वाल्व आरएफ प्रवर्धक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Device for electrically amplifying the power of an electrical radio frequency signal}}
{{short description|Device for electrically amplifying the power of an electrical radio frequency signal}}
[[File:OM Power PA running 3kW.jpg|thumb|right|ट्यूब GU-78B के साथ शॉर्टवेव एम्पलीफायर]]एक वाल्व आरएफ [[एम्पलीफायर]] ([[ब्रिटिश अंग्रेजी]] और ऑस्ट्रेलियाई अंग्रेजी ऑस्ट्रेलिया) या ट्यूब एम्पलीफायर (अमेरिकी अंग्रेजी|यू.एस.) एक विद्युत रेडियो आवृत्ति की शक्ति को विद्युत रूप से प्रवर्धक करने के लिए एक उपकरण है विक्षनरी:सिग्नल।
[[File:OM Power PA running 3kW.jpg|thumb|right|ट्यूब GU-78B के साथ शॉर्टवेव एम्पलीफायर]]वाल्व आरएफ [[एम्पलीफायर]] ([[ब्रिटिश अंग्रेजी]] और ऑस्ट्रेलियाई अंग्रेजी ऑस्ट्रेलिया) या ट्यूब एम्पलीफायर (अमेरिकी अंग्रेजी|यू.एस.) विद्युत रेडियो आवृत्ति की शक्ति को विद्युत रूप से प्रवर्धक करने के लिए उपकरण है विक्षनरी:सिग्नल।


1960 और 1970 के दशक के दौरान माइक्रोवेव के नीचे आवृत्तियों के लिए कम से मध्यम शक्ति वाल्व एम्पलीफायरों को बड़े पैमाने पर [[ ठोस अवस्था (इलेक्ट्रॉनिक्स) ]] एम्पलीफायरों द्वारा प्रतिस्थापित किया गया था, शुरुआत में ट्रांसमीटरों के रिसीवर और कम पावर चरणों के लिए, ट्रांसमीटर आउटपुट चरणों में कुछ समय बाद ट्रांजिस्टर पर स्विच किया गया। बहुत उच्च शक्ति ट्रांसमीटरों के लिए विशेष रूप से निर्मित वाल्व अभी भी उपयोग में हैं, हालांकि नए डिजाइनों में शायद ही कभी।<ref>{{Cite journal|last1=Watkins|first1=G.T.|last2=Mimis|first2=K.|date=2016|title=करंट मिरर आधारित वैरेक्टर ड्राइवर एम्पलीफायर के साथ डायनेमिक लोड मॉड्यूलेशन आरएफ एम्पलीफायर|url=http://dx.doi.org/10.1049/ic.2016.0007|journal=Active and Passive RF Devices Seminar|pages=7 (4 .) |publisher=Institution of Engineering and Technology|doi=10.1049/ic.2016.0007|isbn=978-1-78561-219-0}}</ref>
1960 और 1970 के दशक के दौरान माइक्रोवेव के नीचे आवृत्तियों के लिए कम से मध्यम शक्ति वाल्व एम्पलीफायरों को बड़े पैमाने पर [[ ठोस अवस्था (इलेक्ट्रॉनिक्स) ]] एम्पलीफायरों द्वारा प्रतिस्थापित किया गया था, शुरुआत में ट्रांसमीटरों के रिसीवर और कम पावर चरणों के लिए, ट्रांसमीटर आउटपुट चरणों में कुछ समय बाद ट्रांजिस्टर पर स्विच किया गया। बहुत उच्च शक्ति ट्रांसमीटरों के लिए विशेष रूप से निर्मित वाल्व अभी भी उपयोग में हैं, हालांकि नए डिजाइनों में शायद ही कभी।<ref>{{Cite journal|last1=Watkins|first1=G.T.|last2=Mimis|first2=K.|date=2016|title=करंट मिरर आधारित वैरेक्टर ड्राइवर एम्पलीफायर के साथ डायनेमिक लोड मॉड्यूलेशन आरएफ एम्पलीफायर|url=http://dx.doi.org/10.1049/ic.2016.0007|journal=Active and Passive RF Devices Seminar|pages=7 (4 .) |publisher=Institution of Engineering and Technology|doi=10.1049/ic.2016.0007|isbn=978-1-78561-219-0}}</ref>


'''व्यावहारिक ट्यूब-आधारित डिज़ाइनों की सादगी के कारण, अनुप्रयोगों के लिए ट्यूबों का उपयोग करना {{sc|RF}} किलोवाट पावर रेंज से ऊपर के एम्पलीफायर निर्माण लागत को बहुत कम कर सकते हैं।<ref name=":0" /> इसके अलावा, बड़े, उच्च मूल्य वाले पावर वाल्व (स्टील क्लैड, ग्लास ट्यूब नहीं) को कुछ हद तक अवशिष्ट जीवन का विस्तार करने के लिए फिर से बनाया जा सकता है।'''
'''व्यावहारिक ट्यूब-आधारित डिज़ाइनों की सादगी के कारण, अनुप्रयोगों के लिए ट्यूबों का उपयोग करना {{sc|RF}} किलोवाट पावर रेंज से ऊपर के एम्पलीफायर निर्माण लागत को बहुत कम कर सकते हैं।<ref name=":0" /> इसके अलावा, बड़े, उच्च मूल्य वाले पावर वाल्व (स्टील क्लैड, ग्लास ट्यूब नहीं)'''


== वाल्व विशेषताएँ ==
== वाल्व विशेषताएँ ==
[[ट्रांजिस्टर]] की तुलना में वाल्व उच्च वोल्टेज/कम वर्तमान डिवाइस हैं। टेट्रोड और पेंटोड वाल्व में बहुत सपाट [[एनोड]] करंट बनाम एनोड वोल्टेज होता है जो उच्च एनोड आउटपुट [[विद्युत प्रतिबाधा]] का संकेत देता है। ट्रायोड एनोड वोल्टेज और एनोड करंट के बीच एक मजबूत संबंध दिखाते हैं।
[[ट्रांजिस्टर]] की तुलना में वाल्व उच्च वोल्टेज/कम वर्तमान डिवाइस हैं। टेट्रोड और पेंटोड वाल्व में बहुत सपाट [[एनोड]] करंट बनाम एनोड वोल्टेज होता है जो उच्च एनोड आउटपुट [[विद्युत प्रतिबाधा]] का संकेत देता है। ट्रायोड एनोड वोल्टेज और एनोड करंट के बीच मजबूत संबंध दिखाते हैं।


उच्च कार्यशील वोल्टेज उन्हें [[रेडियो ट्रांसमीटर]] के लिए अच्छी तरह से अनुकूल बनाता है और वाल्व आज भी बहुत उच्च शक्ति शॉर्ट वेव रेडियो ट्रांसमीटरों के लिए उपयोग में रहते हैं, जहां ठोस अवस्था तकनीकों को समानांतर में कई उपकरणों की आवश्यकता होती है, और बहुत अधिक {{sc|DC}} धाराओं की आपूर्ति। उच्च शक्ति ठोस राज्य ट्रांसमीटरों को भी ट्रांसफार्मर और ट्यूनिंग नेटवर्क के एक जटिल संयोजन की आवश्यकता होती है, जबकि एक वाल्व-आधारित ट्रांसमीटर एकल, अपेक्षाकृत सरल ट्यूनेड नेटवर्क का उपयोग करेगा।
उच्च कार्यशील वोल्टेज उन्हें [[रेडियो ट्रांसमीटर]] के लिए अच्छी तरह से अनुकूल बनाता है और वाल्व आज भी बहुत उच्च शक्ति शॉर्ट वेव रेडियो ट्रांसमीटरों के लिए उपयोग में रहते हैं, जहां ठोस अवस्था तकनीकों को समानांतर में कई उपकरणों की आवश्यकता होती है, और बहुत अधिक {{sc|DC}} धाराओं की आपूर्ति। उच्च शक्ति ठोस राज्य ट्रांसमीटरों को भी ट्रांसफार्मर और ट्यूनिंग नेटवर्क के जटिल संयोजन की आवश्यकता होती है, जबकि वाल्व-आधारित ट्रांसमीटर एकल, अपेक्षाकृत सरल ट्यूनेड नेटवर्क का उपयोग करेगा।


इस प्रकार जबकि ठोस अवस्था उच्च शक्ति शॉर्ट वेव ट्रांसमीटर तकनीकी रूप से संभव हैं, आर्थिक विचार अभी भी 3 मेगाहर्ट्ज और 10,000 वाट से ऊपर के वाल्वों के पक्ष में हैं।
इस प्रकार जबकि ठोस अवस्था उच्च शक्ति शॉर्ट वेव ट्रांसमीटर तकनीकी रूप से संभव हैं, आर्थिक विचार अभी भी 3 मेगाहर्ट्ज और 10,000 वाट से ऊपर के वाल्वों के पक्ष में हैं।
Line 15: Line 15:


=== ऑडियो बनाम। {{sc|RF}} एम्पलीफायरों ===
=== ऑडियो बनाम। {{sc|RF}} एम्पलीफायरों ===
[[वाल्व ऑडियो एम्पलीफायर]] आमतौर पर 20 हर्ट्ज और 20 किलोहर्ट्ज़ या अधिक के बीच संपूर्ण ऑडियो रेंज को बढ़ाते हैं। वे एक स्पीकर चलाते समय वाल्व को उपयुक्त उच्च प्रतिबाधा भार प्रदान करने के लिए एक आयरन कोर ट्रांसफॉर्मर का उपयोग करते हैं, जो आमतौर पर 8 ओम होता है। ऑडियो एम्पलीफायर सामान्य रूप से एम्पलीफायर#कक्षा ए|कक्षा ए में एक वाल्व का उपयोग करते हैं, या इलेक्ट्रॉनिक एम्पलीफायर#कक्षा बी और एबी|कक्षा बी या में एक जोड़ी का उपयोग करते हैं। {{nowrap|[[class AB]]}}.
[[वाल्व ऑडियो एम्पलीफायर]] आमतौर पर 20 हर्ट्ज और 20 किलोहर्ट्ज़ या अधिक के बीच संपूर्ण ऑडियो रेंज को बढ़ाते हैं। वे स्पीकर चलाते समय वाल्व को उपयुक्त उच्च प्रतिबाधा भार प्रदान करने के लिए आयरन कोर ट्रांसफॉर्मर का उपयोग करते हैं, जो आमतौर पर 8 ओम होता है। ऑडियो एम्पलीफायर सामान्य रूप से एम्पलीफायर#कक्षा ए|कक्षा ए में वाल्व का उपयोग करते हैं, या इलेक्ट्रॉनिक एम्पलीफायर#कक्षा बी और एबी|कक्षा बी या में जोड़ी का उपयोग करते हैं। {{nowrap|[[class AB]]}}.


एक {{sc|RF}} पावर एम्पलीफायर को 18 kHz जितना कम और अल्ट्रा हाई फ़्रीक्वेंसी जितना ऊंचा एक सिंगल फ़्रीक्वेंसी पर ट्यून किया जाता है|{{sc|UHF}} रेडियो प्रसारण या औद्योगिक ताप के प्रयोजन के लिए आवृत्तियों की श्रेणी। वे वाल्व को उचित रूप से उच्च लोड प्रतिबाधा प्रदान करने के लिए एक संकीर्ण ट्यून सर्किट का उपयोग करते हैं और आमतौर पर 50 या 75 ओम के लोड को फीड करते हैं। {{sc|RF}} एम्पलीफायर सामान्य रूप से इलेक्ट्रॉनिक एम्पलीफायर # क्लास सी | क्लास सी या [[कक्षा एबी]] संचालित करते हैं।
एक {{sc|RF}} पावर एम्पलीफायर को 18 kHz जितना कम और अल्ट्रा हाई फ़्रीक्वेंसी जितना ऊंचा सिंगल फ़्रीक्वेंसी पर ट्यून किया जाता है|{{sc|UHF}} रेडियो प्रसारण या औद्योगिक ताप के प्रयोजन के लिए आवृत्तियों की श्रेणी। वे वाल्व को उचित रूप से उच्च लोड प्रतिबाधा प्रदान करने के लिए संकीर्ण ट्यून सर्किट का उपयोग करते हैं और आमतौर पर 50 या 75 ओम के लोड को फीड करते हैं। {{sc|RF}} एम्पलीफायर सामान्य रूप से इलेक्ट्रॉनिक एम्पलीफायर # क्लास सी | क्लास सी या [[कक्षा एबी]] संचालित करते हैं।


हालांकि आवृत्ति ऑडियो एम्पलीफायरों के लिए होती है और {{sc|RF}} एम्पलीफायरों ओवरलैप, ऑपरेशन की श्रेणी, आउटपुट कपलिंग की विधि और प्रतिशत परिचालन बैंडविड्थ अलग-अलग होंगे। पावर वाल्व कम से कम 30 मेगाहर्ट्ज तक उच्च आवृत्ति प्रतिक्रिया करने में सक्षम हैं। दरअसल, डायरेक्टली हीटेड सिंगल एंडेड [[ट्रायोड]] ({{sc|DH-SET}}) ऑडियो एम्पलीफायर रेडियो ट्रांसमिटिंग वाल्व का उपयोग करते हैं जो मूल रूप से संचालित करने के लिए डिज़ाइन किया गया था {{sc|RF}} उच्च आवृत्ति रेंज में एम्पलीफायरों।
हालांकि आवृत्ति ऑडियो एम्पलीफायरों के लिए होती है और {{sc|RF}} एम्पलीफायरों ओवरलैप, ऑपरेशन की श्रेणी, आउटपुट कपलिंग की विधि और प्रतिशत परिचालन बैंडविड्थ अलग-अलग होंगे। पावर वाल्व कम से कम 30 मेगाहर्ट्ज तक उच्च आवृत्ति प्रतिक्रिया करने में सक्षम हैं। दरअसल, डायरेक्टली हीटेड सिंगल एंडेड [[ट्रायोड]] ({{sc|DH-SET}}) ऑडियो एम्पलीफायर रेडियो ट्रांसमिटिंग वाल्व का उपयोग करते हैं जो मूल रूप से संचालित करने के लिए डिज़ाइन किया गया था {{sc|RF}} उच्च आवृत्ति रेंज में एम्पलीफायरों।
Line 36: Line 36:
; विद्युत रूप से बहुत मजबूत: ट्यूब आश्चर्यजनक रूप से उच्च अधिभार को सहन कर सकते हैं, जो [[मिलीसेकंड]] में [[ द्विध्रुवी जंक्शन ट्रांजिस्टर ]] सिस्टम को नष्ट कर देगा (सैन्य और अन्य रणनीतिक रूप से महत्वपूर्ण प्रणालियों में विशेष महत्व)।
; विद्युत रूप से बहुत मजबूत: ट्यूब आश्चर्यजनक रूप से उच्च अधिभार को सहन कर सकते हैं, जो [[मिलीसेकंड]] में [[ द्विध्रुवी जंक्शन ट्रांजिस्टर ]] सिस्टम को नष्ट कर देगा (सैन्य और अन्य रणनीतिक रूप से महत्वपूर्ण प्रणालियों में विशेष महत्व)।
; अनिश्चितकालीन शैल्फ जीवन: यहां तक ​​कि 60 वर्ष पुरानी ट्यूब भी पूरी तरह कार्यात्मक हो सकती हैं, और कई प्रकार नए-पुराने-स्टॉक के रूप में खरीदने के लिए उपलब्ध हैं। इस प्रकार, ज्ञात विश्वसनीयता मुद्दों के बावजूद (नीचे अगला भाग देखें), यह अभी भी सबसे पुराने वैक्यूम ट्यूब उपकरण को चलाने के लिए पूरी तरह से संभव है।
; अनिश्चितकालीन शैल्फ जीवन: यहां तक ​​कि 60 वर्ष पुरानी ट्यूब भी पूरी तरह कार्यात्मक हो सकती हैं, और कई प्रकार नए-पुराने-स्टॉक के रूप में खरीदने के लिए उपलब्ध हैं। इस प्रकार, ज्ञात विश्वसनीयता मुद्दों के बावजूद (नीचे अगला भाग देखें), यह अभी भी सबसे पुराने वैक्यूम ट्यूब उपकरण को चलाने के लिए पूरी तरह से संभव है।
; प्रतिस्थापन की तुलनात्मक आसानी: कई सामान्य विफलता मोड के अधीन होने के कारण, ट्यूबों के साथ अधिकांश सिस्टम सॉकेट के साथ डिज़ाइन किए गए थे ताकि ट्यूबों को प्लग-इन उपकरणों के रूप में स्थापित किया जा सके; वे शायद ही कभी होते हैं, अगर कभी, एक सर्किट में टांका लगाया जाता है। एक विफल ट्यूब को बस अनप्लग किया जा सकता है और उपयोगकर्ता द्वारा प्रतिस्थापित किया जा सकता है, जबकि सोल्डर-इन सेमीकंडक्टर की विफलता पूरे उत्पाद या उप-विधानसभा के लिए किफायती मरम्मत से परे क्षति का कारण बन सकती है। एकमात्र कठिनाई यह निर्धारित कर रही है कि कौन सी ट्यूब विफल हो गई है।
; प्रतिस्थापन की तुलनात्मक आसानी: कई सामान्य विफलता मोड के अधीन होने के कारण, ट्यूबों के साथ अधिकांश सिस्टम सॉकेट के साथ डिज़ाइन किए गए थे ताकि ट्यूबों को प्लग-इन उपकरणों के रूप में स्थापित किया जा सके; वे शायद ही कभी होते हैं, अगर कभी, सर्किट में टांका लगाया जाता है। विफल ट्यूब को बस अनप्लग किया जा सकता है और उपयोगकर्ता द्वारा प्रतिस्थापित किया जा सकता है, जबकि सोल्डर-इन सेमीकंडक्टर की विफलता पूरे उत्पाद या उप-विधानसभा के लिए किफायती मरम्मत से परे क्षति का कारण बन सकती है। एकमात्र कठिनाई यह निर्धारित कर रही है कि कौन सी ट्यूब विफल हो गई है।


=== वाल्व का नुकसान ===
=== वाल्व का नुकसान ===
Line 61: Line 61:
}}
}}
</ref>
</ref>
; चालू/बंद चक्रों में बड़ा सर्किट तापमान झूलता है: आम कम बिजली ट्यूबों में कैथोड हीटरों से भारी आवारा गर्मी का मतलब है कि आस-पास के सर्किट तापमान में परिवर्तन का अनुभव करते हैं जो कि अधिक हो सकता है {{convert|100|°C|°F|abbr=on}}. इसके लिए गर्मी प्रतिरोधी घटकों की आवश्यकता होती है। में {{sc|RF}} अनुप्रयोगों का अर्थ यह भी है कि आवृत्ति स्थिरता तक पहुँचने से पहले सभी आवृत्ति-निर्धारण घटकों को तापीय संतुलन तक गर्म करना पड़ सकता है। जबकि पर {{sc|AM}} ब्रॉडकास्ट (मीडियम वेव) रिसीवर्स और लूज़ ट्यून में {{sc|TV}} सेट यह कोई समस्या नहीं थी, विशिष्ट रेडियो रिसीवर और ट्रांसमीटर में फ्री-रनिंग ऑसिलेटर के साथ {{sc|HF}} आवृत्तियों इस थर्मल स्थिरीकरण के लिए लगभग एक घंटे की आवश्यकता होती है। दूसरी ओर, [[न्यूविस्टर]] अल्ट्रा-लो पावर डायरेक्ट-हीटेड वाल्व निरपेक्ष रूप से अधिक गर्मी पैदा नहीं करते हैं, अधिक मामूली तापमान में उतार-चढ़ाव का कारण बनते हैं, और उन उपकरणों को अनुमति देते हैं जिनमें उनमें से कुछ जल्द ही स्थिर हो जाते हैं।<ref>
; चालू/बंद चक्रों में बड़ा सर्किट तापमान झूलता है: आम कम बिजली ट्यूबों में कैथोड हीटरों से भारी आवारा गर्मी का मतलब है कि आस-पास के सर्किट तापमान में परिवर्तन का अनुभव करते हैं जो कि अधिक हो सकता है {{convert|100|°C|°F|abbr=on}}. इसके लिए गर्मी प्रतिरोधी घटकों की आवश्यकता होती है। में {{sc|RF}} अनुप्रयोगों का अर्थ यह भी है कि आवृत्ति स्थिरता तक पहुँचने से पहले सभी आवृत्ति-निर्धारण घटकों को तापीय संतुलन तक गर्म करना पड़ सकता है। जबकि पर {{sc|AM}} ब्रॉडकास्ट (मीडियम वेव) रिसीवर्स और लूज़ ट्यून में {{sc|TV}} सेट यह कोई समस्या नहीं थी, विशिष्ट रेडियो रिसीवर और ट्रांसमीटर में फ्री-रनिंग ऑसिलेटर के साथ {{sc|HF}} आवृत्तियों इस थर्मल स्थिरीकरण के लिए लगभग घंटे की आवश्यकता होती है। दूसरी ओर, [[न्यूविस्टर]] अल्ट्रा-लो पावर डायरेक्ट-हीटेड वाल्व निरपेक्ष रूप से अधिक गर्मी पैदा नहीं करते हैं, अधिक मामूली तापमान में उतार-चढ़ाव का कारण बनते हैं, और उन उपकरणों को अनुमति देते हैं जिनमें उनमें से कुछ जल्द ही स्थिर हो जाते हैं।<ref>
{{cite web
{{cite web
  |title=R326 receiver
  |title=R326 receiver
Line 76: Line 76:
}}
}}
</ref>
</ref>
; कोल्ड स्टार्ट से तुरंत नहीं: संचालन शुरू करने के लिए वाल्व कैथोड को एक चमक के लिए गर्म करने की आवश्यकता होती है। इनडायरेक्ट-हीटिंग कैथोड में इसमें 20 सेकंड तक का समय लग सकता है। तापमान से संबंधित अस्थिरता के अलावा, इसका मतलब यह था कि संचालित होने पर वाल्व तुरंत काम नहीं करेंगे। इससे वैक्यूम ट्यूब उपकरणों के लिए हमेशा ऑन-इंस्टेंट-ऑन#उपभोक्ता इलेक्ट्रॉनिक्स का विकास हुआ, जिसने प्रतीक्षा को छोटा कर दिया और थर्मल शॉक से वाल्व विफलताओं को कम किया हो सकता है, लेकिन एक निरंतर बिजली नाली की कीमत पर, और आग का खतरा बढ़ गया। दूसरी ओर, बहुत छोटे, अल्ट्रा लो पावर डायरेक्ट-हीटेड वाल्व कोल्ड स्टार्ट से सेकंड के दसवें हिस्से में चालू हो जाते हैं।
; कोल्ड स्टार्ट से तुरंत नहीं: संचालन शुरू करने के लिए वाल्व कैथोड को चमक के लिए गर्म करने की आवश्यकता होती है। इनडायरेक्ट-हीटिंग कैथोड में इसमें 20 सेकंड तक का समय लग सकता है। तापमान से संबंधित अस्थिरता के अलावा, इसका मतलब यह था कि संचालित होने पर वाल्व तुरंत काम नहीं करेंगे। इससे वैक्यूम ट्यूब उपकरणों के लिए हमेशा ऑन-इंस्टेंट-ऑन#उपभोक्ता इलेक्ट्रॉनिक्स का विकास हुआ, जिसने प्रतीक्षा को छोटा कर दिया और थर्मल शॉक से वाल्व विफलताओं को कम किया हो सकता है, लेकिन निरंतर बिजली नाली की कीमत पर, और आग का खतरा बढ़ गया। दूसरी ओर, बहुत छोटे, अल्ट्रा लो पावर डायरेक्ट-हीटेड वाल्व कोल्ड स्टार्ट से सेकंड के दसवें हिस्से में चालू हो जाते हैं।


; खतरनाक रूप से उच्च वोल्टेज: ट्यूबों के एनोड्स को कार्य करने के लिए खतरनाक रूप से उच्च वोल्टेज की आवश्यकता हो सकती है। सामान्य तौर पर, ट्यूब स्वयं उच्च वोल्टेज से परेशान नहीं होंगे, लेकिन "फ्लैशओवर" से बचने के लिए उच्च वोल्टेज सर्किट लेआउट और डिज़ाइन में अतिरिक्त सावधानी की मांग करेंगे।
; खतरनाक रूप से उच्च वोल्टेज: ट्यूबों के एनोड्स को कार्य करने के लिए खतरनाक रूप से उच्च वोल्टेज की आवश्यकता हो सकती है। सामान्य तौर पर, ट्यूब स्वयं उच्च वोल्टेज से परेशान नहीं होंगे, लेकिन "फ्लैशओवर" से बचने के लिए उच्च वोल्टेज सर्किट लेआउट और डिज़ाइन में अतिरिक्त सावधानी की मांग करेंगे।
Line 85: Line 85:


=== विरूपण ===
=== विरूपण ===
सबसे कुशल वाल्व-आधारित आरएफ एम्पलीफायर इलेक्ट्रॉनिक एम्पलीफायर # क्लास सी | क्लास सी संचालित करते हैं। यदि आउटपुट में ट्यून किए गए सर्किट के साथ प्रयोग किया जाता है, तो यह हार्मोनिक्स उत्पन्न करने वाले इनपुट सिग्नल को विकृत कर देगा। हालांकि, क्लास सी एम्पलीफायर सामान्य रूप से उच्च का उपयोग करते हैं {{mvar|Q}} आउटपुट नेटवर्क जो हार्मोनिक्स को हटा देता है, इनपुट वेवफॉर्म के समान एक अविकृत साइन वेव को छोड़ देता है। कक्षा सी केवल एक स्थिर आयाम वाले संकेतों को प्रवर्धित करने के लिए उपयुक्त है, जैसे आवृत्ति मॉडुलन |{{sc|FM}}, फ्रीक्वेंसी-शिफ्ट कीइंग|{{sc|FSK}}, और कुछ {{sc|CQ}} ([[मोर्स कोड]]) सिग्नल। जहां एम्पलीफायर के लिए इनपुट सिग्नल का आयाम [[सिंगल-साइडबैंड मॉड्यूलेशन]], आयाम मॉड्यूलेशन, वीडियो और जटिल डिजिटल सिग्नल के साथ भिन्न होता है, वहां एम्पलीफायर को ड्राइविंग सिग्नल के लिफाफे को अविकृत रूप में संरक्षित करने के लिए कक्षा A या AB को संचालित करना चाहिए। ऐसे प्रवर्धकों को रैखिक प्रवर्धक कहा जाता है।
सबसे कुशल वाल्व-आधारित आरएफ एम्पलीफायर इलेक्ट्रॉनिक एम्पलीफायर # क्लास सी | क्लास सी संचालित करते हैं। यदि आउटपुट में ट्यून किए गए सर्किट के साथ प्रयोग किया जाता है, तो यह हार्मोनिक्स उत्पन्न करने वाले इनपुट सिग्नल को विकृत कर देगा। हालांकि, क्लास सी एम्पलीफायर सामान्य रूप से उच्च का उपयोग करते हैं {{mvar|Q}} आउटपुट नेटवर्क जो हार्मोनिक्स को हटा देता है, इनपुट वेवफॉर्म के समान अविकृत साइन वेव को छोड़ देता है। कक्षा सी केवल स्थिर आयाम वाले संकेतों को प्रवर्धित करने के लिए उपयुक्त है, जैसे आवृत्ति मॉडुलन |{{sc|FM}}, फ्रीक्वेंसी-शिफ्ट कीइंग|{{sc|FSK}}, और कुछ {{sc|CQ}} ([[मोर्स कोड]]) सिग्नल। जहां एम्पलीफायर के लिए इनपुट सिग्नल का आयाम [[सिंगल-साइडबैंड मॉड्यूलेशन]], आयाम मॉड्यूलेशन, वीडियो और जटिल डिजिटल सिग्नल के साथ भिन्न होता है, वहां एम्पलीफायर को ड्राइविंग सिग्नल के लिफाफे को अविकृत रूप में संरक्षित करने के लिए कक्षा A या AB को संचालित करना चाहिए। ऐसे प्रवर्धकों को रैखिक प्रवर्धक कहा जाता है।
[[File:Two Siemens 20 Kw PEP Linear Amplifiers.jpg|thumb|175px|left| 20 किलोवाट {{sc|PEP}} लघु तरंग रेडियो स्टेशन द्वारा उपयोग किए जाने वाले रैखिक प्रवर्धक {{sc|HCJB}} दोनों में {{sc|SSB}} और डिजिटल रेडियोवर्ल्ड|{{sc|DRM}} प्रसारण]]एम्पलीफायर ऑपरेटिंग क्लास सी के लाभ को संशोधित करना भी आम है ताकि आयाम मॉडुलन का उत्पादन किया जा सके। यदि एक रेखीय तरीके से किया जाता है, तो यह संग्राहक प्रवर्धक कम विरूपण करने में सक्षम होता है। आउटपुट सिग्नल को इनपुट के उत्पाद के रूप में देखा जा सकता है {{sc|RF}} सिग्नल और मॉड्यूलेटिंग सिग्नल।
[[File:Two Siemens 20 Kw PEP Linear Amplifiers.jpg|thumb|175px|left| 20 किलोवाट {{sc|PEP}} लघु तरंग रेडियो स्टेशन द्वारा उपयोग किए जाने वाले रैखिक प्रवर्धक {{sc|HCJB}} दोनों में {{sc|SSB}} और डिजिटल रेडियोवर्ल्ड|{{sc|DRM}} प्रसारण]]एम्पलीफायर ऑपरेटिंग क्लास सी के लाभ को संशोधित करना भी आम है ताकि आयाम मॉडुलन का उत्पादन किया जा सके। यदि रेखीय तरीके से किया जाता है, तो यह संग्राहक प्रवर्धक कम विरूपण करने में सक्षम होता है। आउटपुट सिग्नल को इनपुट के उत्पाद के रूप में देखा जा सकता है {{sc|RF}} सिग्नल और मॉड्यूलेटिंग सिग्नल।


विकास {{sc|FM}} में उपलब्ध अधिक बैंडविड्थ का उपयोग करके बेहतर निष्ठा का प्रसारण करना {{sc|VHF}} रेंज, और जहां वायुमंडलीय शोर अनुपस्थित था। {{sc|FM}} में शोर को अस्वीकार करने की एक अंतर्निहित क्षमता भी है, जो कि ज्यादातर आयाम संग्राहक है। कैथोड-एनोड पारगमन समय के कारण वाल्व प्रौद्योगिकी उच्च-आवृत्ति सीमाओं से ग्रस्त है। हालाँकि, टेट्रोड का सफलतापूर्वक उपयोग किया जाता है {{sc|VHF}} रेंज और ट्रायोड कम गीगाहर्ट्ज रेंज में। आधुनिक {{sc|FM}} प्रसारण ट्रांसमीटर वाल्व और सॉलिड स्टेट डिवाइस दोनों का उपयोग करते हैं, जिसमें वाल्व का उपयोग उच्चतम शक्ति स्तरों पर अधिक होता है। {{sc|FM}} ट्रांसमीटर बहुत कम विरूपण के साथ कक्षा सी संचालित करते हैं।
विकास {{sc|FM}} में उपलब्ध अधिक बैंडविड्थ का उपयोग करके बेहतर निष्ठा का प्रसारण करना {{sc|VHF}} रेंज, और जहां वायुमंडलीय शोर अनुपस्थित था। {{sc|FM}} में शोर को अस्वीकार करने की अंतर्निहित क्षमता भी है, जो कि ज्यादातर आयाम संग्राहक है। कैथोड-एनोड पारगमन समय के कारण वाल्व प्रौद्योगिकी उच्च-आवृत्ति सीमाओं से ग्रस्त है। हालाँकि, टेट्रोड का सफलतापूर्वक उपयोग किया जाता है {{sc|VHF}} रेंज और ट्रायोड कम गीगाहर्ट्ज रेंज में। आधुनिक {{sc|FM}} प्रसारण ट्रांसमीटर वाल्व और सॉलिड स्टेट डिवाइस दोनों का उपयोग करते हैं, जिसमें वाल्व का उपयोग उच्चतम शक्ति स्तरों पर अधिक होता है। {{sc|FM}} ट्रांसमीटर बहुत कम विरूपण के साथ कक्षा सी संचालित करते हैं।


आज का डिजिटल रेडियो जो विभिन्न चरण मॉडुलन (जैसे {{sc|GMSK}}, {{sc|QPSK}}, आदि) और साथ ही स्पेक्ट्रम की बढ़ती मांग ने रेडियो के उपयोग के तरीके में एक नाटकीय बदलाव को मजबूर कर दिया है, उदा। सेलुलर रेडियो अवधारणा। आज के सेलुलर रेडियो और डिजिटल प्रसारण मानक वर्णक्रमीय लिफाफे और स्वीकार्य बैंड उत्सर्जन के मामले में अत्यधिक मांग कर रहे हैं (के मामले में) {{sc|GSM}} उदाहरण के लिए, -70 dB या बेहतर केंद्र आवृत्ति से बस कुछ सौ किलोहर्ट्ज़)। इसलिए डिजिटल ट्रांसमीटरों को कम विरूपण प्राप्त करने पर अधिक ध्यान देने के साथ रैखिक मोड में काम करना चाहिए।
आज का डिजिटल रेडियो जो विभिन्न चरण मॉडुलन (जैसे {{sc|GMSK}}, {{sc|QPSK}}, आदि) और साथ ही स्पेक्ट्रम की बढ़ती मांग ने रेडियो के उपयोग के तरीके में नाटकीय बदलाव को मजबूर कर दिया है, उदा। सेलुलर रेडियो अवधारणा। आज के सेलुलर रेडियो और डिजिटल प्रसारण मानक वर्णक्रमीय लिफाफे और स्वीकार्य बैंड उत्सर्जन के मामले में अत्यधिक मांग कर रहे हैं (के मामले में) {{sc|GSM}} उदाहरण के लिए, -70 dB या बेहतर केंद्र आवृत्ति से बस कुछ सौ किलोहर्ट्ज़)। इसलिए डिजिटल ट्रांसमीटरों को कम विरूपण प्राप्त करने पर अधिक ध्यान देने के साथ रैखिक मोड में काम करना चाहिए।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 99: Line 99:


=== वाल्व बनाम सॉलिड स्टेट एम्पलीफायरों की बैंडविड्थ ===
=== वाल्व बनाम सॉलिड स्टेट एम्पलीफायरों की बैंडविड्थ ===
आज, माइक्रोवेव फ्रीक्वेंसी (सेलुलर रेडियो बेस स्टेशन) पर भी रेडियो ट्रांसमीटर अत्यधिक ठोस अवस्था में हैं। अनुप्रयोग के आधार पर, रेडियो फ्रीक्वेंसी एम्पलीफायरों की एक उचित संख्या में उनकी सादगी के कारण वाल्व का निर्माण जारी रहता है, जबकि, यह एकल वाल्व की आउटपुट पावर की समान मात्रा के बराबर जटिल विभाजन और संयोजन सर्किट के साथ कई आउटपुट ट्रांजिस्टर लेता है।
आज, माइक्रोवेव फ्रीक्वेंसी (सेलुलर रेडियो बेस स्टेशन) पर भी रेडियो ट्रांसमीटर अत्यधिक ठोस अवस्था में हैं। अनुप्रयोग के आधार पर, रेडियो फ्रीक्वेंसी एम्पलीफायरों की उचित संख्या में उनकी सादगी के कारण वाल्व का निर्माण जारी रहता है, जबकि, यह एकल वाल्व की आउटपुट पावर की समान मात्रा के बराबर जटिल विभाजन और संयोजन सर्किट के साथ कई आउटपुट ट्रांजिस्टर लेता है।


वाल्व एम्पलीफायर सर्किट ब्रॉडबैंड सॉलिड स्टेट सर्किट से काफी अलग हैं। सॉलिड स्टेट उपकरणों में बहुत कम आउटपुट प्रतिबाधा होती है जो ब्रॉडबैंड ट्रांसफॉर्मर के माध्यम से आवृत्तियों की एक बड़ी रेंज को कवर करने की अनुमति देती है, उदाहरण के लिए 1.8 से 30 मेगाहर्ट्ज। कक्षा सी या एबी ऑपरेशन के साथ, इनमें हार्मोनिक्स को हटाने के लिए निम्न पास फ़िल्टर शामिल होना चाहिए। जबकि उचित कम पास फ़िल्टर को ब्याज की आवृत्ति रेंज के लिए चयनित होना चाहिए, परिणाम को ट्यून डिज़ाइन नहीं माना जाता है। वाल्व एम्पलीफायरों में एक ट्यून्ड नेटवर्क होता है जो लो पास हार्मोनिक फिल्टर और आउटपुट लोड से मेल खाने वाले प्रतिबाधा दोनों के रूप में कार्य करता है। किसी भी स्थिति में, ठोस अवस्था और वाल्व उपकरणों दोनों को ऐसे फ़िल्टरिंग नेटवर्क की आवश्यकता होती है, इससे पहले कि RF सिग्नल लोड पर आउटपुट हो।
वाल्व एम्पलीफायर सर्किट ब्रॉडबैंड सॉलिड स्टेट सर्किट से काफी अलग हैं। सॉलिड स्टेट उपकरणों में बहुत कम आउटपुट प्रतिबाधा होती है जो ब्रॉडबैंड ट्रांसफॉर्मर के माध्यम से आवृत्तियों की बड़ी रेंज को कवर करने की अनुमति देती है, उदाहरण के लिए 1.8 से 30 मेगाहर्ट्ज। कक्षा सी या एबी ऑपरेशन के साथ, इनमें हार्मोनिक्स को हटाने के लिए निम्न पास फ़िल्टर शामिल होना चाहिए। जबकि उचित कम पास फ़िल्टर को ब्याज की आवृत्ति रेंज के लिए चयनित होना चाहिए, परिणाम को ट्यून डिज़ाइन नहीं माना जाता है। वाल्व एम्पलीफायरों में ट्यून्ड नेटवर्क होता है जो लो पास हार्मोनिक फिल्टर और आउटपुट लोड से मेल खाने वाले प्रतिबाधा दोनों के रूप में कार्य करता है। किसी भी स्थिति में, ठोस अवस्था और वाल्व उपकरणों दोनों को ऐसे फ़िल्टरिंग नेटवर्क की आवश्यकता होती है, इससे पहले कि RF सिग्नल लोड पर आउटपुट हो।


== रेडियो सर्किट ==
== रेडियो सर्किट ==


ऑडियो एम्पलीफायरों के विपरीत, जिसमें एनालॉग आउटपुट सिग्नल इनपुट सिग्नल के समान रूप और आवृत्ति का होता है, आरएफ सर्किट एक वाहक (बहुत अधिक आवृत्ति पर) पर कम आवृत्ति की जानकारी (ऑडियो, वीडियो या डेटा) को संशोधित कर सकते हैं, और सर्किटरी में कई अलग-अलग चरण होते हैं। उदाहरण के लिए, एक रेडियो [[ट्रांसमीटर]] में हो सकता है:
ऑडियो एम्पलीफायरों के विपरीत, जिसमें एनालॉग आउटपुट सिग्नल इनपुट सिग्नल के समान रूप और आवृत्ति का होता है, आरएफ सर्किट वाहक (बहुत अधिक आवृत्ति पर) पर कम आवृत्ति की जानकारी (ऑडियो, वीडियो या डेटा) को संशोधित कर सकते हैं, और सर्किटरी में कई अलग-अलग चरण होते हैं। उदाहरण के लिए, रेडियो [[ट्रांसमीटर]] में हो सकता है:


* एक ऑडियो फ्रीक्वेंसी (एएफ) चरण (आमतौर पर वाल्व ऑडियो एम्पलीफायर में वर्णित पारंपरिक ब्रॉडबैंड छोटे सिग्नल सर्किटरी का उपयोग करते हुए,
* ऑडियो फ्रीक्वेंसी (एएफ) चरण (आमतौर पर वाल्व ऑडियो एम्पलीफायर में वर्णित पारंपरिक ब्रॉडबैंड छोटे सिग्नल सर्किटरी का उपयोग करते हुए,
*एक या एक से अधिक दोलक चरण जो वाहक तरंग उत्पन्न करते हैं,
*एक या एक से अधिक दोलक चरण जो वाहक तरंग उत्पन्न करते हैं,
*एक या एक से अधिक [[फ्रीक्वेंसी मिक्सर]] चरण जो [[थरथरानवाला]] से वाहक सिग्नल को संशोधित करते हैं,
*एक या एक से अधिक [[फ्रीक्वेंसी मिक्सर]] चरण जो [[थरथरानवाला]] से वाहक सिग्नल को संशोधित करते हैं,
*प्रवर्धक चरण ही (आमतौर पर) उच्च आवृत्ति पर काम कर रहा है। ट्रांसमीटर शक्ति amp ही एक रेडियो प्रणाली में एकमात्र उच्च शक्ति चरण है, और [[वाहक आवृत्ति]] पर संचालित होता है। एएम में, मॉडुलन (आवृत्ति मिश्रण) आमतौर पर अंतिम प्रवर्धक में ही होता है।
*प्रवर्धक चरण ही (आमतौर पर) उच्च आवृत्ति पर काम कर रहा है। ट्रांसमीटर शक्ति amp ही रेडियो प्रणाली में एकमात्र उच्च शक्ति चरण है, और [[वाहक आवृत्ति]] पर संचालित होता है। एएम में, मॉडुलन (आवृत्ति मिश्रण) आमतौर पर अंतिम प्रवर्धक में ही होता है।


=== ट्रांसमीटर एनोड सर्किट ===
=== ट्रांसमीटर एनोड सर्किट ===
सबसे आम एनोड सर्किट एक ट्यूनेड एलसी सर्किट है जहां एनोड [[वोल्टेज]] [[नोड (सर्किट)]] से जुड़े होते हैं। इस सर्किट को अक्सर एनोड [[टैंक सर्किट]] के रूप में जाना जाता है।
सबसे आम एनोड सर्किट ट्यूनेड एलसी सर्किट है जहां एनोड [[वोल्टेज]] [[नोड (सर्किट)]] से जुड़े होते हैं। इस सर्किट को अक्सर एनोड [[टैंक सर्किट]] के रूप में जाना जाता है।


=== सक्रिय (या ट्यून्ड ग्रिड) एम्पलीफायर ===
=== सक्रिय (या ट्यून्ड ग्रिड) एम्पलीफायर ===
[[Image:tunedgrid.png|thumb|300px|left|ट्यून्ड ग्रिड इनपुट का उपयोग करके सरल [[टेट्रोड]]-आधारित डिज़ाइन]]VHF/[[ अति उच्च आवृत्ति ]] में इस्तेमाल होने वाले इसके उदाहरण में 4CX250B शामिल है, ट्विन टेट्रोड का एक उदाहरण QQV06/40A है।
[[Image:tunedgrid.png|thumb|300px|left|ट्यून्ड ग्रिड इनपुट का उपयोग करके सरल [[टेट्रोड]]-आधारित डिज़ाइन]]VHF/[[ अति उच्च आवृत्ति ]] में इस्तेमाल होने वाले इसके उदाहरण में 4CX250B शामिल है, ट्विन टेट्रोड का उदाहरण QQV06/40A है।


न्यूट्रलाइजेशन टीजीटीपी (ट्यून ग्रिड ट्यून्ड प्लेट) एम्पलीफायरों में प्रयुक्त एक शब्द है जो इनपुट सर्किट में कुछ आउटपुट सिग्नल के अनजाने परिचय के कारण ऑपरेटिंग फ्रीक्वेंसी पर अवांछित दोलनों के खिलाफ स्थिरीकरण के लिए उपयोग किए जाने वाले तरीकों और सर्किट के लिए उपयोग किया जाता है। यह मुख्य रूप से ग्रिड से प्लेट क्षमता तक होता है, लेकिन सर्किट लेआउट को महत्वपूर्ण बनाते हुए अन्य रास्तों से भी आ सकता है। अवांछित फीडबैक सिग्नल को रद्द करने के लिए, आउटपुट सिग्नल का एक हिस्सा जानबूझकर इनपुट सर्किट में समान आयाम लेकिन विपरीत चरण के साथ पेश किया जाता है।
न्यूट्रलाइजेशन टीजीटीपी (ट्यून ग्रिड ट्यून्ड प्लेट) एम्पलीफायरों में प्रयुक्त शब्द है जो इनपुट सर्किट में कुछ आउटपुट सिग्नल के अनजाने परिचय के कारण ऑपरेटिंग फ्रीक्वेंसी पर अवांछित दोलनों के खिलाफ स्थिरीकरण के लिए उपयोग किए जाने वाले तरीकों और सर्किट के लिए उपयोग किया जाता है। यह मुख्य रूप से ग्रिड से प्लेट क्षमता तक होता है, लेकिन सर्किट लेआउट को महत्वपूर्ण बनाते हुए अन्य रास्तों से भी आ सकता है। अवांछित फीडबैक सिग्नल को रद्द करने के लिए, आउटपुट सिग्नल का हिस्सा जानबूझकर इनपुट सर्किट में समान आयाम लेकिन विपरीत चरण के साथ पेश किया जाता है।


इनपुट में ट्यून्ड सर्किट का उपयोग करते समय, नेटवर्क को ड्राइविंग स्रोत को ग्रिड के इनपुट प्रतिबाधा से मेल खाना चाहिए। यह प्रतिबाधा क्लास C या AB2 ऑपरेशन में ग्रिड करंट द्वारा निर्धारित की जाएगी। AB1 ऑपरेशन में, ग्रिड सर्किट को अत्यधिक स्टेप अप वोल्टेज से बचने के लिए डिज़ाइन किया जाना चाहिए, हालांकि यह अधिक स्टेज गेन प्रदान कर सकता है, जैसा कि ऑडियो डिज़ाइन में होता है, यह अस्थिरता को बढ़ाएगा और न्यूट्रलाइज़ेशन को और अधिक महत्वपूर्ण बना देगा।
इनपुट में ट्यून्ड सर्किट का उपयोग करते समय, नेटवर्क को ड्राइविंग स्रोत को ग्रिड के इनपुट प्रतिबाधा से मेल खाना चाहिए। यह प्रतिबाधा क्लास C या AB2 ऑपरेशन में ग्रिड करंट द्वारा निर्धारित की जाएगी। AB1 ऑपरेशन में, ग्रिड सर्किट को अत्यधिक स्टेप अप वोल्टेज से बचने के लिए डिज़ाइन किया जाना चाहिए, हालांकि यह अधिक स्टेज गेन प्रदान कर सकता है, जैसा कि ऑडियो डिज़ाइन में होता है, यह अस्थिरता को बढ़ाएगा और न्यूट्रलाइज़ेशन को और अधिक महत्वपूर्ण बना देगा।


यहां दिखाए गए सभी तीन बुनियादी डिजाइनों के साथ आम तौर पर, वाल्व का एनोड एक गुंजयमान एलसी सर्किट से जुड़ा होता है जिसमें एक और आगमनात्मक लिंक होता है जो आरएफ सिग्नल को आउटपुट में पारित करने की अनुमति देता है।
यहां दिखाए गए सभी तीन बुनियादी डिजाइनों के साथ आम तौर पर, वाल्व का एनोड गुंजयमान एलसी सर्किट से जुड़ा होता है जिसमें एक और आगमनात्मक लिंक होता है जो आरएफ सिग्नल को आउटपुट में पारित करने की अनुमति देता है।
दिखाया गया सर्किट काफी हद तक एक [[पाई नेटवर्क]] द्वारा प्रतिस्थापित किया गया है जो सरल समायोजन की अनुमति देता है और कम पास फ़िल्टरिंग जोड़ता है।
दिखाया गया सर्किट काफी हद तक [[पाई नेटवर्क]] द्वारा प्रतिस्थापित किया गया है जो सरल समायोजन की अनुमति देता है और कम पास फ़िल्टरिंग जोड़ता है।


==== ऑपरेशन ====
==== ऑपरेशन ====
एनोड करंट को पहले ग्रिड की विद्युत क्षमता (वोल्टेज) द्वारा नियंत्रित किया जाता है। वाल्व पर एक प्रत्यक्ष वर्तमान पूर्वाग्रह लागू किया जाता है ताकि यह सुनिश्चित किया जा सके कि आवश्यक आवेदन के लिए सबसे उपयुक्त स्थानांतरण समीकरण का हिस्सा उपयोग किया जाता है। इनपुट सिग्नल ग्रिड की क्षमता को खराब (परिवर्तन) करने में सक्षम है, यह बदले में एनोड [[विद्युत प्रवाह]] (प्लेट करंट के रूप में भी जाना जाता है) को बदल देगा।
एनोड करंट को पहले ग्रिड की विद्युत क्षमता (वोल्टेज) द्वारा नियंत्रित किया जाता है। वाल्व पर प्रत्यक्ष वर्तमान पूर्वाग्रह लागू किया जाता है ताकि यह सुनिश्चित किया जा सके कि आवश्यक आवेदन के लिए सबसे उपयुक्त स्थानांतरण समीकरण का हिस्सा उपयोग किया जाता है। इनपुट सिग्नल ग्रिड की क्षमता को खराब (परिवर्तन) करने में सक्षम है, यह बदले में एनोड [[विद्युत प्रवाह]] (प्लेट करंट के रूप में भी जाना जाता है) को बदल देगा।


इस पृष्ठ पर दिखाए गए [[ आकाशवाणी आवृति ]] डिज़ाइन में, एक ट्यूनेड सर्किट एनोड और हाई वोल्टेज सप्लाई के बीच होता है। इस [[ट्यून्ड सर्किट]] को अनुनाद में लाया जाता है जो एक आगमनात्मक भार पेश करता है जो वाल्व से अच्छी तरह मेल खाता है और इस प्रकार एक कुशल बिजली हस्तांतरण होता है।
इस पृष्ठ पर दिखाए गए [[ आकाशवाणी आवृति ]] डिज़ाइन में, ट्यूनेड सर्किट एनोड और हाई वोल्टेज सप्लाई के बीच होता है। इस [[ट्यून्ड सर्किट]] को अनुनाद में लाया जाता है जो आगमनात्मक भार पेश करता है जो वाल्व से अच्छी तरह मेल खाता है और इस प्रकार कुशल बिजली हस्तांतरण होता है।


चूंकि एनोड कनेक्शन के माध्यम से बहने वाली धारा को ग्रिड द्वारा नियंत्रित किया जाता है, तो लोड के माध्यम से बहने वाली धारा को भी ग्रिड द्वारा नियंत्रित किया जाता है।
चूंकि एनोड कनेक्शन के माध्यम से बहने वाली धारा को ग्रिड द्वारा नियंत्रित किया जाता है, तो लोड के माध्यम से बहने वाली धारा को भी ग्रिड द्वारा नियंत्रित किया जाता है।


अन्य आरएफ डिजाइनों की तुलना में ट्यून किए गए ग्रिड का एक नुकसान यह है कि न्यूट्रलाइजेशन की आवश्यकता होती है।
अन्य आरएफ डिजाइनों की तुलना में ट्यून किए गए ग्रिड का नुकसान यह है कि न्यूट्रलाइजेशन की आवश्यकता होती है।


=== निष्क्रिय ग्रिड एम्पलीफायर ===
=== निष्क्रिय ग्रिड एम्पलीफायर ===
[[Image:passivegrid.png|thumb|300px|right|एक निष्क्रिय ग्रिड इनपुट का उपयोग करते हुए सरल टेट्रोड-आधारित प्रवर्धक]]VHF/UHF आवृत्तियों पर प्रयुक्त एक निष्क्रिय ग्रिड सर्किट 4CX250B टेट्रोड का उपयोग कर सकता है। जुड़वां टेट्रोड का एक उदाहरण QQV06/40A होगा। टेट्रोड में एक स्क्रीन ग्रिड होता है जो एनोड और पहले ग्रिड के बीच होता है, जो आरएफ के लिए ग्राउंड किया जा रहा है, पहले ग्रिड और एनोड के बीच प्रभावी कैपेसिटेंस को कम करने के लिए ढाल के रूप में कार्य करता है। स्क्रीन ग्रिड और ग्रिड भिगोना रोकनेवाला के प्रभावों का संयोजन अक्सर इस डिजाइन के बिना तटस्थता के उपयोग की अनुमति देता है। टेट्रोड्स और पेंटोड्स में पाई जाने वाली स्क्रीन, एनोड करंट पर एनोड वोल्टेज के प्रभाव को कम करके वाल्व के लाभ को बहुत बढ़ा देती है।
[[Image:passivegrid.png|thumb|300px|right|निष्क्रिय ग्रिड इनपुट का उपयोग करते हुए सरल टेट्रोड-आधारित प्रवर्धक]]VHF/UHF आवृत्तियों पर प्रयुक्त निष्क्रिय ग्रिड सर्किट 4CX250B टेट्रोड का उपयोग कर सकता है। जुड़वां टेट्रोड का उदाहरण QQV06/40A होगा। टेट्रोड में स्क्रीन ग्रिड होता है जो एनोड और पहले ग्रिड के बीच होता है, जो आरएफ के लिए ग्राउंड किया जा रहा है, पहले ग्रिड और एनोड के बीच प्रभावी कैपेसिटेंस को कम करने के लिए ढाल के रूप में कार्य करता है। स्क्रीन ग्रिड और ग्रिड भिगोना रोकनेवाला के प्रभावों का संयोजन अक्सर इस डिजाइन के बिना तटस्थता के उपयोग की अनुमति देता है। टेट्रोड्स और पेंटोड्स में पाई जाने वाली स्क्रीन, एनोड करंट पर एनोड वोल्टेज के प्रभाव को कम करके वाल्व के लाभ को बहुत बढ़ा देती है।


इनपुट सिग्नल को कैपेसिटर के माध्यम से वाल्व के पहले ग्रिड पर लागू किया जाता है। ग्रिड रोकनेवाला का मान प्रवर्धक चरण के लाभ को निर्धारित करता है। प्रतिरोध जितना अधिक होगा, लाभ उतना ही अधिक होगा, अवमंदन प्रभाव उतना ही कम होगा और अस्थिरता का जोखिम भी उतना ही अधिक होगा। इस प्रकार के मंच के साथ अच्छा लेआउट कम महत्वपूर्ण होता है।
इनपुट सिग्नल को कैपेसिटर के माध्यम से वाल्व के पहले ग्रिड पर लागू किया जाता है। ग्रिड रोकनेवाला का मान प्रवर्धक चरण के लाभ को निर्धारित करता है। प्रतिरोध जितना अधिक होगा, लाभ उतना ही अधिक होगा, अवमंदन प्रभाव उतना ही कम होगा और अस्थिरता का जोखिम भी उतना ही अधिक होगा। इस प्रकार के मंच के साथ अच्छा लेआउट कम महत्वपूर्ण होता है।
Line 149: Line 149:


=== ग्राउंडेड ग्रिड एम्पलीफायर ===
=== ग्राउंडेड ग्रिड एम्पलीफायर ===
[[Image:groundedgrid.png|thumb|300px|left|निष्क्रिय ग्रिड इनपुट का उपयोग करते हुए सरल ट्रायोड-आधारित डिज़ाइन]]यह डिज़ाइन आम तौर पर एक ट्रायोड का उपयोग करता है, इसलिए 4CX250B जैसे वाल्व इस सर्किट के लिए उपयुक्त नहीं हैं, जब तक कि स्क्रीन और नियंत्रण ग्रिड शामिल न हों, प्रभावी रूप से टेट्रोड को ट्रायोड में परिवर्तित कर दें। इस सर्किट डिज़ाइन का उपयोग 2C39A जैसे डिस्क सील ट्रायोड [[ वेक्यूम - ट्यूब ]] का उपयोग करके 1296 मेगाहर्ट्ज पर किया गया है।
[[Image:groundedgrid.png|thumb|300px|left|निष्क्रिय ग्रिड इनपुट का उपयोग करते हुए सरल ट्रायोड-आधारित डिज़ाइन]]यह डिज़ाइन आम तौर पर ट्रायोड का उपयोग करता है, इसलिए 4CX250B जैसे वाल्व इस सर्किट के लिए उपयुक्त नहीं हैं, जब तक कि स्क्रीन और नियंत्रण ग्रिड शामिल न हों, प्रभावी रूप से टेट्रोड को ट्रायोड में परिवर्तित कर दें। इस सर्किट डिज़ाइन का उपयोग 2C39A जैसे डिस्क सील ट्रायोड [[ वेक्यूम - ट्यूब ]] का उपयोग करके 1296 मेगाहर्ट्ज पर किया गया है।


ग्रिड को ग्राउंड किया जाता है और कैपेसिटर के माध्यम से ड्राइव को कैथोड पर लगाया जाता है। हीटर की आपूर्ति को कैथोड से अलग किया जाना चाहिए क्योंकि अन्य डिजाइनों के विपरीत कैथोड आरएफ ग्राउंड से जुड़ा नहीं है। कुछ वाल्व, जैसे कि 811A, को शून्य बायस ऑपरेशन के लिए डिज़ाइन किया गया है और कैथोड डीसी के लिए जमीनी क्षमता पर हो सकता है। कैथोड पर सकारात्मक डीसी वोल्टेज डालकर नकारात्मक ग्रिड पूर्वाग्रह की आवश्यकता वाले वाल्व का उपयोग किया जा सकता है। इसे कैथोड और जमीन के बीच जेनर डायोड लगाकर या एक अलग बायस आपूर्ति का उपयोग करके प्राप्त किया जा सकता है।
ग्रिड को ग्राउंड किया जाता है और कैपेसिटर के माध्यम से ड्राइव को कैथोड पर लगाया जाता है। हीटर की आपूर्ति को कैथोड से अलग किया जाना चाहिए क्योंकि अन्य डिजाइनों के विपरीत कैथोड आरएफ ग्राउंड से जुड़ा नहीं है। कुछ वाल्व, जैसे कि 811A, को शून्य बायस ऑपरेशन के लिए डिज़ाइन किया गया है और कैथोड डीसी के लिए जमीनी क्षमता पर हो सकता है। कैथोड पर सकारात्मक डीसी वोल्टेज डालकर नकारात्मक ग्रिड पूर्वाग्रह की आवश्यकता वाले वाल्व का उपयोग किया जा सकता है। इसे कैथोड और जमीन के बीच जेनर डायोड लगाकर या अलग बायस आपूर्ति का उपयोग करके प्राप्त किया जा सकता है।


==== लाभ ====
==== लाभ ====
Line 162: Line 162:


=== तटस्थता ===
=== तटस्थता ===
एम्पलीफायर और अन्य आवारा युग्मन के इनपुट और आउटपुट के बीच मौजूद वाल्व इंटरइलेक्ट्रोड कैपेसिटेंस पर्याप्त ऊर्जा को इनपुट में वापस फीड करने की अनुमति दे सकता है ताकि एम्पलीफायर चरण में स्व-दोलन हो सके। उच्च लाभ डिजाइनों के लिए इस प्रभाव का प्रतिकार किया जाना चाहिए। आउटपुट से वापस इनपुट तक आउट-ऑफ-फेज सिग्नल शुरू करने के लिए विभिन्न तरीके मौजूद हैं ताकि प्रभाव रद्द हो जाए। यहां तक ​​कि जब फीड बैक दोलन पैदा करने के लिए पर्याप्त नहीं है, तब भी यह अन्य प्रभाव पैदा कर सकता है, जैसे कठिन ट्यूनिंग। इसलिए, न्यूट्रलाइजेशन मददगार हो सकता है, यहां तक ​​कि एक एम्पलीफायर के लिए भी जो दोलन नहीं करता है। कई ग्राउंडेड ग्रिड एम्पलीफायरों में कोई न्यूट्रलाइजेशन नहीं होता है, लेकिन 30 मेगाहर्ट्ज पर इसे जोड़ने से ट्यूनिंग को सुचारू किया जा सकता है।
एम्पलीफायर और अन्य आवारा युग्मन के इनपुट और आउटपुट के बीच मौजूद वाल्व इंटरइलेक्ट्रोड कैपेसिटेंस पर्याप्त ऊर्जा को इनपुट में वापस फीड करने की अनुमति दे सकता है ताकि एम्पलीफायर चरण में स्व-दोलन हो सके। उच्च लाभ डिजाइनों के लिए इस प्रभाव का प्रतिकार किया जाना चाहिए। आउटपुट से वापस इनपुट तक आउट-ऑफ-फेज सिग्नल शुरू करने के लिए विभिन्न तरीके मौजूद हैं ताकि प्रभाव रद्द हो जाए। यहां तक ​​कि जब फीड बैक दोलन पैदा करने के लिए पर्याप्त नहीं है, तब भी यह अन्य प्रभाव पैदा कर सकता है, जैसे कठिन ट्यूनिंग। इसलिए, न्यूट्रलाइजेशन मददगार हो सकता है, यहां तक ​​कि एम्पलीफायर के लिए भी जो दोलन नहीं करता है। कई ग्राउंडेड ग्रिड एम्पलीफायरों में कोई न्यूट्रलाइजेशन नहीं होता है, लेकिन 30 मेगाहर्ट्ज पर इसे जोड़ने से ट्यूनिंग को सुचारू किया जा सकता है।


टेट्रोड या पेंटोड के निराकरण का एक महत्वपूर्ण हिस्सा स्क्रीन ग्रिड सर्किट का डिज़ाइन है। सबसे बड़ा परिरक्षण प्रभाव प्रदान करने के लिए, ऑपरेशन की आवृत्ति पर स्क्रीन को अच्छी तरह से ग्राउंड किया जाना चाहिए। वीएचएफ रेंज में कहीं न कहीं कई वाल्वों में स्व-बेअसर आवृत्ति होगी। यह स्क्रीन क्षमता और स्क्रीन लीड के अधिष्ठापन से युक्त एक श्रृंखला अनुनाद से उत्पन्न होता है, इस प्रकार जमीन पर बहुत कम प्रतिबाधा पथ प्रदान करता है।
टेट्रोड या पेंटोड के निराकरण का महत्वपूर्ण हिस्सा स्क्रीन ग्रिड सर्किट का डिज़ाइन है। सबसे बड़ा परिरक्षण प्रभाव प्रदान करने के लिए, ऑपरेशन की आवृत्ति पर स्क्रीन को अच्छी तरह से ग्राउंड किया जाना चाहिए। वीएचएफ रेंज में कहीं न कहीं कई वाल्वों में स्व-बेअसर आवृत्ति होगी। यह स्क्रीन क्षमता और स्क्रीन लीड के अधिष्ठापन से युक्त श्रृंखला अनुनाद से उत्पन्न होता है, इस प्रकार जमीन पर बहुत कम प्रतिबाधा पथ प्रदान करता है।


=== यूएचएफ ===
=== यूएचएफ ===
Line 171: Line 171:
=== ट्यूब शोर और शोर आंकड़ा ===
=== ट्यूब शोर और शोर आंकड़ा ===


शोर का आंकड़ा आमतौर पर पावर एम्पलीफायर वाल्व के लिए एक मुद्दा नहीं है, हालांकि, वाल्व का उपयोग करने वाले रिसीवर में यह महत्वपूर्ण हो सकता है। जबकि ऐसे उपयोग अप्रचलित हैं, यह जानकारी ऐतिहासिक रुचि के लिए शामिल है।
शोर का आंकड़ा आमतौर पर पावर एम्पलीफायर वाल्व के लिए मुद्दा नहीं है, हालांकि, वाल्व का उपयोग करने वाले रिसीवर में यह महत्वपूर्ण हो सकता है। जबकि ऐसे उपयोग अप्रचलित हैं, यह जानकारी ऐतिहासिक रुचि के लिए शामिल है।


किसी भी प्रवर्धक उपकरण की तरह, वाल्व सिग्नल को प्रवर्धित करने के लिए शोर जोड़ते हैं। यहां तक ​​कि एक काल्पनिक पूर्ण एम्पलीफायर के साथ भी, सिग्नल स्रोत में थर्मल उतार-चढ़ाव के कारण शोर अनिवार्य रूप से मौजूद है (आमतौर पर कमरे के तापमान पर माना जाता है, टी = 295 के)। इस तरह के उतार-चढ़ाव के कारण विद्युत शोर शक्ति होती है <math>k_B T B</math>, जहां के<sub>B</sub> बोल्ट्जमैन स्थिरांक है और बैंडविड्थ B है। इसी प्रकार, एक खुले सर्किट में एक प्रतिरोध आर का वोल्टेज शोर है <math>4*k_B*T*B*R)^{1/2}</math> और शॉर्ट सर्किट में करंट शोर है <math>4*k_B*T*B/R)^{1/2}</math>.
किसी भी प्रवर्धक उपकरण की तरह, वाल्व सिग्नल को प्रवर्धित करने के लिए शोर जोड़ते हैं। यहां तक ​​कि काल्पनिक पूर्ण एम्पलीफायर के साथ भी, सिग्नल स्रोत में थर्मल उतार-चढ़ाव के कारण शोर अनिवार्य रूप से मौजूद है (आमतौर पर कमरे के तापमान पर माना जाता है, टी = 295 के)। इस तरह के उतार-चढ़ाव के कारण विद्युत शोर शक्ति होती है <math>k_B T B</math>, जहां के<sub>B</sub> बोल्ट्जमैन स्थिरांक है और बैंडविड्थ B है। इसी प्रकार, खुले सर्किट में एक प्रतिरोध आर का वोल्टेज शोर है <math>4*k_B*T*B*R)^{1/2}</math> और शॉर्ट सर्किट में करंट शोर है <math>4*k_B*T*B/R)^{1/2}</math>.


नॉइज़ फिगर को एम्पलीफायर के आउटपुट पर नॉइज़ पावर के अनुपात के रूप में परिभाषित किया गया है, जो नॉइज़ पावर के सापेक्ष आउटपुट में मौजूद होगा यदि एम्पलीफायर नीरव था (सिग्नल स्रोत के थर्मल शोर के प्रवर्धन के कारण)। एक समतुल्य परिभाषा है: शोर का आंकड़ा वह कारक है जिसके द्वारा एम्पलीफायर का सम्मिलन शोर अनुपात के संकेत को कम करता है। इसे अक्सर डेसिबल (डीबी) में व्यक्त किया जाता है। 0 डीबी शोर के आंकड़े वाला एक एम्पलीफायर सही होगा।
नॉइज़ फिगर को एम्पलीफायर के आउटपुट पर नॉइज़ पावर के अनुपात के रूप में परिभाषित किया गया है, जो नॉइज़ पावर के सापेक्ष आउटपुट में मौजूद होगा यदि एम्पलीफायर नीरव था (सिग्नल स्रोत के थर्मल शोर के प्रवर्धन के कारण)। समतुल्य परिभाषा है: शोर का आंकड़ा वह कारक है जिसके द्वारा एम्पलीफायर का सम्मिलन शोर अनुपात के संकेत को कम करता है। इसे अक्सर डेसिबल (डीबी) में व्यक्त किया जाता है। 0 डीबी शोर के आंकड़े वाला एम्पलीफायर सही होगा।


ऑडियो आवृत्तियों पर ट्यूबों के शोर गुणों को ग्रिड के साथ श्रृंखला में वोल्टेज शोर के स्रोत वाले एक आदर्श नीरव ट्यूब द्वारा अच्छी तरह से तैयार किया जा सकता है। EF86 ट्यूब के लिए, उदाहरण के लिए, यह वोल्टेज शोर निर्दिष्ट किया गया है (उदाहरण के लिए, वाल्वो, टेलीफंकन या फिलिप्स डेटा शीट देखें) लगभग 25 Hz से 10 kHz की आवृत्ति रेंज पर एकीकृत 2 माइक्रोवोल्ट के रूप में। (यह एकीकृत शोर को संदर्भित करता है, शोर वर्णक्रमीय घनत्व की आवृत्ति निर्भरता के लिए नीचे देखें।) यह 25 kΩ रोकनेवाला के वोल्टेज शोर के बराबर है। इस प्रकार, यदि सिग्नल स्रोत का प्रतिबाधा 25 kΩ या उससे अधिक है, तो ट्यूब का शोर वास्तव में स्रोत के शोर से छोटा होता है। 25 kΩ के स्रोत के लिए, ट्यूब और स्रोत द्वारा उत्पन्न शोर समान होते हैं, इसलिए एम्पलीफायर के आउटपुट पर कुल शोर शक्ति पूर्ण एम्पलीफायर के आउटपुट पर शोर शक्ति से दोगुनी होती है। तब शोर का आंकड़ा दो, या 3 dB होता है। उच्च प्रतिबाधाओं के लिए, जैसे कि 250 kΩ, EF86 का वोल्टेज शोर है <math>1/10^{1/2}</math> स्रोत के अपने शोर से कम। इसलिए यह स्रोत के कारण होने वाली शोर शक्ति का 1/10 जोड़ता है, और शोर का आंकड़ा 0.4 dB है। 250 Ω के कम प्रतिबाधा स्रोत के लिए, दूसरी ओर, ट्यूब का शोर वोल्टेज योगदान सिग्नल स्रोत से 10 गुना बड़ा होता है, ताकि शोर की शक्ति स्रोत के कारण सौ गुना अधिक हो। इस मामले में शोर का आंकड़ा 20 dB है।
ऑडियो आवृत्तियों पर ट्यूबों के शोर गुणों को ग्रिड के साथ श्रृंखला में वोल्टेज शोर के स्रोत वाले आदर्श नीरव ट्यूब द्वारा अच्छी तरह से तैयार किया जा सकता है। EF86 ट्यूब के लिए, उदाहरण के लिए, यह वोल्टेज शोर निर्दिष्ट किया गया है (उदाहरण के लिए, वाल्वो, टेलीफंकन या फिलिप्स डेटा शीट देखें) लगभग 25 Hz से 10 kHz की आवृत्ति रेंज पर एकीकृत 2 माइक्रोवोल्ट के रूप में। (यह एकीकृत शोर को संदर्भित करता है, शोर वर्णक्रमीय घनत्व की आवृत्ति निर्भरता के लिए नीचे देखें।) यह 25 kΩ रोकनेवाला के वोल्टेज शोर के बराबर है। इस प्रकार, यदि सिग्नल स्रोत का प्रतिबाधा 25 kΩ या उससे अधिक है, तो ट्यूब का शोर वास्तव में स्रोत के शोर से छोटा होता है। 25 kΩ के स्रोत के लिए, ट्यूब और स्रोत द्वारा उत्पन्न शोर समान होते हैं, इसलिए एम्पलीफायर के आउटपुट पर कुल शोर शक्ति पूर्ण एम्पलीफायर के आउटपुट पर शोर शक्ति से दोगुनी होती है। तब शोर का आंकड़ा दो, या 3 dB होता है। उच्च प्रतिबाधाओं के लिए, जैसे कि 250 kΩ, EF86 का वोल्टेज शोर है <math>1/10^{1/2}</math> स्रोत के अपने शोर से कम। इसलिए यह स्रोत के कारण होने वाली शोर शक्ति का 1/10 जोड़ता है, और शोर का आंकड़ा 0.4 dB है। 250 Ω के कम प्रतिबाधा स्रोत के लिए, दूसरी ओर, ट्यूब का शोर वोल्टेज योगदान सिग्नल स्रोत से 10 गुना बड़ा होता है, ताकि शोर की शक्ति स्रोत के कारण सौ गुना अधिक हो। इस मामले में शोर का आंकड़ा 20 dB है।


कम शोर का आंकड़ा प्राप्त करने के लिए एक ट्रांसफॉर्मर द्वारा स्रोत की प्रतिबाधा को बढ़ाया जा सकता है। यह अंततः ट्यूब की इनपुट क्षमता द्वारा सीमित होता है, जो एक सीमा निर्धारित करता है कि एक निश्चित बैंडविड्थ वांछित होने पर सिग्नल प्रतिबाधा कितनी अधिक हो सकती है।
कम शोर का आंकड़ा प्राप्त करने के लिए ट्रांसफॉर्मर द्वारा स्रोत की प्रतिबाधा को बढ़ाया जा सकता है। यह अंततः ट्यूब की इनपुट क्षमता द्वारा सीमित होता है, जो सीमा निर्धारित करता है कि निश्चित बैंडविड्थ वांछित होने पर सिग्नल प्रतिबाधा कितनी अधिक हो सकती है।


किसी दिए गए ट्यूब का शोर वोल्टेज घनत्व आवृत्ति का एक कार्य है। 10 kHz या उससे अधिक आवृत्तियों पर, यह मूल रूप से स्थिर (श्वेत शोर) है। सफेद शोर को अक्सर समतुल्य शोर प्रतिरोध द्वारा व्यक्त किया जाता है, जिसे प्रतिरोध के रूप में परिभाषित किया जाता है जो ट्यूब इनपुट पर मौजूद समान वोल्टेज शोर पैदा करता है। ट्रायोड के लिए, यह लगभग (2-4)/g है<sub>m</sub>, जहां जी<sub>m</sub> पारचालकता है। पेन्टोड्स के लिए, यह अधिक है, लगभग (5-7)/g<sub>m</sub>. उच्च जी के साथ ट्यूब<sub>m</sub> इस प्रकार उच्च आवृत्तियों पर कम शोर होता है। उदाहरण के लिए, यह ECC88 के एक आधे के लिए 300 Ω है, E188CC के लिए 250 Ω है (दोनों में g है<sub>m</sub> = 12.5 mA/V) और ट्राइड-कनेक्टेड D3a (g) के लिए 65 Ω जितना कम<sub>m</sub> = 40 एमए/वी)।
किसी दिए गए ट्यूब का शोर वोल्टेज घनत्व आवृत्ति का कार्य है। 10 kHz या उससे अधिक आवृत्तियों पर, यह मूल रूप से स्थिर (श्वेत शोर) है। सफेद शोर को अक्सर समतुल्य शोर प्रतिरोध द्वारा व्यक्त किया जाता है, जिसे प्रतिरोध के रूप में परिभाषित किया जाता है जो ट्यूब इनपुट पर मौजूद समान वोल्टेज शोर पैदा करता है। ट्रायोड के लिए, यह लगभग (2-4)/g है<sub>m</sub>, जहां जी<sub>m</sub> पारचालकता है। पेन्टोड्स के लिए, यह अधिक है, लगभग (5-7)/g<sub>m</sub>. उच्च जी के साथ ट्यूब<sub>m</sub> इस प्रकार उच्च आवृत्तियों पर कम शोर होता है। उदाहरण के लिए, यह ECC88 के आधे के लिए 300 Ω है, E188CC के लिए 250 Ω है (दोनों में g है<sub>m</sub> = 12.5 mA/V) और ट्राइड-कनेक्टेड D3a (g) के लिए 65 Ω जितना कम<sub>m</sub> = 40 एमए/वी)।


ऑडियो फ़्रीक्वेंसी रेंज (1–100 kHz से कम) में, 1/f शोर प्रभावी हो जाता है, जो 1/f की तरह बढ़ जाता है। (यह उपरोक्त उदाहरण में EF86 के अपेक्षाकृत उच्च शोर प्रतिरोध का कारण है।) इस प्रकार, उच्च आवृत्ति पर कम शोर वाले ट्यूबों में ऑडियो आवृत्ति रेंज में कम शोर नहीं होता है। विशेष कम-शोर वाले ऑडियो ट्यूबों के लिए, आवृत्ति जिस पर 1/f शोर होता है, को यथासंभव कम कर दिया जाता है, शायद लगभग एक किलोहर्ट्ज़ तक। कैथोड निकल के लिए बहुत शुद्ध सामग्री का चयन करके और ट्यूब को अनुकूलित (आमतौर पर कम) एनोड करंट पर चलाकर इसे कम किया जा सकता है।
ऑडियो फ़्रीक्वेंसी रेंज (1–100 kHz से कम) में, 1/f शोर प्रभावी हो जाता है, जो 1/f की तरह बढ़ जाता है। (यह उपरोक्त उदाहरण में EF86 के अपेक्षाकृत उच्च शोर प्रतिरोध का कारण है।) इस प्रकार, उच्च आवृत्ति पर कम शोर वाले ट्यूबों में ऑडियो आवृत्ति रेंज में कम शोर नहीं होता है। विशेष कम-शोर वाले ऑडियो ट्यूबों के लिए, आवृत्ति जिस पर 1/f शोर होता है, को यथासंभव कम कर दिया जाता है, शायद लगभग किलोहर्ट्ज़ तक। कैथोड निकल के लिए बहुत शुद्ध सामग्री का चयन करके और ट्यूब को अनुकूलित (आमतौर पर कम) एनोड करंट पर चलाकर इसे कम किया जा सकता है।


रेडियो आवृत्तियों पर, चीजें अधिक जटिल होती हैं: (i) एक ट्यूब के इनपुट प्रतिबाधा में एक वास्तविक घटक होता है जो 1/f² की तरह नीचे जाता है (कैथोड लीड अधिष्ठापन और पारगमन समय प्रभाव के कारण)। इसका मतलब है कि शोर के आंकड़े को कम करने के लिए इनपुट प्रतिबाधा को मनमाने ढंग से नहीं बढ़ाया जा सकता है। (ii) इस इनपुट प्रतिरोध का अपना तापीय शोर होता है, बिल्कुल किसी प्रतिरोधक की तरह। (शोर उद्देश्यों के लिए इस प्रतिरोधक का तापमान कमरे के तापमान की तुलना में कैथोड तापमान के अधिक निकट है)। इस प्रकार, ट्यूब एम्पलीफायरों का शोर आंकड़ा आवृत्ति के साथ बढ़ता है। 200 मेगाहर्ट्ज पर, 2.5 (या 4 dB) के शोर आंकड़े तक ECC2000 ट्यूब के साथ एक अनुकूलित कैस्कोड-सर्किट में एक अनुकूलित स्रोत प्रतिबाधा के साथ पहुंचा जा सकता है। 800 मेगाहर्ट्ज पर, EC8010 जैसे ट्यूबों में लगभग 10 dB या उससे अधिक का शोर होता है। प्लानर ट्रायोड बेहतर हैं, लेकिन बहुत जल्दी, ट्रांजिस्टर यूएचएफ में ट्यूबों की तुलना में काफी कम शोर के आंकड़े तक पहुंच गए हैं। इस प्रकार, टेलीविज़न सेट के ट्यूनर उपभोक्ता इलेक्ट्रॉनिक्स के पहले भागों में से थे, जहां ट्रांजिस्टर का उपयोग किया गया था।
रेडियो आवृत्तियों पर, चीजें अधिक जटिल होती हैं: (i) एक ट्यूब के इनपुट प्रतिबाधा में वास्तविक घटक होता है जो 1/f² की तरह नीचे जाता है (कैथोड लीड अधिष्ठापन और पारगमन समय प्रभाव के कारण)। इसका मतलब है कि शोर के आंकड़े को कम करने के लिए इनपुट प्रतिबाधा को मनमाने ढंग से नहीं बढ़ाया जा सकता है। (ii) इस इनपुट प्रतिरोध का अपना तापीय शोर होता है, बिल्कुल किसी प्रतिरोधक की तरह। (शोर उद्देश्यों के लिए इस प्रतिरोधक का तापमान कमरे के तापमान की तुलना में कैथोड तापमान के अधिक निकट है)। इस प्रकार, ट्यूब एम्पलीफायरों का शोर आंकड़ा आवृत्ति के साथ बढ़ता है। 200 मेगाहर्ट्ज पर, 2.5 (या 4 dB) के शोर आंकड़े तक ECC2000 ट्यूब के साथ अनुकूलित कैस्कोड-सर्किट में अनुकूलित स्रोत प्रतिबाधा के साथ पहुंचा जा सकता है। 800 मेगाहर्ट्ज पर, EC8010 जैसे ट्यूबों में लगभग 10 dB या उससे अधिक का शोर होता है। प्लानर ट्रायोड बेहतर हैं, लेकिन बहुत जल्दी, ट्रांजिस्टर यूएचएफ में ट्यूबों की तुलना में काफी कम शोर के आंकड़े तक पहुंच गए हैं। इस प्रकार, टेलीविज़न सेट के ट्यूनर उपभोक्ता इलेक्ट्रॉनिक्स के पहले भागों में से थे, जहां ट्रांजिस्टर का उपयोग किया गया था।


== गिरावट ==
== गिरावट ==

Revision as of 12:27, 11 May 2023

ट्यूब GU-78B के साथ शॉर्टवेव एम्पलीफायर

वाल्व आरएफ एम्पलीफायर (ब्रिटिश अंग्रेजी और ऑस्ट्रेलियाई अंग्रेजी ऑस्ट्रेलिया) या ट्यूब एम्पलीफायर (अमेरिकी अंग्रेजी|यू.एस.) विद्युत रेडियो आवृत्ति की शक्ति को विद्युत रूप से प्रवर्धक करने के लिए उपकरण है विक्षनरी:सिग्नल।

1960 और 1970 के दशक के दौरान माइक्रोवेव के नीचे आवृत्तियों के लिए कम से मध्यम शक्ति वाल्व एम्पलीफायरों को बड़े पैमाने पर ठोस अवस्था (इलेक्ट्रॉनिक्स) एम्पलीफायरों द्वारा प्रतिस्थापित किया गया था, शुरुआत में ट्रांसमीटरों के रिसीवर और कम पावर चरणों के लिए, ट्रांसमीटर आउटपुट चरणों में कुछ समय बाद ट्रांजिस्टर पर स्विच किया गया। बहुत उच्च शक्ति ट्रांसमीटरों के लिए विशेष रूप से निर्मित वाल्व अभी भी उपयोग में हैं, हालांकि नए डिजाइनों में शायद ही कभी।[1]

व्यावहारिक ट्यूब-आधारित डिज़ाइनों की सादगी के कारण, अनुप्रयोगों के लिए ट्यूबों का उपयोग करना RF किलोवाट पावर रेंज से ऊपर के एम्पलीफायर निर्माण लागत को बहुत कम कर सकते हैं।[2] इसके अलावा, बड़े, उच्च मूल्य वाले पावर वाल्व (स्टील क्लैड, ग्लास ट्यूब नहीं)

वाल्व विशेषताएँ

ट्रांजिस्टर की तुलना में वाल्व उच्च वोल्टेज/कम वर्तमान डिवाइस हैं। टेट्रोड और पेंटोड वाल्व में बहुत सपाट एनोड करंट बनाम एनोड वोल्टेज होता है जो उच्च एनोड आउटपुट विद्युत प्रतिबाधा का संकेत देता है। ट्रायोड एनोड वोल्टेज और एनोड करंट के बीच मजबूत संबंध दिखाते हैं।

उच्च कार्यशील वोल्टेज उन्हें रेडियो ट्रांसमीटर के लिए अच्छी तरह से अनुकूल बनाता है और वाल्व आज भी बहुत उच्च शक्ति शॉर्ट वेव रेडियो ट्रांसमीटरों के लिए उपयोग में रहते हैं, जहां ठोस अवस्था तकनीकों को समानांतर में कई उपकरणों की आवश्यकता होती है, और बहुत अधिक DC धाराओं की आपूर्ति। उच्च शक्ति ठोस राज्य ट्रांसमीटरों को भी ट्रांसफार्मर और ट्यूनिंग नेटवर्क के जटिल संयोजन की आवश्यकता होती है, जबकि वाल्व-आधारित ट्रांसमीटर एकल, अपेक्षाकृत सरल ट्यूनेड नेटवर्क का उपयोग करेगा।

इस प्रकार जबकि ठोस अवस्था उच्च शक्ति शॉर्ट वेव ट्रांसमीटर तकनीकी रूप से संभव हैं, आर्थिक विचार अभी भी 3 मेगाहर्ट्ज और 10,000 वाट से ऊपर के वाल्वों के पक्ष में हैं। रेडियो शौकिया भी मुख्य रूप से आर्थिक कारणों से 500–1500 वाट रेंज में वाल्व एम्पलीफायरों का उपयोग करते हैं।

ऑडियो बनाम। RF एम्पलीफायरों

वाल्व ऑडियो एम्पलीफायर आमतौर पर 20 हर्ट्ज और 20 किलोहर्ट्ज़ या अधिक के बीच संपूर्ण ऑडियो रेंज को बढ़ाते हैं। वे स्पीकर चलाते समय वाल्व को उपयुक्त उच्च प्रतिबाधा भार प्रदान करने के लिए आयरन कोर ट्रांसफॉर्मर का उपयोग करते हैं, जो आमतौर पर 8 ओम होता है। ऑडियो एम्पलीफायर सामान्य रूप से एम्पलीफायर#कक्षा ए|कक्षा ए में वाल्व का उपयोग करते हैं, या इलेक्ट्रॉनिक एम्पलीफायर#कक्षा बी और एबी|कक्षा बी या में जोड़ी का उपयोग करते हैं। class AB.

एक RF पावर एम्पलीफायर को 18 kHz जितना कम और अल्ट्रा हाई फ़्रीक्वेंसी जितना ऊंचा सिंगल फ़्रीक्वेंसी पर ट्यून किया जाता है|UHF रेडियो प्रसारण या औद्योगिक ताप के प्रयोजन के लिए आवृत्तियों की श्रेणी। वे वाल्व को उचित रूप से उच्च लोड प्रतिबाधा प्रदान करने के लिए संकीर्ण ट्यून सर्किट का उपयोग करते हैं और आमतौर पर 50 या 75 ओम के लोड को फीड करते हैं। RF एम्पलीफायर सामान्य रूप से इलेक्ट्रॉनिक एम्पलीफायर # क्लास सी | क्लास सी या कक्षा एबी संचालित करते हैं।

हालांकि आवृत्ति ऑडियो एम्पलीफायरों के लिए होती है और RF एम्पलीफायरों ओवरलैप, ऑपरेशन की श्रेणी, आउटपुट कपलिंग की विधि और प्रतिशत परिचालन बैंडविड्थ अलग-अलग होंगे। पावर वाल्व कम से कम 30 मेगाहर्ट्ज तक उच्च आवृत्ति प्रतिक्रिया करने में सक्षम हैं। दरअसल, डायरेक्टली हीटेड सिंगल एंडेड ट्रायोड (DH-SET) ऑडियो एम्पलीफायर रेडियो ट्रांसमिटिंग वाल्व का उपयोग करते हैं जो मूल रूप से संचालित करने के लिए डिज़ाइन किया गया था RF उच्च आवृत्ति रेंज में एम्पलीफायरों।

वाल्वों के सर्किट लाभ

उच्च इनपुट प्रतिबाधा
ट्यूबों की इनपुट प्रतिबाधा की तुलना की जा सकती है FET-s, बाइपोलर ट्रांजिस्टर की तुलना में अधिक है, जो कुछ सिग्नल प्रवर्धन अनुप्रयोगों में लाभदायक है।
उच्च वोल्टेज का सहिष्णु
वाल्व उच्च वोल्टेज उपकरण हैं, जो अधिकांश अर्धचालकों की तुलना में उच्च वोल्टेज सर्किट के लिए स्वाभाविक रूप से उपयुक्त हैं।
शीतलन में सुधार के लिए ट्यूबों को बड़े आकार में बनाया जा सकता है
बड़ी मात्रा में गर्मी को नष्ट करने के लिए बड़े पैमाने पर वाल्वों का निर्माण किया जा सकता है। बहुत उच्च-शक्ति मॉडल पानी या वाष्प-शीतलन को समायोजित करने के लिए डिज़ाइन किए गए हैं। उस कारण से, वाल्व बहुत उच्च शक्ति और विशेष रूप से उच्च शक्ति + उच्च वोल्टेज उपयोग, जैसे रेडियो और से निपटने के लिए एकमात्र व्यवहार्य तकनीक बने रहे TV ट्रांसमीटर, लंबे समय तक जब ट्रांजिस्टर ने लगभग सभी अन्य अनुप्रयोगों में वाल्वों को विस्थापित कर दिया था। हालाँकि, आज भी उच्च शक्ति / वोल्टेज के लिए, ट्यूब तेजी से अप्रचलित होते जा रहे हैं क्योंकि नई ट्रांजिस्टर तकनीक उच्च वोल्टेज की सहनशीलता और उच्च शक्ति की क्षमता में सुधार करती है।
कम निवेश लागत
व्यावहारिक ट्यूब-आधारित डिज़ाइनों की सादगी के कारण, अनुप्रयोगों के लिए ट्यूबों का उपयोग करना RF किलोवाट पावर रेंज से ऊपर के एम्पलीफायर निर्माण लागत को बहुत कम कर सकते हैं।[2] इसके अलावा, बड़े, उच्च मूल्य वाले पावर वाल्व (स्टील क्लैड, ग्लास ट्यूब नहीं) को कुछ हद तक अवशिष्ट जीवन का विस्तार करने के लिए फिर से बनाया जा सकता है।
विद्युत रूप से बहुत मजबूत
ट्यूब आश्चर्यजनक रूप से उच्च अधिभार को सहन कर सकते हैं, जो मिलीसेकंड में द्विध्रुवी जंक्शन ट्रांजिस्टर सिस्टम को नष्ट कर देगा (सैन्य और अन्य रणनीतिक रूप से महत्वपूर्ण प्रणालियों में विशेष महत्व)।
अनिश्चितकालीन शैल्फ जीवन
यहां तक ​​कि 60 वर्ष पुरानी ट्यूब भी पूरी तरह कार्यात्मक हो सकती हैं, और कई प्रकार नए-पुराने-स्टॉक के रूप में खरीदने के लिए उपलब्ध हैं। इस प्रकार, ज्ञात विश्वसनीयता मुद्दों के बावजूद (नीचे अगला भाग देखें), यह अभी भी सबसे पुराने वैक्यूम ट्यूब उपकरण को चलाने के लिए पूरी तरह से संभव है।
प्रतिस्थापन की तुलनात्मक आसानी
कई सामान्य विफलता मोड के अधीन होने के कारण, ट्यूबों के साथ अधिकांश सिस्टम सॉकेट के साथ डिज़ाइन किए गए थे ताकि ट्यूबों को प्लग-इन उपकरणों के रूप में स्थापित किया जा सके; वे शायद ही कभी होते हैं, अगर कभी, सर्किट में टांका लगाया जाता है। विफल ट्यूब को बस अनप्लग किया जा सकता है और उपयोगकर्ता द्वारा प्रतिस्थापित किया जा सकता है, जबकि सोल्डर-इन सेमीकंडक्टर की विफलता पूरे उत्पाद या उप-विधानसभा के लिए किफायती मरम्मत से परे क्षति का कारण बन सकती है। एकमात्र कठिनाई यह निर्धारित कर रही है कि कौन सी ट्यूब विफल हो गई है।

वाल्व का नुकसान

लागत
अधिकांश अनुप्रयोगों के लिए, ट्यूबों को अर्धचालकों की तुलना में दिए गए आवेदन के लिए चरणों की संख्या के अधिक चौकस बजट की आवश्यकता के लिए प्रति प्रवर्धन चरण में अधिक प्रारंभिक परिव्यय और चलने वाले व्यय दोनों की आवश्यकता होती है।
लघु परिचालन जीवन
सबसे आम अनुप्रयोगों में, वाल्वों का कामकाजी जीवन कुछ हज़ार घंटों का होता है, जो ठोस अवस्था वाले भागों की तुलना में बहुत कम होता है। यह विफलता के विभिन्न सामान्य तरीकों के कारण होता है: कैथोड की कमी, ओपन- या शॉर्ट-सर्किट (विशेष रूप से हीटर और ग्रिड संरचनाओं के), कैथोड 'विषाक्तता', और कांच के खोल (ग्लास "ट्यूब") को तोड़ना। कोल्ड स्टार्ट के यांत्रिक तनाव के कारण हीटर की विफलता अक्सर होती है। केवल कुछ सीमित, हमेशा चालू रहने वाले पेशेवर अनुप्रयोगों में, जैसे कि विशेष अर्ध स्वचालित ग्राउंड एनवायरनमेंट और TAT-1, विशेष रूप से डिज़ाइन किए गए सर्किट में विशेष रूप से डिज़ाइन किए गए वाल्व हैं, और अच्छी तरह से ठंडा वातावरण दसियों या सैकड़ों हजारों घंटों के परिचालन जीवन तक पहुँच गया है।
कैथोड के लिए हीटर की आपूर्ति की आवश्यकता होती है
निवेश लागत के अलावा, बिजली बजट का हिस्सा जो गर्म कैथोड कैथोड में जाता है, आउटपुट में योगदान के बिना, एनोड अपव्यय के कुछ प्रतिशत बिंदुओं से हो सकता है (पूर्ण आउटपुट पर उच्च शक्ति अनुप्रयोगों में) ,[3] मोटे तौर पर छोटे सिग्नल अनुप्रयोगों में एनोड अपव्यय के लिए तुलनीय।[4]
चालू/बंद चक्रों में बड़ा सर्किट तापमान झूलता है
आम कम बिजली ट्यूबों में कैथोड हीटरों से भारी आवारा गर्मी का मतलब है कि आस-पास के सर्किट तापमान में परिवर्तन का अनुभव करते हैं जो कि अधिक हो सकता है 100 °C (212 °F). इसके लिए गर्मी प्रतिरोधी घटकों की आवश्यकता होती है। में RF अनुप्रयोगों का अर्थ यह भी है कि आवृत्ति स्थिरता तक पहुँचने से पहले सभी आवृत्ति-निर्धारण घटकों को तापीय संतुलन तक गर्म करना पड़ सकता है। जबकि पर AM ब्रॉडकास्ट (मीडियम वेव) रिसीवर्स और लूज़ ट्यून में TV सेट यह कोई समस्या नहीं थी, विशिष्ट रेडियो रिसीवर और ट्रांसमीटर में फ्री-रनिंग ऑसिलेटर के साथ HF आवृत्तियों इस थर्मल स्थिरीकरण के लिए लगभग घंटे की आवश्यकता होती है। दूसरी ओर, न्यूविस्टर अल्ट्रा-लो पावर डायरेक्ट-हीटेड वाल्व निरपेक्ष रूप से अधिक गर्मी पैदा नहीं करते हैं, अधिक मामूली तापमान में उतार-चढ़ाव का कारण बनते हैं, और उन उपकरणों को अनुमति देते हैं जिनमें उनमें से कुछ जल्द ही स्थिर हो जाते हैं।[5][6]
कोल्ड स्टार्ट से तुरंत नहीं
संचालन शुरू करने के लिए वाल्व कैथोड को चमक के लिए गर्म करने की आवश्यकता होती है। इनडायरेक्ट-हीटिंग कैथोड में इसमें 20 सेकंड तक का समय लग सकता है। तापमान से संबंधित अस्थिरता के अलावा, इसका मतलब यह था कि संचालित होने पर वाल्व तुरंत काम नहीं करेंगे। इससे वैक्यूम ट्यूब उपकरणों के लिए हमेशा ऑन-इंस्टेंट-ऑन#उपभोक्ता इलेक्ट्रॉनिक्स का विकास हुआ, जिसने प्रतीक्षा को छोटा कर दिया और थर्मल शॉक से वाल्व विफलताओं को कम किया हो सकता है, लेकिन निरंतर बिजली नाली की कीमत पर, और आग का खतरा बढ़ गया। दूसरी ओर, बहुत छोटे, अल्ट्रा लो पावर डायरेक्ट-हीटेड वाल्व कोल्ड स्टार्ट से सेकंड के दसवें हिस्से में चालू हो जाते हैं।
खतरनाक रूप से उच्च वोल्टेज
ट्यूबों के एनोड्स को कार्य करने के लिए खतरनाक रूप से उच्च वोल्टेज की आवश्यकता हो सकती है। सामान्य तौर पर, ट्यूब स्वयं उच्च वोल्टेज से परेशान नहीं होंगे, लेकिन "फ्लैशओवर" से बचने के लिए उच्च वोल्टेज सर्किट लेआउट और डिज़ाइन में अतिरिक्त सावधानी की मांग करेंगे।
सुविधाजनक उपयोग के लिए गलत प्रतिबाधा
उच्च प्रतिबाधा आउटपुट (उच्च वोल्टेज/कम धारा) आमतौर पर कई वास्तविक विश्व भारों को सीधे चलाने के लिए उपयुक्त नहीं है, विशेष रूप से इलेक्ट्रिक मोटर के विभिन्न रूप
वाल्वों में केवल एक ध्रुवता होती है
ट्रांजिस्टर की तुलना में, वाल्वों में एकल ध्रुवता होने का नुकसान होता है, जबकि अधिकांश उपयोगों के लिए, ट्रांजिस्टर पूरक ध्रुवता वाले जोड़े के रूप में उपलब्ध होते हैं (उदाहरण के लिए, NPN / PNP), संभव कई सर्किट कॉन्फ़िगरेशन बनाते हैं जिन्हें वाल्व के साथ महसूस नहीं किया जा सकता है।

विरूपण

सबसे कुशल वाल्व-आधारित आरएफ एम्पलीफायर इलेक्ट्रॉनिक एम्पलीफायर # क्लास सी | क्लास सी संचालित करते हैं। यदि आउटपुट में ट्यून किए गए सर्किट के साथ प्रयोग किया जाता है, तो यह हार्मोनिक्स उत्पन्न करने वाले इनपुट सिग्नल को विकृत कर देगा। हालांकि, क्लास सी एम्पलीफायर सामान्य रूप से उच्च का उपयोग करते हैं Q आउटपुट नेटवर्क जो हार्मोनिक्स को हटा देता है, इनपुट वेवफॉर्म के समान अविकृत साइन वेव को छोड़ देता है। कक्षा सी केवल स्थिर आयाम वाले संकेतों को प्रवर्धित करने के लिए उपयुक्त है, जैसे आवृत्ति मॉडुलन |FM, फ्रीक्वेंसी-शिफ्ट कीइंग|FSK, और कुछ CQ (मोर्स कोड) सिग्नल। जहां एम्पलीफायर के लिए इनपुट सिग्नल का आयाम सिंगल-साइडबैंड मॉड्यूलेशन, आयाम मॉड्यूलेशन, वीडियो और जटिल डिजिटल सिग्नल के साथ भिन्न होता है, वहां एम्पलीफायर को ड्राइविंग सिग्नल के लिफाफे को अविकृत रूप में संरक्षित करने के लिए कक्षा A या AB को संचालित करना चाहिए। ऐसे प्रवर्धकों को रैखिक प्रवर्धक कहा जाता है।

DRM प्रसारण

एम्पलीफायर ऑपरेटिंग क्लास सी के लाभ को संशोधित करना भी आम है ताकि आयाम मॉडुलन का उत्पादन किया जा सके। यदि रेखीय तरीके से किया जाता है, तो यह संग्राहक प्रवर्धक कम विरूपण करने में सक्षम होता है। आउटपुट सिग्नल को इनपुट के उत्पाद के रूप में देखा जा सकता है RF सिग्नल और मॉड्यूलेटिंग सिग्नल।

विकास FM में उपलब्ध अधिक बैंडविड्थ का उपयोग करके बेहतर निष्ठा का प्रसारण करना VHF रेंज, और जहां वायुमंडलीय शोर अनुपस्थित था। FM में शोर को अस्वीकार करने की अंतर्निहित क्षमता भी है, जो कि ज्यादातर आयाम संग्राहक है। कैथोड-एनोड पारगमन समय के कारण वाल्व प्रौद्योगिकी उच्च-आवृत्ति सीमाओं से ग्रस्त है। हालाँकि, टेट्रोड का सफलतापूर्वक उपयोग किया जाता है VHF रेंज और ट्रायोड कम गीगाहर्ट्ज रेंज में। आधुनिक FM प्रसारण ट्रांसमीटर वाल्व और सॉलिड स्टेट डिवाइस दोनों का उपयोग करते हैं, जिसमें वाल्व का उपयोग उच्चतम शक्ति स्तरों पर अधिक होता है। FM ट्रांसमीटर बहुत कम विरूपण के साथ कक्षा सी संचालित करते हैं।

आज का डिजिटल रेडियो जो विभिन्न चरण मॉडुलन (जैसे GMSK, QPSK, आदि) और साथ ही स्पेक्ट्रम की बढ़ती मांग ने रेडियो के उपयोग के तरीके में नाटकीय बदलाव को मजबूर कर दिया है, उदा। सेलुलर रेडियो अवधारणा। आज के सेलुलर रेडियो और डिजिटल प्रसारण मानक वर्णक्रमीय लिफाफे और स्वीकार्य बैंड उत्सर्जन के मामले में अत्यधिक मांग कर रहे हैं (के मामले में) GSM उदाहरण के लिए, -70 dB या बेहतर केंद्र आवृत्ति से बस कुछ सौ किलोहर्ट्ज़)। इसलिए डिजिटल ट्रांसमीटरों को कम विरूपण प्राप्त करने पर अधिक ध्यान देने के साथ रैखिक मोड में काम करना चाहिए।

अनुप्रयोग

ऐतिहासिक ट्रांसमीटर और रिसीवर

(उच्च वोल्टेज / उच्च शक्ति) रिसीवर में विभिन्न बिंदुओं पर प्राप्त रेडियो आवृत्ति संकेतों, मध्यवर्ती आवृत्तियों, वीडियो सिग्नल और ऑडियो संकेतों को बढ़ाने के लिए वाल्व चरणों का उपयोग किया गया था। ऐतिहासिक रूप से (पूर्व WWII) ट्रांसमिटिंग ट्यूब उपलब्ध सबसे शक्तिशाली ट्यूबों में से थे, आमतौर पर थोरिअटेड फिलामेंट्स द्वारा सीधे गर्म होते थे जो प्रकाश बल्ब की तरह चमकते थे। कुछ नलियों को बहुत ऊबड़-खाबड़ बनाने के लिए बनाया गया था, जो इतनी मेहनत से चलने में सक्षम थी कि एनोड खुद चेरी लाल चमक जाएगा, एनोड्स को ठोस सामग्री (पतली शीट से गढ़े जाने के बजाय) से तैयार किया जा रहा है ताकि गर्म होने पर विकृत किए बिना इसका सामना किया जा सके। इस प्रकार के उल्लेखनीय ट्यूब 845 (वैक्यूम ट्यूब) और 211 हैं। बाद में बीम पावर ट्यूब जैसे 807 और (डायरेक्ट हीटेड) 813 का भी बड़ी संख्या में (विशेष रूप से सैन्य) रेडियो ट्रांसमीटर में उपयोग किया गया था।

वाल्व बनाम सॉलिड स्टेट एम्पलीफायरों की बैंडविड्थ

आज, माइक्रोवेव फ्रीक्वेंसी (सेलुलर रेडियो बेस स्टेशन) पर भी रेडियो ट्रांसमीटर अत्यधिक ठोस अवस्था में हैं। अनुप्रयोग के आधार पर, रेडियो फ्रीक्वेंसी एम्पलीफायरों की उचित संख्या में उनकी सादगी के कारण वाल्व का निर्माण जारी रहता है, जबकि, यह एकल वाल्व की आउटपुट पावर की समान मात्रा के बराबर जटिल विभाजन और संयोजन सर्किट के साथ कई आउटपुट ट्रांजिस्टर लेता है।

वाल्व एम्पलीफायर सर्किट ब्रॉडबैंड सॉलिड स्टेट सर्किट से काफी अलग हैं। सॉलिड स्टेट उपकरणों में बहुत कम आउटपुट प्रतिबाधा होती है जो ब्रॉडबैंड ट्रांसफॉर्मर के माध्यम से आवृत्तियों की बड़ी रेंज को कवर करने की अनुमति देती है, उदाहरण के लिए 1.8 से 30 मेगाहर्ट्ज। कक्षा सी या एबी ऑपरेशन के साथ, इनमें हार्मोनिक्स को हटाने के लिए निम्न पास फ़िल्टर शामिल होना चाहिए। जबकि उचित कम पास फ़िल्टर को ब्याज की आवृत्ति रेंज के लिए चयनित होना चाहिए, परिणाम को ट्यून डिज़ाइन नहीं माना जाता है। वाल्व एम्पलीफायरों में ट्यून्ड नेटवर्क होता है जो लो पास हार्मोनिक फिल्टर और आउटपुट लोड से मेल खाने वाले प्रतिबाधा दोनों के रूप में कार्य करता है। किसी भी स्थिति में, ठोस अवस्था और वाल्व उपकरणों दोनों को ऐसे फ़िल्टरिंग नेटवर्क की आवश्यकता होती है, इससे पहले कि RF सिग्नल लोड पर आउटपुट हो।

रेडियो सर्किट

ऑडियो एम्पलीफायरों के विपरीत, जिसमें एनालॉग आउटपुट सिग्नल इनपुट सिग्नल के समान रूप और आवृत्ति का होता है, आरएफ सर्किट वाहक (बहुत अधिक आवृत्ति पर) पर कम आवृत्ति की जानकारी (ऑडियो, वीडियो या डेटा) को संशोधित कर सकते हैं, और सर्किटरी में कई अलग-अलग चरण होते हैं। उदाहरण के लिए, रेडियो ट्रांसमीटर में हो सकता है:

  • ऑडियो फ्रीक्वेंसी (एएफ) चरण (आमतौर पर वाल्व ऑडियो एम्पलीफायर में वर्णित पारंपरिक ब्रॉडबैंड छोटे सिग्नल सर्किटरी का उपयोग करते हुए,
  • एक या एक से अधिक दोलक चरण जो वाहक तरंग उत्पन्न करते हैं,
  • एक या एक से अधिक फ्रीक्वेंसी मिक्सर चरण जो थरथरानवाला से वाहक सिग्नल को संशोधित करते हैं,
  • प्रवर्धक चरण ही (आमतौर पर) उच्च आवृत्ति पर काम कर रहा है। ट्रांसमीटर शक्ति amp ही रेडियो प्रणाली में एकमात्र उच्च शक्ति चरण है, और वाहक आवृत्ति पर संचालित होता है। एएम में, मॉडुलन (आवृत्ति मिश्रण) आमतौर पर अंतिम प्रवर्धक में ही होता है।

ट्रांसमीटर एनोड सर्किट

सबसे आम एनोड सर्किट ट्यूनेड एलसी सर्किट है जहां एनोड वोल्टेज नोड (सर्किट) से जुड़े होते हैं। इस सर्किट को अक्सर एनोड टैंक सर्किट के रूप में जाना जाता है।

सक्रिय (या ट्यून्ड ग्रिड) एम्पलीफायर

ट्यून्ड ग्रिड इनपुट का उपयोग करके सरल टेट्रोड-आधारित डिज़ाइन

VHF/अति उच्च आवृत्ति में इस्तेमाल होने वाले इसके उदाहरण में 4CX250B शामिल है, ट्विन टेट्रोड का उदाहरण QQV06/40A है।

न्यूट्रलाइजेशन टीजीटीपी (ट्यून ग्रिड ट्यून्ड प्लेट) एम्पलीफायरों में प्रयुक्त शब्द है जो इनपुट सर्किट में कुछ आउटपुट सिग्नल के अनजाने परिचय के कारण ऑपरेटिंग फ्रीक्वेंसी पर अवांछित दोलनों के खिलाफ स्थिरीकरण के लिए उपयोग किए जाने वाले तरीकों और सर्किट के लिए उपयोग किया जाता है। यह मुख्य रूप से ग्रिड से प्लेट क्षमता तक होता है, लेकिन सर्किट लेआउट को महत्वपूर्ण बनाते हुए अन्य रास्तों से भी आ सकता है। अवांछित फीडबैक सिग्नल को रद्द करने के लिए, आउटपुट सिग्नल का हिस्सा जानबूझकर इनपुट सर्किट में समान आयाम लेकिन विपरीत चरण के साथ पेश किया जाता है।

इनपुट में ट्यून्ड सर्किट का उपयोग करते समय, नेटवर्क को ड्राइविंग स्रोत को ग्रिड के इनपुट प्रतिबाधा से मेल खाना चाहिए। यह प्रतिबाधा क्लास C या AB2 ऑपरेशन में ग्रिड करंट द्वारा निर्धारित की जाएगी। AB1 ऑपरेशन में, ग्रिड सर्किट को अत्यधिक स्टेप अप वोल्टेज से बचने के लिए डिज़ाइन किया जाना चाहिए, हालांकि यह अधिक स्टेज गेन प्रदान कर सकता है, जैसा कि ऑडियो डिज़ाइन में होता है, यह अस्थिरता को बढ़ाएगा और न्यूट्रलाइज़ेशन को और अधिक महत्वपूर्ण बना देगा।

यहां दिखाए गए सभी तीन बुनियादी डिजाइनों के साथ आम तौर पर, वाल्व का एनोड गुंजयमान एलसी सर्किट से जुड़ा होता है जिसमें एक और आगमनात्मक लिंक होता है जो आरएफ सिग्नल को आउटपुट में पारित करने की अनुमति देता है। दिखाया गया सर्किट काफी हद तक पाई नेटवर्क द्वारा प्रतिस्थापित किया गया है जो सरल समायोजन की अनुमति देता है और कम पास फ़िल्टरिंग जोड़ता है।

ऑपरेशन

एनोड करंट को पहले ग्रिड की विद्युत क्षमता (वोल्टेज) द्वारा नियंत्रित किया जाता है। वाल्व पर प्रत्यक्ष वर्तमान पूर्वाग्रह लागू किया जाता है ताकि यह सुनिश्चित किया जा सके कि आवश्यक आवेदन के लिए सबसे उपयुक्त स्थानांतरण समीकरण का हिस्सा उपयोग किया जाता है। इनपुट सिग्नल ग्रिड की क्षमता को खराब (परिवर्तन) करने में सक्षम है, यह बदले में एनोड विद्युत प्रवाह (प्लेट करंट के रूप में भी जाना जाता है) को बदल देगा।

इस पृष्ठ पर दिखाए गए आकाशवाणी आवृति डिज़ाइन में, ट्यूनेड सर्किट एनोड और हाई वोल्टेज सप्लाई के बीच होता है। इस ट्यून्ड सर्किट को अनुनाद में लाया जाता है जो आगमनात्मक भार पेश करता है जो वाल्व से अच्छी तरह मेल खाता है और इस प्रकार कुशल बिजली हस्तांतरण होता है।

चूंकि एनोड कनेक्शन के माध्यम से बहने वाली धारा को ग्रिड द्वारा नियंत्रित किया जाता है, तो लोड के माध्यम से बहने वाली धारा को भी ग्रिड द्वारा नियंत्रित किया जाता है।

अन्य आरएफ डिजाइनों की तुलना में ट्यून किए गए ग्रिड का नुकसान यह है कि न्यूट्रलाइजेशन की आवश्यकता होती है।

निष्क्रिय ग्रिड एम्पलीफायर

निष्क्रिय ग्रिड इनपुट का उपयोग करते हुए सरल टेट्रोड-आधारित प्रवर्धक

VHF/UHF आवृत्तियों पर प्रयुक्त निष्क्रिय ग्रिड सर्किट 4CX250B टेट्रोड का उपयोग कर सकता है। जुड़वां टेट्रोड का उदाहरण QQV06/40A होगा। टेट्रोड में स्क्रीन ग्रिड होता है जो एनोड और पहले ग्रिड के बीच होता है, जो आरएफ के लिए ग्राउंड किया जा रहा है, पहले ग्रिड और एनोड के बीच प्रभावी कैपेसिटेंस को कम करने के लिए ढाल के रूप में कार्य करता है। स्क्रीन ग्रिड और ग्रिड भिगोना रोकनेवाला के प्रभावों का संयोजन अक्सर इस डिजाइन के बिना तटस्थता के उपयोग की अनुमति देता है। टेट्रोड्स और पेंटोड्स में पाई जाने वाली स्क्रीन, एनोड करंट पर एनोड वोल्टेज के प्रभाव को कम करके वाल्व के लाभ को बहुत बढ़ा देती है।

इनपुट सिग्नल को कैपेसिटर के माध्यम से वाल्व के पहले ग्रिड पर लागू किया जाता है। ग्रिड रोकनेवाला का मान प्रवर्धक चरण के लाभ को निर्धारित करता है। प्रतिरोध जितना अधिक होगा, लाभ उतना ही अधिक होगा, अवमंदन प्रभाव उतना ही कम होगा और अस्थिरता का जोखिम भी उतना ही अधिक होगा। इस प्रकार के मंच के साथ अच्छा लेआउट कम महत्वपूर्ण होता है।

लाभ

  • स्थिर, सामान्य रूप से कोई तटस्थता आवश्यक नहीं है
  • रोमांचक मंच पर लगातार भार

नुकसान

  • कम लाभ, अधिक इनपुट शक्ति की आवश्यकता होती है
  • ट्यून्ड ग्रिड की तुलना में कम लाभ
  • ट्यून्ड ग्रिड (अधिक ब्रॉडबैंड) की तुलना में कम फ़िल्टरिंग, इसलिए एक्साइटर से हार्मोनिक्स जैसे बैंड नकली संकेतों का प्रवर्धन अधिक होता है

ग्राउंडेड ग्रिड एम्पलीफायर

निष्क्रिय ग्रिड इनपुट का उपयोग करते हुए सरल ट्रायोड-आधारित डिज़ाइन

यह डिज़ाइन आम तौर पर ट्रायोड का उपयोग करता है, इसलिए 4CX250B जैसे वाल्व इस सर्किट के लिए उपयुक्त नहीं हैं, जब तक कि स्क्रीन और नियंत्रण ग्रिड शामिल न हों, प्रभावी रूप से टेट्रोड को ट्रायोड में परिवर्तित कर दें। इस सर्किट डिज़ाइन का उपयोग 2C39A जैसे डिस्क सील ट्रायोड वेक्यूम - ट्यूब का उपयोग करके 1296 मेगाहर्ट्ज पर किया गया है।

ग्रिड को ग्राउंड किया जाता है और कैपेसिटर के माध्यम से ड्राइव को कैथोड पर लगाया जाता है। हीटर की आपूर्ति को कैथोड से अलग किया जाना चाहिए क्योंकि अन्य डिजाइनों के विपरीत कैथोड आरएफ ग्राउंड से जुड़ा नहीं है। कुछ वाल्व, जैसे कि 811A, को शून्य बायस ऑपरेशन के लिए डिज़ाइन किया गया है और कैथोड डीसी के लिए जमीनी क्षमता पर हो सकता है। कैथोड पर सकारात्मक डीसी वोल्टेज डालकर नकारात्मक ग्रिड पूर्वाग्रह की आवश्यकता वाले वाल्व का उपयोग किया जा सकता है। इसे कैथोड और जमीन के बीच जेनर डायोड लगाकर या अलग बायस आपूर्ति का उपयोग करके प्राप्त किया जा सकता है।

लाभ

  • स्थिर, सामान्य रूप से कोई तटस्थता आवश्यक नहीं है
  • रोमांचक अवस्था की कुछ शक्ति आउटपुट में दिखाई देती है

नुकसान

  • अपेक्षाकृत कम लाभ, आमतौर पर लगभग 10 dB।
  • हीटर को चोक से जमीन से अलग किया जाना चाहिए।

तटस्थता

एम्पलीफायर और अन्य आवारा युग्मन के इनपुट और आउटपुट के बीच मौजूद वाल्व इंटरइलेक्ट्रोड कैपेसिटेंस पर्याप्त ऊर्जा को इनपुट में वापस फीड करने की अनुमति दे सकता है ताकि एम्पलीफायर चरण में स्व-दोलन हो सके। उच्च लाभ डिजाइनों के लिए इस प्रभाव का प्रतिकार किया जाना चाहिए। आउटपुट से वापस इनपुट तक आउट-ऑफ-फेज सिग्नल शुरू करने के लिए विभिन्न तरीके मौजूद हैं ताकि प्रभाव रद्द हो जाए। यहां तक ​​कि जब फीड बैक दोलन पैदा करने के लिए पर्याप्त नहीं है, तब भी यह अन्य प्रभाव पैदा कर सकता है, जैसे कठिन ट्यूनिंग। इसलिए, न्यूट्रलाइजेशन मददगार हो सकता है, यहां तक ​​कि एम्पलीफायर के लिए भी जो दोलन नहीं करता है। कई ग्राउंडेड ग्रिड एम्पलीफायरों में कोई न्यूट्रलाइजेशन नहीं होता है, लेकिन 30 मेगाहर्ट्ज पर इसे जोड़ने से ट्यूनिंग को सुचारू किया जा सकता है।

टेट्रोड या पेंटोड के निराकरण का महत्वपूर्ण हिस्सा स्क्रीन ग्रिड सर्किट का डिज़ाइन है। सबसे बड़ा परिरक्षण प्रभाव प्रदान करने के लिए, ऑपरेशन की आवृत्ति पर स्क्रीन को अच्छी तरह से ग्राउंड किया जाना चाहिए। वीएचएफ रेंज में कहीं न कहीं कई वाल्वों में स्व-बेअसर आवृत्ति होगी। यह स्क्रीन क्षमता और स्क्रीन लीड के अधिष्ठापन से युक्त श्रृंखला अनुनाद से उत्पन्न होता है, इस प्रकार जमीन पर बहुत कम प्रतिबाधा पथ प्रदान करता है।

यूएचएफ

इन आवृत्तियों पर पारगमन समय प्रभाव महत्वपूर्ण हैं, इसलिए प्रतिक्रिया सामान्य रूप से उपयोग करने योग्य नहीं होती है और प्रदर्शन के लिए महत्वपूर्ण अनुप्रयोगों के लिए वैकल्पिक रेखीयकरण तकनीकों का उपयोग किया जाना चाहिए जैसे अध: पतन और फीडफॉर्वर्ड।

ट्यूब शोर और शोर आंकड़ा

शोर का आंकड़ा आमतौर पर पावर एम्पलीफायर वाल्व के लिए मुद्दा नहीं है, हालांकि, वाल्व का उपयोग करने वाले रिसीवर में यह महत्वपूर्ण हो सकता है। जबकि ऐसे उपयोग अप्रचलित हैं, यह जानकारी ऐतिहासिक रुचि के लिए शामिल है।

किसी भी प्रवर्धक उपकरण की तरह, वाल्व सिग्नल को प्रवर्धित करने के लिए शोर जोड़ते हैं। यहां तक ​​कि काल्पनिक पूर्ण एम्पलीफायर के साथ भी, सिग्नल स्रोत में थर्मल उतार-चढ़ाव के कारण शोर अनिवार्य रूप से मौजूद है (आमतौर पर कमरे के तापमान पर माना जाता है, टी = 295 के)। इस तरह के उतार-चढ़ाव के कारण विद्युत शोर शक्ति होती है , जहां केB बोल्ट्जमैन स्थिरांक है और बैंडविड्थ B है। इसी प्रकार, खुले सर्किट में एक प्रतिरोध आर का वोल्टेज शोर है और शॉर्ट सर्किट में करंट शोर है .

नॉइज़ फिगर को एम्पलीफायर के आउटपुट पर नॉइज़ पावर के अनुपात के रूप में परिभाषित किया गया है, जो नॉइज़ पावर के सापेक्ष आउटपुट में मौजूद होगा यदि एम्पलीफायर नीरव था (सिग्नल स्रोत के थर्मल शोर के प्रवर्धन के कारण)। समतुल्य परिभाषा है: शोर का आंकड़ा वह कारक है जिसके द्वारा एम्पलीफायर का सम्मिलन शोर अनुपात के संकेत को कम करता है। इसे अक्सर डेसिबल (डीबी) में व्यक्त किया जाता है। 0 डीबी शोर के आंकड़े वाला एम्पलीफायर सही होगा।

ऑडियो आवृत्तियों पर ट्यूबों के शोर गुणों को ग्रिड के साथ श्रृंखला में वोल्टेज शोर के स्रोत वाले आदर्श नीरव ट्यूब द्वारा अच्छी तरह से तैयार किया जा सकता है। EF86 ट्यूब के लिए, उदाहरण के लिए, यह वोल्टेज शोर निर्दिष्ट किया गया है (उदाहरण के लिए, वाल्वो, टेलीफंकन या फिलिप्स डेटा शीट देखें) लगभग 25 Hz से 10 kHz की आवृत्ति रेंज पर एकीकृत 2 माइक्रोवोल्ट के रूप में। (यह एकीकृत शोर को संदर्भित करता है, शोर वर्णक्रमीय घनत्व की आवृत्ति निर्भरता के लिए नीचे देखें।) यह 25 kΩ रोकनेवाला के वोल्टेज शोर के बराबर है। इस प्रकार, यदि सिग्नल स्रोत का प्रतिबाधा 25 kΩ या उससे अधिक है, तो ट्यूब का शोर वास्तव में स्रोत के शोर से छोटा होता है। 25 kΩ के स्रोत के लिए, ट्यूब और स्रोत द्वारा उत्पन्न शोर समान होते हैं, इसलिए एम्पलीफायर के आउटपुट पर कुल शोर शक्ति पूर्ण एम्पलीफायर के आउटपुट पर शोर शक्ति से दोगुनी होती है। तब शोर का आंकड़ा दो, या 3 dB होता है। उच्च प्रतिबाधाओं के लिए, जैसे कि 250 kΩ, EF86 का वोल्टेज शोर है स्रोत के अपने शोर से कम। इसलिए यह स्रोत के कारण होने वाली शोर शक्ति का 1/10 जोड़ता है, और शोर का आंकड़ा 0.4 dB है। 250 Ω के कम प्रतिबाधा स्रोत के लिए, दूसरी ओर, ट्यूब का शोर वोल्टेज योगदान सिग्नल स्रोत से 10 गुना बड़ा होता है, ताकि शोर की शक्ति स्रोत के कारण सौ गुना अधिक हो। इस मामले में शोर का आंकड़ा 20 dB है।

कम शोर का आंकड़ा प्राप्त करने के लिए ट्रांसफॉर्मर द्वारा स्रोत की प्रतिबाधा को बढ़ाया जा सकता है। यह अंततः ट्यूब की इनपुट क्षमता द्वारा सीमित होता है, जो सीमा निर्धारित करता है कि निश्चित बैंडविड्थ वांछित होने पर सिग्नल प्रतिबाधा कितनी अधिक हो सकती है।

किसी दिए गए ट्यूब का शोर वोल्टेज घनत्व आवृत्ति का कार्य है। 10 kHz या उससे अधिक आवृत्तियों पर, यह मूल रूप से स्थिर (श्वेत शोर) है। सफेद शोर को अक्सर समतुल्य शोर प्रतिरोध द्वारा व्यक्त किया जाता है, जिसे प्रतिरोध के रूप में परिभाषित किया जाता है जो ट्यूब इनपुट पर मौजूद समान वोल्टेज शोर पैदा करता है। ट्रायोड के लिए, यह लगभग (2-4)/g हैm, जहां जीm पारचालकता है। पेन्टोड्स के लिए, यह अधिक है, लगभग (5-7)/gm. उच्च जी के साथ ट्यूबm इस प्रकार उच्च आवृत्तियों पर कम शोर होता है। उदाहरण के लिए, यह ECC88 के आधे के लिए 300 Ω है, E188CC के लिए 250 Ω है (दोनों में g हैm = 12.5 mA/V) और ट्राइड-कनेक्टेड D3a (g) के लिए 65 Ω जितना कमm = 40 एमए/वी)।

ऑडियो फ़्रीक्वेंसी रेंज (1–100 kHz से कम) में, 1/f शोर प्रभावी हो जाता है, जो 1/f की तरह बढ़ जाता है। (यह उपरोक्त उदाहरण में EF86 के अपेक्षाकृत उच्च शोर प्रतिरोध का कारण है।) इस प्रकार, उच्च आवृत्ति पर कम शोर वाले ट्यूबों में ऑडियो आवृत्ति रेंज में कम शोर नहीं होता है। विशेष कम-शोर वाले ऑडियो ट्यूबों के लिए, आवृत्ति जिस पर 1/f शोर होता है, को यथासंभव कम कर दिया जाता है, शायद लगभग किलोहर्ट्ज़ तक। कैथोड निकल के लिए बहुत शुद्ध सामग्री का चयन करके और ट्यूब को अनुकूलित (आमतौर पर कम) एनोड करंट पर चलाकर इसे कम किया जा सकता है।

रेडियो आवृत्तियों पर, चीजें अधिक जटिल होती हैं: (i) एक ट्यूब के इनपुट प्रतिबाधा में वास्तविक घटक होता है जो 1/f² की तरह नीचे जाता है (कैथोड लीड अधिष्ठापन और पारगमन समय प्रभाव के कारण)। इसका मतलब है कि शोर के आंकड़े को कम करने के लिए इनपुट प्रतिबाधा को मनमाने ढंग से नहीं बढ़ाया जा सकता है। (ii) इस इनपुट प्रतिरोध का अपना तापीय शोर होता है, बिल्कुल किसी प्रतिरोधक की तरह। (शोर उद्देश्यों के लिए इस प्रतिरोधक का तापमान कमरे के तापमान की तुलना में कैथोड तापमान के अधिक निकट है)। इस प्रकार, ट्यूब एम्पलीफायरों का शोर आंकड़ा आवृत्ति के साथ बढ़ता है। 200 मेगाहर्ट्ज पर, 2.5 (या 4 dB) के शोर आंकड़े तक ECC2000 ट्यूब के साथ अनुकूलित कैस्कोड-सर्किट में अनुकूलित स्रोत प्रतिबाधा के साथ पहुंचा जा सकता है। 800 मेगाहर्ट्ज पर, EC8010 जैसे ट्यूबों में लगभग 10 dB या उससे अधिक का शोर होता है। प्लानर ट्रायोड बेहतर हैं, लेकिन बहुत जल्दी, ट्रांजिस्टर यूएचएफ में ट्यूबों की तुलना में काफी कम शोर के आंकड़े तक पहुंच गए हैं। इस प्रकार, टेलीविज़न सेट के ट्यूनर उपभोक्ता इलेक्ट्रॉनिक्स के पहले भागों में से थे, जहां ट्रांजिस्टर का उपयोग किया गया था।

गिरावट

सेमीकंडक्टर एम्पलीफायरों ने सभी आवृत्तियों पर कम और मध्यम-शक्ति अनुप्रयोगों के लिए वाल्व एम्पलीफायरों को अत्यधिक विस्थापित कर दिया है।

शॉर्ट वेव ब्रॉडकास्टिंग, वीएचएफ और यूएचएफ टीवी और (वीएचएफ) एफएम रेडियो के लिए उपयोग किए जाने वाले कुछ हाई-पावर, हाई-फ्रीक्वेंसी एम्पलीफायरों में वाल्व का उपयोग जारी है, मौजूदा रडार, काउंटरमेशर्स उपकरण या संचार उपकरण में भी[7] विशेष रूप से डिज़ाइन किए गए वाल्वों का उपयोग करना, जैसे कि क्लीस्टरोण , जाइरोट्रॉन, यात्रा-लहर ट्यूब , और क्रॉस-फील्ड एम्पलीफायर; हालाँकि, ऐसे उत्पादों के लिए नए डिज़ाइन अब अनिवार्य रूप से सेमीकंडक्टर-आधारित हैं।[8]

फुटनोट्स

  1. Watkins, G.T.; Mimis, K. (2016). "करंट मिरर आधारित वैरेक्टर ड्राइवर एम्पलीफायर के साथ डायनेमिक लोड मॉड्यूलेशन आरएफ एम्पलीफायर". Active and Passive RF Devices Seminar. Institution of Engineering and Technology: 7 (4 .). doi:10.1049/ic.2016.0007. ISBN 978-1-78561-219-0.
  2. 2.0 2.1 ARRL Handbook. The American Radio Relay League, Inc. 2013. ISBN 978-0-87259-663-4.
  3. "4CV35,000A vapor-cooled radial beam power tetrode" (PDF). Tube Data (tubedata.tubes.se). EIMAC technical data. San Carlos, California: EIMAC division of Varian. 1966-05-15 [1962]. Retrieved 2021-08-23.
  4. "12AT7* (label "12AT7" prefixes all tubes of this generic type)". The Datasheet Archive. datasheet & application notes.
  5. "R326 receiver". www.qsl.net.
  6. "TELEFUNKEN Elektroakustik microphones". Archived from the original on 2014-08-08. Retrieved 2012-10-03.
  7. Symons 1998, p. 56.
  8. Symons 1998.

उद्धृत कार्य

  • Symons, Robert S. (1998). "ट्यूब: इन सभी वर्षों के बाद भी महत्वपूर्ण है". IEEE Spectrum. 35 (4): 52–63. doi:10.1109/6.666962.

संदर्भ


बाहरी संबंध

  • WebCite query result - AM band (medium wave, short wave) old valve type Radio
  • The Audio Circuit - An almost complete list of manufacturers, DIY kits, materials and parts and 'how they work' sections on valve amplifiers
  • Conversion calculator - distortion factor to distortion attenuation and THD