आणविकता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Number of molecules that participate in a single-step reaction}}
{{short description|Number of molecules that participate in a single-step reaction}}


[[रसायन विज्ञान]] में, आणविकता उन अणुओं की संख्या है, जो [[प्राथमिक प्रतिक्रिया]] में प्रतिक्रिया करने के लिए एक साथ आते हैं।<ref name="Atkins">Atkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014</ref> और प्रभावी टक्कर ([[सक्रियण ऊर्जा]]) और सही अभिविन्यास के साथ प्राथमिक प्रतिक्रिया में [[अभिकारकों]]  के [[स्तुईचिओमेटरी|स्टेइकिओमेट्रिक]] के योग के समतुल्य है।<ref>Temkin, O. N. State-of-the-Art in the Theory of Kinetics of Complex Reactions. In Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, John Wiley and Sons, ltd, 2012</ref> एक साथ कितने अणु आते हैं, इस पर निर्भर करते हुए, कि एक प्रतिक्रिया एक-आणविक, द्वि-आणविक या त्रि-आणविक भी हो सकती है।
[[रसायन विज्ञान]] में,अणुओं में अणु की संख्या एक साथ होती है, जो [[प्राथमिक प्रतिक्रिया]] [1] में प्रतिक्रिया करने के लिए एक साथ आती है।<ref name="Atkins">Atkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014</ref> और प्रभावी टक्कर ([[सक्रियण ऊर्जा]]) और सही अभिविन्यास के साथ प्राथमिक प्रतिक्रिया में [[अभिकारकों]]  के [[स्तुईचिओमेटरी|स्टेइकिओमेट्रिक गुणांक]] के योग के बराबर होती है।।<ref>Temkin, O. N. State-of-the-Art in the Theory of Kinetics of Complex Reactions. In Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, John Wiley and Sons, ltd, 2012</ref> एक साथ कितने अणु आते हैं, इस पर निर्भर करते हुए, कि एक प्रतिक्रिया एक-आणविक, द्वि-आणविक या त्रि-आणविक भी हो सकती है


किसी भी प्राथमिक प्रतिक्रिया या प्रतिक्रिया चरण का गतिज क्रम इसकी आणविकता के समतुल्य होता है, और प्राथमिक प्रतिक्रिया की [[दर समीकरण]] इस आणविकता से निरीक्षण द्वारा निर्धारित की जा सकती है।<ref name="Atkins" />  
किसी भी प्राथमिक प्रतिक्रिया या प्रतिक्रिया चरण का गतिज क्रम उसके अणुओं के बराबर होता है, और प्राथमिक प्रतिक्रिया की [[दर समीकरण]] का निर्धारण अणुओं में  निरीक्षण द्वारा किया जा सकता है.।<ref name="Atkins" />


एक जटिल (मल्टीस्टेप) प्रतिक्रिया का गतिज क्रम, चूंकि,आवश्यक रूप से सम्मलित अणुओं की संख्या के समतुल्य नहीं है। आणविकता की अवधारणा मात्र प्राथमिक प्रतिक्रियाओं या चरणों का वर्णन करने के लिए उपयोगी है।  
एक जटिल मल्टीस्टेप प्रतिक्रिया का गतिज क्रम आवश्यक रूप से इसमें सम्मलित अणुओं की संख्या के बराबर नहीं है। आणविकता की अवधारणा मात्र प्राथमिक प्रतिक्रियाओं या चरणों का वर्णन करने के लिए उपयोगी है।    


एक एकल अणु प्रतिक्रिया में, एक एकल अणु परमाणुओं को पुनर्व्यवस्थित करता है, जिससे विभिन्न अणु बनते हैं।<ref name="Atkins"/>यह समीकरण द्वारा सचित्र है   
एक एकल अणु प्रतिक्रिया में, एक एकल अणु परमाणुओं को पुनर्व्यवस्थित करता है, जिससे विभिन्न अणु बनते हैं।<ref name="Atkins"/>यह समीकरण द्वारा सचित्र है   

Revision as of 22:23, 6 June 2023

रसायन विज्ञान में,अणुओं में अणु की संख्या एक साथ होती है, जो प्राथमिक प्रतिक्रिया [1] में प्रतिक्रिया करने के लिए एक साथ आती है।[1] और प्रभावी टक्कर (सक्रियण ऊर्जा) और सही अभिविन्यास के साथ प्राथमिक प्रतिक्रिया में अभिकारकों के स्टेइकिओमेट्रिक गुणांक के योग के बराबर होती है।।[2] एक साथ कितने अणु आते हैं, इस पर निर्भर करते हुए, कि एक प्रतिक्रिया एक-आणविक, द्वि-आणविक या त्रि-आणविक भी हो सकती है

किसी भी प्राथमिक प्रतिक्रिया या प्रतिक्रिया चरण का गतिज क्रम उसके अणुओं के बराबर होता है, और प्राथमिक प्रतिक्रिया की दर समीकरण का निर्धारण अणुओं में निरीक्षण द्वारा किया जा सकता है.।[1]

एक जटिल मल्टीस्टेप प्रतिक्रिया का गतिज क्रम आवश्यक रूप से इसमें सम्मलित अणुओं की संख्या के बराबर नहीं है। आणविकता की अवधारणा मात्र प्राथमिक प्रतिक्रियाओं या चरणों का वर्णन करने के लिए उपयोगी है।

एक एकल अणु प्रतिक्रिया में, एक एकल अणु परमाणुओं को पुनर्व्यवस्थित करता है, जिससे विभिन्न अणु बनते हैं।[1]यह समीकरण द्वारा सचित्र है

कहाँ रासायनिक उत्पाद (रसायन विज्ञान) | उत्पाद (ओं) को संदर्भित करता है। प्रतिक्रिया या प्रतिक्रिया कदम एक आइसोमराइज़ेशन है यदि मात्र एक उत्पाद अणु है, या एक पृथक्करण (रसायन विज्ञान) है यदि एक से अधिक उत्पाद अणु हैं।

किसी भी मामले में, प्रतिक्रिया या चरण की दर प्रथम आदेश समीकरण द्वारा वर्णित है

कहाँ रासायनिक प्रजाति A की सांद्रता है, समय है, और प्रतिक्रिया दर स्थिर है।

जैसा कि दर कानून समीकरण से घटाया जा सकता है, क्षय होने वाले A अणुओं की संख्या उपलब्ध A अणुओं की संख्या के समानुपाती होती है। एक असमान आणविक प्रतिक्रिया का एक उदाहरण, साइक्लोप्रोपेन से प्रोपेन का आइसोमेराइजेशन है:

Izomerization of cyclopropane.jpg

लिंडमैन तंत्र | लिंडमैन-हिंशेलवुड मैकेनिज्म द्वारा यूनिमॉलिक्युलर प्रतिक्रियाओं की व्याख्या की जा सकती है।

बाइमोलेक्युलर प्रतिक्रियाएँ

एक द्विध्रुवीय प्रतिक्रिया में, दो अणु टकराते हैं और ऊर्जा, परमाणुओं या परमाणुओं के समूहों का आदान-प्रदान करते हैं।[1]

इसे समीकरण द्वारा वर्णित किया जा सकता है

<रसायन प्रदर्शन = ब्लॉक> ए + बी -> पी </केम>

जो दूसरे क्रम दर कानून से मेल खाता है: .

यहाँ, प्रतिक्रिया की दर उस दर के समानुपाती होती है जिस पर अभिकारक एक साथ आते हैं। बाइमोलेक्युलर का एक उदाहरण

प्रतिक्रिया SN2|S हैNहाइड्रोक्साइड आयन द्वारा मिथाइल ब्रोमाइड का 2-प्रकार का न्यूक्लियोफ़िलिक प्रतिस्थापन:[3]

<केम डिस्प्ले = ब्लॉक> CH3Br + OH^- -> CH3OH + Br^-</केम>

टर्मोलेक्युलर प्रतिक्रियाएं

एक टर्मोलेक्यूलर[4][5] (या ट्राइमोलेक्युलर)[6] समाधान (रसायन विज्ञान) या गैस मिश्रण में प्रतिक्रिया में एक साथ तीन अभिकारक सम्मलित होते हैं, उचित अभिविन्यास और पर्याप्त ऊर्जा के साथ टकराव की आवृत्ति[4] चूंकि त्रिमोलेक्युलर शब्द का उपयोग तीन प्रकार के शरीर संघ प्रतिक्रियाओं के संदर्भ में भी किया जाता है:

<केम डिस्प्ले = ब्लॉक> ए + बी -> [\सीई {एम}] सी </केम>

जहाँ तीर के ऊपर M दर्शाता है कि ऊर्जा और संवेग के संरक्षण के लिए तीसरे पिंड के साथ दूसरी प्रतिक्रिया की आवश्यकता है। ए और बी की प्रारंभिक द्वि-आणविक टक्कर के बाद एक ऊर्जावान रूप से उत्तेजित प्रतिक्रिया मध्यवर्ती बनती है, फिर, यह एक एम शरीर के साथ टकराती है, दूसरी द्वि-आणविक प्रतिक्रिया में, इसमें अतिरिक्त ऊर्जा स्थानांतरित होती है।[7]

प्रतिक्रिया को लगातार दो प्रतिक्रियाओं के रूप में समझाया जा सकता है:


इन प्रतिक्रियाओं में अधिकांशतः दूसरे और तीसरे क्रम कैनेटीक्स के बीच संक्रमण का दबाव और तापमान निर्भरता क्षेत्र होता है।[8]

उत्प्रेरक प्रतिक्रियाएं अधिकांशतः तीन-घटक में होती हैं, लेकिन व्यवहार में प्रारंभिक सामग्रियों का एक कॉम्प्लेक्स पहले बनता है और दर-निर्धारण चरण इस कॉम्प्लेक्स की उत्पादों में प्रतिक्रिया है, न कि दो प्रजातियों और उत्प्रेरक के बीच एक आकस्मिक टक्कर। उदाहरण के लिए, एक धातु उत्प्रेरक के साथ हाइड्रोजनीकरण में, आणविक डाइहाइड्रोजन पहले धातु की सतह पर सतह से बंधे हाइड्रोजन परमाणुओं में भिन्न हो जाते है, और ये मोनोएटोमिक हाइड्रोजन हैं जो प्रारंभिक सामग्री के साथ प्रतिक्रिया करते हैं, जो पहले सतह पर भी सोख लिए जाते थे।

4 या अधिक अणुओं के बीच एक साथ अन्योन्य क्रिया की बहुत कम संभावना के कारण उच्च आणविकता की प्रतिक्रियाएं नहीं देखी जाती हैं।[9][4]

आणविकता और प्रतिक्रिया के क्रम के बीच अंतर

प्रतिक्रिया के क्रम से आणविकता को भिन्न करना महत्वपूर्ण है। प्रतिक्रिया का क्रम प्रतिक्रिया के दर कानून से प्रयोग द्वारा निर्धारित एक अनुभवजन्य मात्रा है। यह दर कानून समीकरण में घातांकों का योग है।[10] दूसरी ओर, आणविकता, प्राथमिक प्रतिक्रिया के तंत्र से निकाली जाती है, और इसका उपयोग मात्र प्राथमिक प्रतिक्रिया के संदर्भ में किया जाता है। यह इस प्रतिक्रिया में भाग लेने वाले अणुओं की संख्या है।


इस अंतर को नाइट्रिक ऑक्साइड और हाइड्रोजन के बीच प्रतिक्रिया पर चित्रित किया जा सकता है:[11]

<केम डिस्प्ले = ब्लॉक> 2NO + 2H2 -> N2 + 2H2O, </केम>

जहां मनाया दर कानून है , जिससे की प्रतिक्रिया तीसरे क्रम की हो। चूँकि क्रम अभिकारक रससमीकरणमितीय गुणांकों के योग के समतुल्य नहीं होता है, प्रतिक्रिया में एक से अधिक चरण सम्मलित होने चाहिए। प्रस्तावित दो-चरण तंत्र[11]एक दर-सीमित पहला कदम है जिसकी आणविकता 3 के समग्र क्रम से मेल खाती है:

धीमा: <केम डिस्प्ले = ब्लॉक> 2 NO + H2 -> N2 + H2O2 </केम> तेज: <रसायन प्रदर्शन = ब्लॉक> एच 2 ओ 2 + एच 2 -> 2 एच 2 ओ </केम>

दूसरी ओर, इस प्रतिक्रिया की आणविकता अपरिभाषित है, क्योंकि इसमें एक से अधिक चरणों का तंत्र सम्मलित है। चूंकि, हम इस तंत्र को बनाने वाली व्यक्तिगत प्राथमिक प्रतिक्रियाओं की आणविकता पर विचार कर सकते हैं: पहला चरण थर्मोलेक्यूलर है क्योंकि इसमें तीन अभिकारक अणु सम्मलित होते हैं, जबकि दूसरा चरण द्वि-आणविक है क्योंकि इसमें दो प्रतिक्रियाशील अणु सम्मलित होते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Atkins, P.; de Paula, J. Physical Chemistry. Oxford University Press, 2014
  2. Temkin, O. N. State-of-the-Art in the Theory of Kinetics of Complex Reactions. In Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, John Wiley and Sons, ltd, 2012
  3. Morrison R.T. and Boyd R.N. Organic Chemistry (4th ed., Allyn and Bacon 1983) p.215 ISBN 0-205-05838-8
  4. 4.0 4.1 4.2 J.I. Steinfeld, J.S. Francisco and W.L. Hase Chemical Kinetics and Dynamics (2nd ed., Prentice Hall 1999) p.5, ISBN 0-13-737123-3
  5. IUPAC Gold Book: Molecularity
  6. One textbook which mentions both termolecular and trimolecular as alternative names is J.W. Moore and R.G. Pearson, Kinetics and Mechanism (3rd ed., John Wiley 1981) p.17, ISBN 0-471-03558-0
  7. Text discussing rate constants for termolecular reactions [1]
  8. IUPAC definition of Troe expression, a semiempirical expression for the rate constant of termolecular reactions [2]
  9. Carr, R. W. Chemical Kinetics. In Encyclopedia of Applied Physics. WILEY-VCH Verlag GmbH & Co KGaA, 2003
  10. Rogers, D. W. Chemical Kinetics. In Concise Physical Chemistry, John Wiley and Sons, Inc. 2010.
  11. 11.0 11.1 Keith J. Laidler, Chemical Kinetics (3rd ed., Harper & Row 1987), p.277 ISBN 0-06-043862-2