप में बनाया जा सकता है। अधिक सामान्यतः, S पर विनिमेय समूहों के विनिमेय समूहों के एक गैर-निरंतर शीफ होने की अनुमति देकर गुणक प्रकार के समूह बना सकते हैं। | ||
* समूह पद्धति G की सबसमूह पद्धति H के लिए, S-पद्धति T को G(T)/H(T) तक ले जाने वाला प्रकार्यक सामान्य रूप से शीफ नहीं है, और यहां तक कि इसका शेफिफिकेशन भी सामान्य रूप से पद्धति के रूप में प्रतिनिधित्व योग्य नहीं है . हालाँकि, यदि H परिमित, सपाट और G में बंद है, तो भागफल प्रतिनिधित्व करने योग्य है, और अनुवाद द्वारा एक प्रामाणिक बाएं G- क्रिया को स्वीकार करता है। यदि इस क्रिया का H पर प्रतिबंध सूक्ष्म है, तो H को सामान्य कहा जाता है, और भागफल योजना एक प्राकृतिक समूह नियम को स्वीकार करती है। प्रतिनिधित्व क्षमता कई अन्य स्थितियों में होती है, जैसे कि जब H, G में बंद होता है और दोनों | * समूह पद्धति G की सबसमूह पद्धति H के लिए, S-पद्धति T को G(T)/H(T) तक ले जाने वाला प्रकार्यक सामान्य रूप से शीफ नहीं है, और यहां तक कि इसका शेफिफिकेशन भी सामान्य रूप से पद्धति के रूप में प्रतिनिधित्व योग्य नहीं है . हालाँकि, यदि H परिमित, सपाट और G में बंद है, तो भागफल प्रतिनिधित्व करने योग्य है, और अनुवाद द्वारा एक प्रामाणिक बाएं G- क्रिया को स्वीकार करता है। यदि इस क्रिया का H पर प्रतिबंध सूक्ष्म है, तो H को सामान्य कहा जाता है, और भागफल योजना एक प्राकृतिक समूह नियम को स्वीकार करती है। प्रतिनिधित्व क्षमता कई अन्य स्थितियों में होती है, जैसे कि जब H, G में बंद होता है और दोनों एफ़िन होते हैं।<ref>{{Citation | last1=Raynaud | first1=Michel | author1-link=Michel Raynaud | title=Passage au quotient par une relation d'équivalence plate | publisher=[[Springer-Verlag]] | location=Berlin, New York |mr=0232781 | year=1967}}</ref> | ||
== उदाहरण == | == उदाहरण == | ||
* गुणक समूह | * गुणक समूह Gm इसकी अंतर्निहित योजना के रूप में पंचर वाली एफ़िन लाइन है, और एक प्रकार्यक के रूप में, यह संसंघटक शीफ़ के व्युत्क्रम वैश्विक वर्गों के गुणक समूह को एक एस-पद्धति टी भेजता है। इसे पूर्णांकों से जुड़े विकर्ण समूह D('Z') के रूप में वर्णित किया जा सकता है। स्पेक A जैसे एफाइन बेस पर, यह वलय A[x,y]/(xy − 1) का स्पेक्ट्रम है, जिसे A[x, x भी लिखा जाता है<sup>-1</sup>]। x को एक भेजकर इकाई मानचित्र दिया जाता है, x को x ⊗ x पर भेजकर गुणा किया जाता है, और x को x भेजकर प्रतिलोम दिया जाता है। [[बीजगणितीय टोरस]] क्रमविनिमेय समूह योजनाओं का एक महत्वपूर्ण वर्ग है, जिसे या तो 'जी' की प्रतियों के उत्पाद एस पर स्थानीय रूप से होने की संपत्ति द्वारा परिभाषित किया गया है।<sub>m</sub>, या गुणक प्रकार के समूहों के रूप में जो अंततः उत्पन्न मुक्त विनिमेय समूहों से जुड़े हैं। | ||
* सामान्य रैखिक समूह | * सामान्य रैखिक समूह ''GL<sub>n</sub>'' एक एफ़िन बीजगणितीय किस्म है जिसे n by n मैट्रिक्स रिंग किस्म के गुणक समूह के रूप में देखा जा सकता है। एक प्रकार्यक के रूप में, यह एक एस-पद्धति टी को एन मेट्रिसेस द्वारा व्युत्क्रमणीय n के समूह में भेजता है, जिनकी प्रविष्टियाँ T के वैश्विक खंड हैं। एक एफ़िन आधार पर, कोई इसे n में बहुपद वलय के भागफल के रूप में बना सकता है।<sup>2</sup> + 1 चर एक आदर्श एन्कोडिंग द्वारा निर्धारक की उलटाता। एक समूह G दिया गया है, कोई निरंतर समूह योजना GS बना सकता है। वैकल्पिक रूप से, इसे 2''n''<sup>2</sup> का उपयोग करके बनाया जा सकता है चर, संबंधों के साथ पारस्परिक रूप से व्युत्क्रम मैट्रिसेस की एक क्रमबद्ध जोड़ी का वर्णन करते हुए बनाया जा सकता है। | ||
* किसी भी सकारात्मक पूर्णांक n के लिए, समूह μ<sub>n</sub> 'G' से nवें पावर मैप का कर्नेल है<sub>m</sub> खुद को। एक प्रकार्यक के रूप में, यह किसी भी एस-पद्धति टी को टी के वैश्विक वर्गों के समूह में भेजता है जैसे कि f<sup>n</sup> = 1. कल्पना A जैसे संबधित आधार पर, यह A[x]/(x) का वर्णक्रम है<sup>n</sup>-1). यदि n आधार में व्युत्क्रमणीय नहीं है, तो यह योजना सुचारू नहीं है। विशेष रूप से, विशेषता p, μ | * किसी भी सकारात्मक पूर्णांक n के लिए, समूह μ<sub>n</sub> 'G' से nवें पावर मैप का कर्नेल है<sub>m</sub> खुद को। एक प्रकार्यक के रूप में, यह किसी भी एस-पद्धति टी को टी के वैश्विक वर्गों के समूह में भेजता है जैसे कि f<sup>n</sup> = 1. कल्पना A जैसे संबधित आधार पर, यह A[x]/(x) का वर्णक्रम है<sup>n</sup>-1). यदि n आधार में व्युत्क्रमणीय नहीं है, तो यह योजना सुचारू नहीं है। विशेष रूप से, विशेषता p, μ<sub>p</sub> के क्षेत्र में चिकना नहीं है। | ||
* योज्य समूह जी<sub>a</sub> | * योज्य समूह जी<sub>a</sub> एफ़िन रेखा A है<sup>1</sup> इसकी अंतर्निहित योजना के रूप में। एक प्रकार्यक के रूप में, यह किसी भी एस-पद्धति टी को संसंघटक शीफ के वैश्विक वर्गों के अंतर्निहित योजक समूह में भेजता है। स्पेक ए जैसे एफाइन बेस पर, यह बहुपद वलय A [x] का स्पेक्ट्रम है। x को शून्य पर भेजकर इकाई मानचित्र दिया जाता है, x को 1 ⊗ x + x ⊗ 1 पर भेजकर गुणन दिया जाता है, और x को −x पर भेजकर व्युत्क्रम दिया जाता है। | ||
* यदि किसी अभाज्य संख्या p के लिए S में p = 0 है, तो pth घात लेने से 'G' का एंडोमोर्फिज्म प्रेरित होता है।<sub>a</sub>, और कर्नेल समूह योजना α है<sub>p</sub>. स्पेक ए जैसे एफ़िन बेस पर, यह ए [x]/(x का स्पेक्ट्रम है<sup>पी </सुप>)। | * यदि किसी अभाज्य संख्या p के लिए S में p = 0 है, तो pth घात लेने से 'G' का एंडोमोर्फिज्म प्रेरित होता है।<sub>a</sub>, और कर्नेल समूह योजना α है<sub>p</sub>. स्पेक ए जैसे एफ़िन बेस पर, यह ए [x]/(x का स्पेक्ट्रम है<sup>पी </सुप>)। | ||
* | * एफ़ाइन लाइन का स्वसमाकृतिकता समूह Gm द्वारा Ga के अर्ध-प्रत्यक्ष उत्पाद के लिए आइसोमोर्फिक है, जहाँ योगात्मक समूह अनुवाद द्वारा कार्य करता है, और गुणक समूह फैलाव द्वारा कार्य करता है। एक चुने हुए बेसपॉइंट को ठीक करने वाला उपसमूह गुणक समूह के लिए आइसोमोर्फिक है, और बेसपॉइंट को एक योगात्मक समूह संरचना की पहचान के रूप में लेते हुए Gm को Ga के स्वसमाकृतिकता समूह के साथ पहचानता है। | ||
* एक चिह्नित बिंदु (अर्थात , एक अंडाकार वक्र) के साथ एक | * एक चिह्नित बिंदु (अर्थात , एक अंडाकार वक्र) के साथ एक सहज जीनस एक वक्र की पहचान के रूप में उस बिंदु के साथ एक अद्वितीय समूह योजना संरचना होती है। पिछले सकारात्मक-आयामी उदाहरणों के विपरीत, अण्डाकार वक्र प्रक्षेपी होते हैं (विशेष रूप से उचित)। | ||
<!-- Check out page 24 of http://www.mathcs.emory.edu/~brussel/Scans/mumfordpicard.pdf --> | <!-- Check out page 24 of http://www.mathcs.emory.edu/~brussel/Scans/mumfordpicard.pdf --> | ||
<!-- | <!-- | ||
Line 43: | Line 43: | ||
== मूल गुण == | == मूल गुण == | ||
मान लीजिए कि G क्षेत्र k पर परिमित प्रकार की एक समूह योजना है। | मान लीजिए कि G क्षेत्र k पर परिमित प्रकार की एक समूह योजना है। बता दें कि G0 आइडेंटिटी का कनेक्टेड कंपोनेंट है, यानी मैक्सिमम कनेक्टेड सबग्रुप स्कीम। तब G, G0 द्वारा परिमित étale समूह योजना का विस्तार है। G के पास एक अद्वितीय अधिकतम घटा हुआ सबस्कीम Gred है, और यदि k सही है, तो Gred एक चिकनी समूह किस्म है जो G की एक उपसमूह योजना है। भागफल योजना परिमित रैंक के स्थानीय रिंग का स्पेक्ट्रम है। | ||
कोई भी संबधित समूह योजना क्रमविनिमेय [[हॉफ बीजगणित]] की [[एक अंगूठी का स्पेक्ट्रम]] है (आधार S पर, यह एक O के सापेक्ष स्पेक्ट्रम द्वारा दिया जाता है<sub>S</sub>-बीजगणित)। समूह योजना के गुणन, इकाई और व्युत्क्रम मानचित्र हॉफ बीजगणित में सहगुणन, गिनती और एंटीपोड संरचनाओं द्वारा दिए गए हैं। हॉफ बीजगणित में इकाई और गुणन संरचनाएं अंतर्निहित योजना के लिए आंतरिक हैं। एक मनमाना समूह योजना G के लिए, वैश्विक वर्गों की अंगूठी में एक क्रम विनिमय हॉफ बीजगणित संसंघटक भी होती है, और इसके स्पेक्ट्रम को लेकर, एक अधिकतम एफ़िन भागफल समूह प्राप्त करता है। एफ़िन समूह किस्मों को रैखिक बीजगणितीय समूहों के रूप में जाना जाता है, क्योंकि उन्हें सामान्य रैखिक समूहों के उपसमूहों के रूप में एम्बेड किया जा सकता है। | कोई भी संबधित समूह योजना क्रमविनिमेय [[हॉफ बीजगणित]] की [[एक अंगूठी का स्पेक्ट्रम]] है (आधार S पर, यह एक O के सापेक्ष स्पेक्ट्रम द्वारा दिया जाता है<sub>S</sub>-बीजगणित)। समूह योजना के गुणन, इकाई और व्युत्क्रम मानचित्र हॉफ बीजगणित में सहगुणन, गिनती और एंटीपोड संरचनाओं द्वारा दिए गए हैं। हॉफ बीजगणित में इकाई और गुणन संरचनाएं अंतर्निहित योजना के लिए आंतरिक हैं। एक मनमाना समूह योजना G के लिए, वैश्विक वर्गों की अंगूठी में एक क्रम विनिमय हॉफ बीजगणित संसंघटक भी होती है, और इसके स्पेक्ट्रम को लेकर, एक अधिकतम एफ़िन भागफल समूह प्राप्त करता है। एफ़िन समूह किस्मों को रैखिक बीजगणितीय समूहों के रूप में जाना जाता है, क्योंकि उन्हें सामान्य रैखिक समूहों के उपसमूहों के रूप में एम्बेड किया जा सकता है। | ||
पूरी तरह से जुड़ी समूह योजनाएँ कुछ अर्थों में समूह योजनाओं के विपरीत हैं, क्योंकि पूर्णता का तात्पर्य है कि सभी वैश्विक खंड ठीक वही हैं जो आधार से वापस खींचे गए हैं, और विशेष रूप से, उनके पास योजनाओं को जोड़ने के लिए कोई गैर-मानचित्र नहीं है। पहचान के जेट रिक्त स्थान पर संयुग्मन की कार्रवाई को सम्मिलित करने वाले तर्क से कोई भी पूर्ण समूह विविधता (यहाँ विविधता का अर्थ है कम और ज्यामितीय रूप से अलघुकरणीय अलग-अलग प्रकार की परिमित प्रकार की अलग-अलग योजना) स्वचालित रूप से क्रम विनिमय है। पूर्ण समूह किस्मों को [[एबेलियन किस्म|विनिमेय किस्म]] कहा जाता है। यह विनिमेय पद्धति की धारणा का सामान्यीकरण करता है; एक आधार S पर एक समूह योजना G विनिमेय है यदि G से S तक की संरचनात्मक आकृति उचित है और ज्यामितीय रूप से जुड़े तंतुओं के साथ | पूरी तरह से जुड़ी समूह योजनाएँ कुछ अर्थों में समूह योजनाओं के विपरीत हैं, क्योंकि पूर्णता का तात्पर्य है कि सभी वैश्विक खंड ठीक वही हैं जो आधार से वापस खींचे गए हैं, और विशेष रूप से, उनके पास योजनाओं को जोड़ने के लिए कोई गैर-मानचित्र नहीं है। पहचान के जेट रिक्त स्थान पर संयुग्मन की कार्रवाई को सम्मिलित करने वाले तर्क से कोई भी पूर्ण समूह विविधता (यहाँ विविधता का अर्थ है कम और ज्यामितीय रूप से अलघुकरणीय अलग-अलग प्रकार की परिमित प्रकार की अलग-अलग योजना) स्वचालित रूप से क्रम विनिमय है। एक क्षेत्र पर परिमित फ्लैट समूहों की तुलना में डायडोने सिद्धांत कुछ अधिक सामान्य समुच्चय सेटिंग में उपलब्ध है। पूर्ण समूह किस्मों को [[एबेलियन किस्म|विनिमेय किस्म]] कहा जाता है। यह विनिमेय पद्धति की धारणा का सामान्यीकरण करता है; एक आधार S पर एक समूह योजना G विनिमेय है यदि G से S तक की संरचनात्मक आकृति उचित है और ज्यामितीय रूप से जुड़े तंतुओं के साथ सहज है। वे स्वचालित रूप से प्रक्षेपी हैं, और उनके पास कई अनुप्रयोग हैं, उदाहरण के लिए, ज्यामितीय [[वर्ग क्षेत्र सिद्धांत]] और पूरे बीजगणितीय ज्यामिति में। एक क्षेत्र पर एक पूर्ण समूह योजना को क्रमविनिमेय होने की आवश्यकता नहीं है, तथापि; उदाहरण के लिए, कोई परिमित समूह योजना पूर्ण है। | ||
== परिमित फ्लैट समूह योजनाएं == | == परिमित फ्लैट समूह योजनाएं == | ||
Line 53: | Line 53: | ||
एक नोथेरियन पद्धति S पर एक समूह योजना G परिमित और सपाट है यदि और केवल यदि O<sub>''G''</sub> स्थानीय रूप से मुक्त O है<sub>''S''</sub>परिमित रैंक का मॉड्यूल। रैंक S पर एक स्थानीय रूप से स्थिर कार्य है, और इसे G का क्रम कहा जाता है। एक स्थिर समूह योजना का क्रम संबंधित समूह के क्रम के बराबर होता है, और सामान्यतः , आधार परिवर्तन और परिमित समतल के संबंध में क्रम अच्छा व्यवहार करता है स्केलर्स का प्रतिबंध। | एक नोथेरियन पद्धति S पर एक समूह योजना G परिमित और सपाट है यदि और केवल यदि O<sub>''G''</sub> स्थानीय रूप से मुक्त O है<sub>''S''</sub>परिमित रैंक का मॉड्यूल। रैंक S पर एक स्थानीय रूप से स्थिर कार्य है, और इसे G का क्रम कहा जाता है। एक स्थिर समूह योजना का क्रम संबंधित समूह के क्रम के बराबर होता है, और सामान्यतः , आधार परिवर्तन और परिमित समतल के संबंध में क्रम अच्छा व्यवहार करता है स्केलर्स का प्रतिबंध। | ||
परिमित समतल समूह योजनाओं में, स्थिरांक (उपरोक्त उदाहरण देखें) एक विशेष वर्ग बनाते हैं, और विशेषता शून्य के बीजीय रूप से बंद क्षेत्र पर, परिमित समूहों की श्रेणी निरंतर परिमित समूह योजनाओं की श्रेणी के बराबर होती है। सकारात्मक विशेषता या अधिक अंकगणितीय संसंघटक वाले आधारों पर, अतिरिक्त समरूपता प्रकार उपलब्ध हैं। उदाहरण के लिए, यदि 2 आधार पर व्युत्क्रमणीय है, क्रम 2 की सभी समूह योजनाएँ स्थिर हैं, लेकिन 2-एडिक पूर्णांकों पर, μ<sub>2</sub> गैर-निरंतर है, क्योंकि विशेष फाइबर चिकना नहीं है। अत्यधिक शाखित 2-एडिक रिंगों के अनुक्रम उपलब्ध हैं, जिन पर क्रम 2 की समूह योजनाओं की समरूपता प्रकार की संख्या मनमाने ढंग से बड़ी हो जाती है। पी-एडिक रिंग्स पर क्रमविनिमेय परिमित फ्लैट समूह योजनाओं का अधिक विस्तृत विश्लेषण रेनॉड के लंबे समय तक काम में पाया जा सकता है। | परिमित समतल समूह योजनाओं में, स्थिरांक (उपरोक्त उदाहरण देखें) एक विशेष वर्ग बनाते हैं, और विशेषता शून्य के बीजीय रूप से बंद क्षेत्र पर, परिमित समूहों की श्रेणी निरंतर परिमित समूह योजनाओं की श्रेणी के बराबर होती है। सकारात्मक विशेषता या अधिक अंकगणितीय संसंघटक वाले आधारों पर, अतिरिक्त समरूपता प्रकार उपलब्ध हैं। उदाहरण के लिए, यदि 2 आधार पर व्युत्क्रमणीय है, क्रम 2 की सभी समूह योजनाएँ स्थिर हैं, लेकिन 2-एडिक पूर्णांकों पर, μ<sub>2</sub> गैर-निरंतर है, क्योंकि विशेष फाइबर चिकना नहीं है। अत्यधिक शाखित 2-एडिक रिंगों के अनुक्रम उपलब्ध हैं, जिन पर क्रम 2 की समूह योजनाओं की समरूपता प्रकार की संख्या मनमाने ढंग से बड़ी हो जाती है। पी-एडिक रिंग्स पर [[क्रमविनिमेय]] परिमित फ्लैट समूह योजनाओं का अधिक विस्तृत विश्लेषण रेनॉड के लंबे समय तक काम में पाया जा सकता है। | ||
क्रमविनिमेय परिमित फ्लैट समूह योजनाएँ अधिकांशतः प्रकृति में विनिमेय और सेमी-विनिमेय किस्मों की उपसमूह योजनाओं के रूप में होती हैं, और सकारात्मक या मिश्रित विशेषता में, वे परिवेशी विविधता के बारे में बहुत सारी जानकारी प्राप्त कर सकती | क्रमविनिमेय परिमित फ्लैट समूह योजनाएँ अधिकांशतः प्रकृति में विनिमेय और सेमी-विनिमेय किस्मों की उपसमूह योजनाओं के रूप में होती हैं, और सकारात्मक या मिश्रित विशेषता में, वे परिवेशी विविधता के बारे में बहुत सारी जानकारी प्राप्त कर सकती हैं।उदाहरण के लिए, अभिलाक्षणिक शून्य में दीर्घवृत्तीय वक्र का पी-मोड़ क्रम p2 की स्थिर प्राथमिक एबेलियन समूह योजना के लिए स्थानीय रूप से आइसोमोर्फिक है, लेकिन Fp पर, यह आदेश p2 की एक परिमित समतल समूह योजना है जिसमें या तो p जुड़े हुए घटक हैं (यदि वक्र साधारण है) या एक जुड़ा हुआ घटक (यदि वक्र सुपरसिंगुलर है)। सकारात्मक विशेषता या अधिक अंकगणितीय संसंघटक वाले आधारों पर, अतिरिक्त समरूपता प्रकार उपलब्ध हैं। यदि हम अण्डाकार वक्रों के एक परिवार पर विचार करते हैं, तो पी-मरोड़ पैरामीट्रिज़िंग स्पेस पर एक परिमित फ्लैट समूह योजना बनाता है, और सुपरसिंगुलर लोकस वह जगह है जहाँ तंतु जुड़े होते हैं। कनेक्टेड घटकों के इस विलय का अध्ययन एक मॉड्यूलर योजना से एक [[कठोर विश्लेषणात्मक स्थान]] पर जाकर सूक्ष्म विस्तार से किया जा सकता है, जहां सुपरसिंगुलर बिंदुओं को सकारात्मक त्रिज्या की डिस्क से बदल दिया जाता है। | ||
== कार्टियर द्वैत == | == कार्टियर द्वैत == | ||
Line 66: | Line 66: | ||
{{Main|डायडोने मॉड्यूल}} | {{Main|डायडोने मॉड्यूल}} | ||
धनात्मक विशेषता p के पूर्ण क्षेत्र k पर परिमित फ्लैट क्रमविनिमेय समूह योजनाओं का अध्ययन उनकी ज्यामितीय संसंघटक को (अर्ध-)रैखिक-बीजगणितीय समुच्चय सेटिंग में स्थानांतरित करके किया जा सकता है। मूल विषय सूची डाययूडोने रिंग D = W(k){F,V}/(FV − p) है, जो k के [[विट वैक्टर|विट सदिश]] में गुणांक के साथ, गैर-क्रमपरिवर्तनीय बहुपदों के रिंग का भागफल है। एफ और वी फ्रोबेनियस और [[ बदलाव |बदलाव]] संचालक हैं, और वे विट सदिश पर अनौपचारिक रूप से कार्य कर सकते हैं। डाइयूडोन और कार्टियर ने आदेश के k पर परिमित क्रमविनिमेय समूह योजनाओं के बीच श्रेणियों की एक प्रतिरूपता का संरचना किया, p की शक्ति और परिमित W(k)-लम्बाई के साथ D पर मॉड्यूल। | धनात्मक विशेषता p के पूर्ण क्षेत्र k पर परिमित फ्लैट क्रमविनिमेय समूह योजनाओं का अध्ययन उनकी ज्यामितीय संसंघटक को (अर्ध-)रैखिक-बीजगणितीय समुच्चय सेटिंग में स्थानांतरित करके किया जा सकता है। मूल विषय सूची डाययूडोने रिंग D = W(k){F,V}/(FV − p) है, जो k के [[विट वैक्टर|विट सदिश]] में गुणांक के साथ, गैर-क्रमपरिवर्तनीय बहुपदों के रिंग का भागफल है। एफ और वी फ्रोबेनियस और [[ बदलाव |बदलाव]] संचालक हैं, और वे विट सदिश पर अनौपचारिक रूप से कार्य कर सकते हैं। डाइयूडोन और कार्टियर ने आदेश के k पर परिमित क्रमविनिमेय समूह योजनाओं के बीच श्रेणियों की एक प्रतिरूपता का संरचना किया, p की शक्ति और परिमित W(k)-लम्बाई के साथ D पर मॉड्यूल। डायडोने मॉड्यूल प्रकार्यक एक दिशा में समरूपता द्वारा Witt सह-सदिश ों के विनिमेय शीफ CW में दिया जाता है। यह शीफ विट सदिश (जो वास्तव में एक समूह योजना द्वारा प्रतिनिधित्व करने योग्य है) के शीफ के लिए कमोबेश दोहरी है, क्योंकि इसका संरचना क्रमिक वर्शचीबंग मैप्स वी: डब्ल्यू के अनुसार परिमित लंबाई विट सदिश की सीधी सीमा लेकर किया गया है।<sub>n</sub> → डब्ल्यू<sub>n+1</sub>, और फिर पूरा करना। क्रमविनिमेय समूह योजनाओं के कई गुणों को संबंधित डाययूडोने मॉड्यूल की जांच करके देखा जा सकता है, उदाहरण के लिए, कनेक्टेड पी-समूह योजनाएं डी-मॉड्यूल के अनुरूप हैं जिसके लिए एफ नाइलपोटेंट है, और ईटेल समूह योजनाएं उन मॉड्यूल के अनुरूप हैं जिनके लिए एफ एक समरूपता है। | ||
एक क्षेत्र पर परिमित फ्लैट समूहों की तुलना में डायडोने सिद्धांत कुछ अधिक सामान्य समुच्चय सेटिंग में उपलब्ध है। ओडा की 1967 की थीसिस ने डाययूडोने मॉड्यूल और विनिमेय किस्मों के पहले डी रम कोहोलॉजी के बीच एक संबंध दिया, और लगभग उसी समय, ग्रोथेंडिक ने सुझाव दिया कि सिद्धांत का एक क्रिस्टलीय संस्करण होना चाहिए जिसका उपयोग पी-विभाज्य समूहों का विश्लेषण करने के लिए किया जा सकता है। समूह योजनाओं पर गाल्वा की कार्रवाइयाँ श्रेणियों के तुल्यता के माध्यम से स्थानांतरित होती हैं, और गैलोज़ अभ्यावेदन के संबद्ध विरूपण सिद्धांत का उपयोग शिमुरा-तानियामा अनुमान पर [[एंड्रयू विल्स]] के काम में किया गया था। | एक क्षेत्र पर परिमित फ्लैट समूहों की तुलना में डायडोने सिद्धांत कुछ अधिक सामान्य समुच्चय सेटिंग में उपलब्ध है। ओडा की 1967 की थीसिस ने डाययूडोने मॉड्यूल और विनिमेय किस्मों के पहले डी रम कोहोलॉजी के बीच एक संबंध दिया, और लगभग उसी समय, ग्रोथेंडिक ने सुझाव दिया कि सिद्धांत का एक क्रिस्टलीय संस्करण होना चाहिए जिसका उपयोग पी-विभाज्य समूहों का विश्लेषण करने के लिए किया जा सकता है। समूह योजनाओं पर गाल्वा की कार्रवाइयाँ श्रेणियों के तुल्यता के माध्यम से स्थानांतरित होती हैं, और गैलोज़ अभ्यावेदन के संबद्ध विरूपण सिद्धांत का उपयोग शिमुरा-तानियामा अनुमान पर [[एंड्रयू विल्स]] के काम में किया गया था। |
Revision as of 12:35, 31 May 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में, एक समूह योजना बीजगणितीय ज्यामिति से एक प्रकार की विषय सूची है जो संघटक नियम से सुसज्जित है। समूह योजनाएँ स्वाभाविक रूप से योजना (गणित) की समरूपता के रूप में उत्पन्न होती हैं, और वे बीजगणितीय समूहों को सामान्य करती हैं, इस अर्थ में कि सभी बीजगणितीय समूहों में समूह योजना संसंघटक होती है, लेकिन समूह योजनाएँ एक क्षेत्र से जुड़ी, सुचारू या परिभाषित नहीं होती हैं। यह अतिरिक्त व्यापकता एक व्यक्ति को समृद्ध अतिसूक्ष्म संरचनाओं का अध्ययन करने की अनुमति देती है, और यह अंकगणितीय महत्व के प्रश्नों को समझने और उनका उत्तर देने में सहायता कर सकती है। समूह योजनाओं की श्रेणी (गणित) समूह विविधता की तुलना में कुछ सीमा तक बेहतर व्यवहार करती है, क्योंकि सभी समरूपताओं में कर्नेल (श्रेणी सिद्धांत) होते हैं, और एक अच्छा व्यवहार विरूपण सिद्धांत होता है। समूह योजनाएँ जो बीजगणितीय समूह नहीं हैं, अंकगणित ज्यामिति और बीजगणितीय सांस्थिति में महत्वपूर्ण भूमिका निभाती हैं, क्योंकि वे गैलोज़ अभ्यावेदन और मोडुली समस्याओं के संदर्भ में सामने आती हैं। समूह योजनाओं के सिद्धांत का प्रारंभिक विकास 1960 के दशक की प्रारम्भ में अलेक्जेंडर ग्रोथेंडिक, मिशेल रेनॉड और मिशेल डेमजुरे के कारण हुआ था।
परिभाषा
एक समूह योजना एक समूह विषय सूची है जो योजनाओं की एक श्रेणी में है जिसमें फाइबर उत्पाद और कुछ अंतिम विषय सूची S है। अर्थात , यह एक S-पद्धति G है जो डेटा के समतुल्य समुच्चय में से एक से सुसज्जित है।
- आकारिता का एक ट्रिपल μ: G ×S G → G, e: S → G, और ι: G → G, समूहों की सामान्य अनुकूलताओं को संतुष्ट करना (अर्थात् μ, पहचान, और व्युत्क्रम अभिगृहीतों की सहचारिता)
- समूहों की श्रेणी के लिए S से ऊपर की योजनाओं का एक प्रकार्यक, जैसे कि समुच्चय (गणित) के लिए अनवहित प्रकार्यक के साथ संघटक Yoneda लेम्मा के अनुसार G के अनुरूप प्रीशेफ़ के बराबर है। (यह भी देखें: समूह प्रकार्यक।)
समूह योजनाओं का एक समरूपता उन योजनाओं का मानचित्र है जो गुणन का सम्मान करती हैं। यह या तो यह कहकर सटीक रूप से व्यक्त किया जा सकता है कि एक मानचित्र f समीकरण fμ = μ (f × f) को संतुष्ट करता है, या यह कहकर कि f योजनाओं से समूहों (सिर्फ समुच्चय के अतिरिक्त ) में प्रकार्यक का एक प्राकृतिक परिवर्तन है।
एक योजना X पर एक समूह-योजना क्रिया G एक आकारिकी G ×S X→ X है जो समूह G(T) की बाईं क्रिया को समुच्चय X(T) पर किसी भी S- योजना T के लिए प्रेरित करती है। सही कार्यों को इसी तरह परिभाषित किया जाता है। कोई भी समूह योजना गुणा और आंतरिक स्वसमाकृतिकता द्वारा अपनी अंतर्निहित योजना पर प्राकृतिक बाएँ और दाएँ कार्यों को स्वीकार करती है। संयुग्मन स्वसमाकृतिकता द्वारा एक क्रिया है, अर्थात, यह समूह संसंघटक के साथ संचार करता है, और यह स्वाभाविक रूप से व्युत्पन्न वस्तुओं पर रैखिक क्रियाओं को प्रेरित करता है, जैसे कि इसका असत्य बीजगणित, और बाएं-अपरिवर्तनीय अंतर ऑपरेटरों के बीजगणित रैखिक क्रियाओं को प्रेरित करता है।
एक S -समूह पद्धति G क्रम विनिमय है यदि समूह g(t) सभी S-पद्धति T के लिए एक विनिमेय समूह है। कई अन्य समतुल्य स्थितियां हैं, जैसे संयुग्मन एक सूक्ष्म क्रिया को प्रेरित करता है, या व्युत्क्रम मानचित्र को प्रेरित करता है ι यह एक समूह आंतरिक स्वसमाकृतिकता है। .
संरचना
- एक समूह G दिया गया है, कोई निरंतर समूह योजना GS बना सकता है। एक योजना के रूप में, यह S की प्रतियों का एक अलग समूह है, और G के अवयवों के साथ इन प्रतियों की पहचान चुनकर, संसंघटक के परिवहन द्वारा गुणन, इकाई और व्युत्क्रम मानचित्रों को परिभाषित कर सकता है। एक प्रकार्यक के रूप में, यह किसी भी S -योजना Tको समूह G की प्रतियों के उत्पाद में ले जाता है, जहां प्रतियों की संख्या T के जुड़े घटकों की संख्या के बराबर होती है। GS, S के ऊपर सजातीय है यदि और केवल यदि G एक परिमित समूह है। हालांकि, अनंत समूह योजनाओं को प्राप्त करने के लिए परिमित निरंतर समूह योजनाओं की अनुमानित सीमा ले सकते हैं, जो मौलिक समूहों और गैलोइस अभ्यावेदन के अध्ययन में या मौलिक समूह योजना के सिद्धांत में दिखाई देते हैं, और ये अनंत प्रकार के संबंध हैं। अधिक सामान्यतः , S पर समूहों के स्थानीय रूप से स्थिर समूह लेकर, एक स्थानीय रूप से स्थिर समूह योजना प्राप्त करता है, जिसके लिए आधार पर एकसूत्रता तंतुओं पर गैर-सूक्ष्म स्वसमाकृतिकता को प्रेरित कर सकता है।
- योजनाओं के फाइबर उत्पाद का अस्तित्व एक को कई संरचना करने की अनुमति देता है। समूह योजनाओं के परिमित प्रत्यक्ष उत्पादों में एक विहित समूह योजना संसंघटक होती है। स्वसमाकृतिकता द्वारा एक समूह योजना की दूसरे पर कार्रवाई को देखते हुए, सामान्य समुच्चय -सैद्धांतिक संरचना का पालन करके अर्ध-प्रत्यक्ष उत्पाद बना सकते हैं। आधार से यूनिट मैप पर फाइबर उत्पाद लेकर समूह पद्धति होमोमोर्फिज्म के गुठली समूह पद्धति हैं। गणित में, एक समूह योजना बीजगणितीय ज्यामिति से एक प्रकार की विषय सूची है जो संघटक नियम से सुसज्जित है। आधार परिवर्तन समूह योजनाओं को समूह योजनाओं में भेजता है।
- आधार योजनाओं के कुछ आकारिकी के संबंध में स्केलरों के प्रतिबंध को लेकर छोटे समूह की योजनाओं से समूह योजनाएं बनाई जा सकती हैं, हालांकि परिणामी प्रकार्यक की प्रतिनिधित्व क्षमता सुनिश्चित करने के लिए किसी को परिमितता की स्थिति की आवश्यकता होती है। जब यह रूपवाद खेतों के परिमित विस्तार के साथ होता है, तो इसे वील प्रतिबंध के रूप में जाना जाता है।
- किसी भी विनिमेय समूह A के लिए, D(A) (T) को समुच्चय करके विनिमेय समूह होमोमोर्फिज्म का समुच्चय होने के लिए विनिमेय समूह होमोमोर्फिज्म का समुच्चय होने के लिए एक संबंधित विकर्ण समूह D(A) बना सकता है। प्रत्येक S -पद्धति T के लिए। वैकल्पिक रूप से, इसे 2n2 का उपयोग करके बनाया जा सकता है चर, संबंधों के साथ पारस्परिक रूप से व्युत्क्रम मैट्रिसेस की एक क्रमबद्ध जोड़ी का वर्णन करते हुए बनाया जा सकता है। यदि S एफ़िन है, तो D (A) को समूह रिंग के स्पेक्ट्रम के रूप में बनाया जा सकता है। अधिक सामान्यतः, S पर विनिमेय समूहों के विनिमेय समूहों के एक गैर-निरंतर शीफ होने की अनुमति देकर गुणक प्रकार के समूह बना सकते हैं।
- समूह पद्धति G की सबसमूह पद्धति H के लिए, S-पद्धति T को G(T)/H(T) तक ले जाने वाला प्रकार्यक सामान्य रूप से शीफ नहीं है, और यहां तक कि इसका शेफिफिकेशन भी सामान्य रूप से पद्धति के रूप में प्रतिनिधित्व योग्य नहीं है . हालाँकि, यदि H परिमित, सपाट और G में बंद है, तो भागफल प्रतिनिधित्व करने योग्य है, और अनुवाद द्वारा एक प्रामाणिक बाएं G- क्रिया को स्वीकार करता है। यदि इस क्रिया का H पर प्रतिबंध सूक्ष्म है, तो H को सामान्य कहा जाता है, और भागफल योजना एक प्राकृतिक समूह नियम को स्वीकार करती है। प्रतिनिधित्व क्षमता कई अन्य स्थितियों में होती है, जैसे कि जब H, G में बंद होता है और दोनों एफ़िन होते हैं।[1]
उदाहरण
- गुणक समूह Gm इसकी अंतर्निहित योजना के रूप में पंचर वाली एफ़िन लाइन है, और एक प्रकार्यक के रूप में, यह संसंघटक शीफ़ के व्युत्क्रम वैश्विक वर्गों के गुणक समूह को एक एस-पद्धति टी भेजता है। इसे पूर्णांकों से जुड़े विकर्ण समूह D('Z') के रूप में वर्णित किया जा सकता है। स्पेक A जैसे एफाइन बेस पर, यह वलय A[x,y]/(xy − 1) का स्पेक्ट्रम है, जिसे A[x, x भी लिखा जाता है-1]। x को एक भेजकर इकाई मानचित्र दिया जाता है, x को x ⊗ x पर भेजकर गुणा किया जाता है, और x को x भेजकर प्रतिलोम दिया जाता है। बीजगणितीय टोरस क्रमविनिमेय समूह योजनाओं का एक महत्वपूर्ण वर्ग है, जिसे या तो 'जी' की प्रतियों के उत्पाद एस पर स्थानीय रूप से होने की संपत्ति द्वारा परिभाषित किया गया है।m, या गुणक प्रकार के समूहों के रूप में जो अंततः उत्पन्न मुक्त विनिमेय समूहों से जुड़े हैं।
- सामान्य रैखिक समूह GLn एक एफ़िन बीजगणितीय किस्म है जिसे n by n मैट्रिक्स रिंग किस्म के गुणक समूह के रूप में देखा जा सकता है। एक प्रकार्यक के रूप में, यह एक एस-पद्धति टी को एन मेट्रिसेस द्वारा व्युत्क्रमणीय n के समूह में भेजता है, जिनकी प्रविष्टियाँ T के वैश्विक खंड हैं। एक एफ़िन आधार पर, कोई इसे n में बहुपद वलय के भागफल के रूप में बना सकता है।2 + 1 चर एक आदर्श एन्कोडिंग द्वारा निर्धारक की उलटाता। एक समूह G दिया गया है, कोई निरंतर समूह योजना GS बना सकता है। वैकल्पिक रूप से, इसे 2n2 का उपयोग करके बनाया जा सकता है चर, संबंधों के साथ पारस्परिक रूप से व्युत्क्रम मैट्रिसेस की एक क्रमबद्ध जोड़ी का वर्णन करते हुए बनाया जा सकता है।
- किसी भी सकारात्मक पूर्णांक n के लिए, समूह μn 'G' से nवें पावर मैप का कर्नेल हैm खुद को। एक प्रकार्यक के रूप में, यह किसी भी एस-पद्धति टी को टी के वैश्विक वर्गों के समूह में भेजता है जैसे कि fn = 1. कल्पना A जैसे संबधित आधार पर, यह A[x]/(x) का वर्णक्रम हैn-1). यदि n आधार में व्युत्क्रमणीय नहीं है, तो यह योजना सुचारू नहीं है। विशेष रूप से, विशेषता p, μp के क्षेत्र में चिकना नहीं है।
- योज्य समूह जीa एफ़िन रेखा A है1 इसकी अंतर्निहित योजना के रूप में। एक प्रकार्यक के रूप में, यह किसी भी एस-पद्धति टी को संसंघटक शीफ के वैश्विक वर्गों के अंतर्निहित योजक समूह में भेजता है। स्पेक ए जैसे एफाइन बेस पर, यह बहुपद वलय A [x] का स्पेक्ट्रम है। x को शून्य पर भेजकर इकाई मानचित्र दिया जाता है, x को 1 ⊗ x + x ⊗ 1 पर भेजकर गुणन दिया जाता है, और x को −x पर भेजकर व्युत्क्रम दिया जाता है।
- यदि किसी अभाज्य संख्या p के लिए S में p = 0 है, तो pth घात लेने से 'G' का एंडोमोर्फिज्म प्रेरित होता है।a, और कर्नेल समूह योजना α हैp. स्पेक ए जैसे एफ़िन बेस पर, यह ए [x]/(x का स्पेक्ट्रम हैपी </सुप>)।
- एफ़ाइन लाइन का स्वसमाकृतिकता समूह Gm द्वारा Ga के अर्ध-प्रत्यक्ष उत्पाद के लिए आइसोमोर्फिक है, जहाँ योगात्मक समूह अनुवाद द्वारा कार्य करता है, और गुणक समूह फैलाव द्वारा कार्य करता है। एक चुने हुए बेसपॉइंट को ठीक करने वाला उपसमूह गुणक समूह के लिए आइसोमोर्फिक है, और बेसपॉइंट को एक योगात्मक समूह संरचना की पहचान के रूप में लेते हुए Gm को Ga के स्वसमाकृतिकता समूह के साथ पहचानता है।
- एक चिह्नित बिंदु (अर्थात , एक अंडाकार वक्र) के साथ एक सहज जीनस एक वक्र की पहचान के रूप में उस बिंदु के साथ एक अद्वितीय समूह योजना संरचना होती है। पिछले सकारात्मक-आयामी उदाहरणों के विपरीत, अण्डाकार वक्र प्रक्षेपी होते हैं (विशेष रूप से उचित)।
मूल गुण
मान लीजिए कि G क्षेत्र k पर परिमित प्रकार की एक समूह योजना है। बता दें कि G0 आइडेंटिटी का कनेक्टेड कंपोनेंट है, यानी मैक्सिमम कनेक्टेड सबग्रुप स्कीम। तब G, G0 द्वारा परिमित étale समूह योजना का विस्तार है। G के पास एक अद्वितीय अधिकतम घटा हुआ सबस्कीम Gred है, और यदि k सही है, तो Gred एक चिकनी समूह किस्म है जो G की एक उपसमूह योजना है। भागफल योजना परिमित रैंक के स्थानीय रिंग का स्पेक्ट्रम है।
कोई भी संबधित समूह योजना क्रमविनिमेय हॉफ बीजगणित की एक अंगूठी का स्पेक्ट्रम है (आधार S पर, यह एक O के सापेक्ष स्पेक्ट्रम द्वारा दिया जाता हैS-बीजगणित)। समूह योजना के गुणन, इकाई और व्युत्क्रम मानचित्र हॉफ बीजगणित में सहगुणन, गिनती और एंटीपोड संरचनाओं द्वारा दिए गए हैं। हॉफ बीजगणित में इकाई और गुणन संरचनाएं अंतर्निहित योजना के लिए आंतरिक हैं। एक मनमाना समूह योजना G के लिए, वैश्विक वर्गों की अंगूठी में एक क्रम विनिमय हॉफ बीजगणित संसंघटक भी होती है, और इसके स्पेक्ट्रम को लेकर, एक अधिकतम एफ़िन भागफल समूह प्राप्त करता है। एफ़िन समूह किस्मों को रैखिक बीजगणितीय समूहों के रूप में जाना जाता है, क्योंकि उन्हें सामान्य रैखिक समूहों के उपसमूहों के रूप में एम्बेड किया जा सकता है।
पूरी तरह से जुड़ी समूह योजनाएँ कुछ अर्थों में समूह योजनाओं के विपरीत हैं, क्योंकि पूर्णता का तात्पर्य है कि सभी वैश्विक खंड ठीक वही हैं जो आधार से वापस खींचे गए हैं, और विशेष रूप से, उनके पास योजनाओं को जोड़ने के लिए कोई गैर-मानचित्र नहीं है। पहचान के जेट रिक्त स्थान पर संयुग्मन की कार्रवाई को सम्मिलित करने वाले तर्क से कोई भी पूर्ण समूह विविधता (यहाँ विविधता का अर्थ है कम और ज्यामितीय रूप से अलघुकरणीय अलग-अलग प्रकार की परिमित प्रकार की अलग-अलग योजना) स्वचालित रूप से क्रम विनिमय है। एक क्षेत्र पर परिमित फ्लैट समूहों की तुलना में डायडोने सिद्धांत कुछ अधिक सामान्य समुच्चय सेटिंग में उपलब्ध है। पूर्ण समूह किस्मों को विनिमेय किस्म कहा जाता है। यह विनिमेय पद्धति की धारणा का सामान्यीकरण करता है; एक आधार S पर एक समूह योजना G विनिमेय है यदि G से S तक की संरचनात्मक आकृति उचित है और ज्यामितीय रूप से जुड़े तंतुओं के साथ सहज है। वे स्वचालित रूप से प्रक्षेपी हैं, और उनके पास कई अनुप्रयोग हैं, उदाहरण के लिए, ज्यामितीय वर्ग क्षेत्र सिद्धांत और पूरे बीजगणितीय ज्यामिति में। एक क्षेत्र पर एक पूर्ण समूह योजना को क्रमविनिमेय होने की आवश्यकता नहीं है, तथापि; उदाहरण के लिए, कोई परिमित समूह योजना पूर्ण है।
परिमित फ्लैट समूह योजनाएं
एक नोथेरियन पद्धति S पर एक समूह योजना G परिमित और सपाट है यदि और केवल यदि OG स्थानीय रूप से मुक्त O हैSपरिमित रैंक का मॉड्यूल। रैंक S पर एक स्थानीय रूप से स्थिर कार्य है, और इसे G का क्रम कहा जाता है। एक स्थिर समूह योजना का क्रम संबंधित समूह के क्रम के बराबर होता है, और सामान्यतः , आधार परिवर्तन और परिमित समतल के संबंध में क्रम अच्छा व्यवहार करता है स्केलर्स का प्रतिबंध।
परिमित समतल समूह योजनाओं में, स्थिरांक (उपरोक्त उदाहरण देखें) एक विशेष वर्ग बनाते हैं, और विशेषता शून्य के बीजीय रूप से बंद क्षेत्र पर, परिमित समूहों की श्रेणी निरंतर परिमित समूह योजनाओं की श्रेणी के बराबर होती है। सकारात्मक विशेषता या अधिक अंकगणितीय संसंघटक वाले आधारों पर, अतिरिक्त समरूपता प्रकार उपलब्ध हैं। उदाहरण के लिए, यदि 2 आधार पर व्युत्क्रमणीय है, क्रम 2 की सभी समूह योजनाएँ स्थिर हैं, लेकिन 2-एडिक पूर्णांकों पर, μ2 गैर-निरंतर है, क्योंकि विशेष फाइबर चिकना नहीं है। अत्यधिक शाखित 2-एडिक रिंगों के अनुक्रम उपलब्ध हैं, जिन पर क्रम 2 की समूह योजनाओं की समरूपता प्रकार की संख्या मनमाने ढंग से बड़ी हो जाती है। पी-एडिक रिंग्स पर क्रमविनिमेय परिमित फ्लैट समूह योजनाओं का अधिक विस्तृत विश्लेषण रेनॉड के लंबे समय तक काम में पाया जा सकता है।
क्रमविनिमेय परिमित फ्लैट समूह योजनाएँ अधिकांशतः प्रकृति में विनिमेय और सेमी-विनिमेय किस्मों की उपसमूह योजनाओं के रूप में होती हैं, और सकारात्मक या मिश्रित विशेषता में, वे परिवेशी विविधता के बारे में बहुत सारी जानकारी प्राप्त कर सकती हैं।उदाहरण के लिए, अभिलाक्षणिक शून्य में दीर्घवृत्तीय वक्र का पी-मोड़ क्रम p2 की स्थिर प्राथमिक एबेलियन समूह योजना के लिए स्थानीय रूप से आइसोमोर्फिक है, लेकिन Fp पर, यह आदेश p2 की एक परिमित समतल समूह योजना है जिसमें या तो p जुड़े हुए घटक हैं (यदि वक्र साधारण है) या एक जुड़ा हुआ घटक (यदि वक्र सुपरसिंगुलर है)। सकारात्मक विशेषता या अधिक अंकगणितीय संसंघटक वाले आधारों पर, अतिरिक्त समरूपता प्रकार उपलब्ध हैं। यदि हम अण्डाकार वक्रों के एक परिवार पर विचार करते हैं, तो पी-मरोड़ पैरामीट्रिज़िंग स्पेस पर एक परिमित फ्लैट समूह योजना बनाता है, और सुपरसिंगुलर लोकस वह जगह है जहाँ तंतु जुड़े होते हैं। कनेक्टेड घटकों के इस विलय का अध्ययन एक मॉड्यूलर योजना से एक कठोर विश्लेषणात्मक स्थान पर जाकर सूक्ष्म विस्तार से किया जा सकता है, जहां सुपरसिंगुलर बिंदुओं को सकारात्मक त्रिज्या की डिस्क से बदल दिया जाता है।
कार्टियर द्वैत
कार्टियर द्विविधता पोंट्रीगिन द्विविधता का एक योजना-सैद्धांतिक एनालॉग है जो क्रम विनिमय समूह योजनाओं को सीमित करने के लिए परिमित क्रम विनिमय समूह योजनाओं को ग्रहण कर रहा है।
डाययूडोने मॉड्यूल
धनात्मक विशेषता p के पूर्ण क्षेत्र k पर परिमित फ्लैट क्रमविनिमेय समूह योजनाओं का अध्ययन उनकी ज्यामितीय संसंघटक को (अर्ध-)रैखिक-बीजगणितीय समुच्चय सेटिंग में स्थानांतरित करके किया जा सकता है। मूल विषय सूची डाययूडोने रिंग D = W(k){F,V}/(FV − p) है, जो k के विट सदिश में गुणांक के साथ, गैर-क्रमपरिवर्तनीय बहुपदों के रिंग का भागफल है। एफ और वी फ्रोबेनियस और बदलाव संचालक हैं, और वे विट सदिश पर अनौपचारिक रूप से कार्य कर सकते हैं। डाइयूडोन और कार्टियर ने आदेश के k पर परिमित क्रमविनिमेय समूह योजनाओं के बीच श्रेणियों की एक प्रतिरूपता का संरचना किया, p की शक्ति और परिमित W(k)-लम्बाई के साथ D पर मॉड्यूल। डायडोने मॉड्यूल प्रकार्यक एक दिशा में समरूपता द्वारा Witt सह-सदिश ों के विनिमेय शीफ CW में दिया जाता है। यह शीफ विट सदिश (जो वास्तव में एक समूह योजना द्वारा प्रतिनिधित्व करने योग्य है) के शीफ के लिए कमोबेश दोहरी है, क्योंकि इसका संरचना क्रमिक वर्शचीबंग मैप्स वी: डब्ल्यू के अनुसार परिमित लंबाई विट सदिश की सीधी सीमा लेकर किया गया है।n → डब्ल्यूn+1, और फिर पूरा करना। क्रमविनिमेय समूह योजनाओं के कई गुणों को संबंधित डाययूडोने मॉड्यूल की जांच करके देखा जा सकता है, उदाहरण के लिए, कनेक्टेड पी-समूह योजनाएं डी-मॉड्यूल के अनुरूप हैं जिसके लिए एफ नाइलपोटेंट है, और ईटेल समूह योजनाएं उन मॉड्यूल के अनुरूप हैं जिनके लिए एफ एक समरूपता है।
एक क्षेत्र पर परिमित फ्लैट समूहों की तुलना में डायडोने सिद्धांत कुछ अधिक सामान्य समुच्चय सेटिंग में उपलब्ध है। ओडा की 1967 की थीसिस ने डाययूडोने मॉड्यूल और विनिमेय किस्मों के पहले डी रम कोहोलॉजी के बीच एक संबंध दिया, और लगभग उसी समय, ग्रोथेंडिक ने सुझाव दिया कि सिद्धांत का एक क्रिस्टलीय संस्करण होना चाहिए जिसका उपयोग पी-विभाज्य समूहों का विश्लेषण करने के लिए किया जा सकता है। समूह योजनाओं पर गाल्वा की कार्रवाइयाँ श्रेणियों के तुल्यता के माध्यम से स्थानांतरित होती हैं, और गैलोज़ अभ्यावेदन के संबद्ध विरूपण सिद्धांत का उपयोग शिमुरा-तानियामा अनुमान पर एंड्रयू विल्स के काम में किया गया था।
यह भी देखें
- मौलिक समूह योजना
- [[ज्यामितीय अपरिवर्तनीय सिद्धांत]]
- जीआईटी भागफल
- ग्रुपॉयड योजना
- समूह-योजना क्रिया
- समूह-ढेर
- अपरिवर्तनीय सिद्धांत
- भागफल ढेर
संदर्भ
- ↑ Raynaud, Michel (1967), Passage au quotient par une relation d'équivalence plate, Berlin, New York: Springer-Verlag, MR 0232781
- Demazure, Michel; Alexandre Grothendieck, eds. (1970). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes – (SGA 3) – vol. 1 (Lecture notes in mathematics 151) (in français). Berlin; New York: Springer-Verlag. pp. xv, 564.
- Demazure, Michel; Alexandre Grothendieck, eds. (1970). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes – (SGA 3) – vol. 2 (Lecture notes in mathematics 152) (in français). Berlin; New York: Springer-Verlag. pp. ix, 654.
- Demazure, Michel; Alexandre Grothendieck, eds. (1970). Séminaire de Géométrie Algébrique du Bois Marie – 1962–64 – Schémas en groupes – (SGA 3) – vol. 3 (Lecture notes in mathematics 153) (in français). Berlin; New York: Springer-Verlag. pp. vii, 529.
- Gabriel, Peter; Demazure, Michel (1980). Introduction to algebraic geometry and algebraic groups. Amsterdam: North-Holland Pub. Co. ISBN 0-444-85443-6.
- Berthelot, Breen, Messing Théorie de Dieudonné Crystalline II
- Laumon, Transformation de Fourier généralisée
- Shatz, Stephen S. (1986), "Group schemes, formal groups, and p-divisible groups", in Cornell, Gary; Silverman, Joseph H. (eds.), Arithmetic geometry (Storrs, Conn., 1984), Berlin, New York: Springer-Verlag, pp. 29–78, ISBN 978-0-387-96311-2, MR 0861972
- Serre, Jean-Pierre (1984), Groupes algébriques et corps de classes, Publications de l'Institut Mathématique de l'Université de Nancago [Publications of the Mathematical Institute of the University of Nancago], 7, Paris: Hermann, ISBN 978-2-7056-1264-1, MR 0907288
- John Tate, Finite flat group schemes, from Modular Forms and Fermat's Last Theorem
- Waterhouse, William (1979), Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-6217-6, ISBN 978-0-387-90421-4, MR 0547117