संवृत्त मोनोइडल श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
गणित में, विशेष रूप से [[श्रेणी सिद्धांत]] में, एक बंद [[मोनोइडल श्रेणी]] (या एक ''मोनॉयडल [[बंद श्रेणी]]'') एक [[श्रेणी (गणित)]] है जो एक मोनोइडल श्रेणी और एक बंद श्रेणी दोनों है, इस तरह से कि संरचनाएं संगत हैं।
गणित में, विशेष रूप से [[श्रेणी सिद्धांत]] में, एक बंद [[मोनोइडल श्रेणी]] (या एक ''मोनॉयडल [[बंद श्रेणी]]'') एक [[श्रेणी (गणित)]] है जो एक मोनोइडल श्रेणी और एक बंद श्रेणी दोनों है, इस तरह से कि संरचनाएं संगत हैं।


एक क्लासिक उदाहरण [[सेट की श्रेणी]] है, सेट, जहां सेट का मोनोइडल उत्पाद है <math>A</math> और <math>B</math> सामान्य कार्तीय उत्पाद <math>A \times B</math> है और [[आंतरिक होम]] <math>B^A</math> <math>A</math> से <math>B</math> के कार्यों (गणित) का सेट है एक गैर-[[कार्टेशियन मोनोइडल श्रेणी]] का उदाहरण सदिश रिक्त स्थान की श्रेणी है, ''K''-Vect, एक क्षेत्र <math>K</math> पर (गणित) यहां मोनोइडल उत्पाद [[वेक्टर रिक्त स्थान|सदिश रिक्त स्थान]] का सामान्य टेन्सर उत्पाद है, और आंतरिक होम एक सदिश स्थान से दूसरे तक रैखिक मानचित्रों का सदिश स्थान है।
एक क्लासिक उदाहरण [[सेट की श्रेणी]] है, सेट, जहां सेट का मोनोइडल उत्पाद है <math>A</math> और <math>B</math> सामान्य कार्तीय उत्पाद <math>A \times B</math> है और [[आंतरिक होम]] <math>B^A</math> <math>A</math> से <math>B</math> के कार्यों (गणित) का सेट है एक गैर-[[कार्टेशियन मोनोइडल श्रेणी]] का उदाहरण सदिश रिक्त स्थान की श्रेणी है, ''K''-Vect, एक क्षेत्र <math>K</math> पर (गणित) यहां मोनोइडल उत्पाद [[वेक्टर रिक्त स्थान|सदिश रिक्त स्थान]] का सामान्य टेन्सर उत्पाद है, और आंतरिक होम एक सदिश स्थान से दूसरे तक रैखिक मानचित्रों का सदिश स्थान है।




Line 8: Line 8:


== परिभाषा ==
== परिभाषा ==
एक बंद मोनोइडल श्रेणी एक मोनोइडल श्रेणी <math>\mathcal{C}</math> है, जैसे कि प्रत्येक वस्तु <math>B</math> के लिए <math>B</math> के साथ सही टेंसरिंग द्वारा दिया गया कारक है
एक बंद मोनोइडल श्रेणी एक मोनोइडल श्रेणी <math>\mathcal{C}</math> है, जैसे कि प्रत्येक वस्तु <math>B</math> के लिए <math>B</math> के साथ सही टेंसरिंग द्वारा दिया गया कारक है ।
:<math>A\mapsto A\otimes B</math> एक सही आसन्न लिखा है
:<math>A\mapsto A\otimes B</math> एक सही आसन्न लिखा है
:<math>A\mapsto (B \Rightarrow A).</math> इसका अर्थ यह है कि [[ होम सेट ]] के बीच एक आक्षेप उपस्थित है, जिसे '[[करी]]इंग' कहा जाता है
:<math>A\mapsto (B \Rightarrow A).</math> इसका अर्थ यह है कि [[ होम सेट |होम सेट]] के बीच एक आक्षेप उपस्थित है, जिसे '[[करी]]इंग' कहा जाता है
:<math>\text{Hom}_\mathcal{C}(A\otimes B, C)\cong\text{Hom}_\mathcal{C}(A,B\Rightarrow C)</math>
:<math>\text{Hom}_\mathcal{C}(A\otimes B, C)\cong\text{Hom}_\mathcal{C}(A,B\Rightarrow C)</math>
यह ''A'' और ''C'' दोनों में स्वाभाविक है। एक अलग किंतु सामान्य संकेतन में कोई कहेगा कि कारक  
यह ''A'' और ''C'' दोनों में स्वाभाविक है। एक अलग किंतु सामान्य संकेतन में कोई कहेगा कि कारक  
Line 25: Line 25:
ऐसा है कि
ऐसा है कि
:<math>f = \mathrm{eval}_{A,B}\circ(h \otimes \mathrm{id}_A).</math>
:<math>f = \mathrm{eval}_{A,B}\circ(h \otimes \mathrm{id}_A).</math>
यह दिखाया जा सकता है [उद्धरण वांछित] कि यह निर्माण एक कारक को परिभाषित करता है <math>\Rightarrow  : \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}</math> इस कारक को आंतरिक होम कारक कहा जाता है, और वस्तु <math>A \Rightarrow B</math> को <math>A</math> और<math>B</math> का आंतरिक होम कहा जाता है। आंतरिक होम के लिए कई अन्य नोटेशन सामान्य उपयोग में हैं। जब <math>\mathcal{C}</math> पर टेन्सर गुणनफल कार्तीय गुणनफल होता है, तो सामान्य अंकन <math>B^A</math> होता है और इस वस्तु को चरघातांकी वस्तु कहते हैं।
यह दिखाया जा सकता है [उद्धरण वांछित] कि यह निर्माण एक कारक को परिभाषित करता है <math>\Rightarrow  : \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}</math> इस कारक को आंतरिक होम कारक कहा जाता है, और वस्तु <math>A \Rightarrow B</math> को <math>A</math> और<math>B</math> का आंतरिक होम कहा जाता है। आंतरिक होम के लिए कई अन्य नोटेशन सामान्य उपयोग में हैं। जब <math>\mathcal{C}</math> पर टेन्सर गुणनफल कार्तीय गुणनफल होता है, तो सामान्य अंकन <math>B^A</math> होता है और इस वस्तु को चरघातांकी वस्तु कहते हैं।


== दो बंद और सममित श्रेणियां ==
== दो बंद और सममित श्रेणियां ==
Line 34: Line 34:
एक बाइक्लोज्ड मोनोइडल श्रेणी एक मोनोइडल श्रेणी है जो बाएँ और दाएँ दोनों बंद होती है।
एक बाइक्लोज्ड मोनोइडल श्रेणी एक मोनोइडल श्रेणी है जो बाएँ और दाएँ दोनों बंद होती है।


एक सममित मोनोइडल श्रेणी को बंद छोड़ दिया जाता है यदि और केवल यदि यह सही बंद हो इस प्रकार हम सुरक्षित रूप से एक 'सममित मोनोइडल बंद श्रेणी' कह सकते हैं यह निर्दिष्ट किए बिना कि यह बाएं या दाएं बंद है या नहीं। वास्तव में, समान रूप से लट वाली मोनोइडल श्रेणियों के लिए भी यही सच है: चूंकि ब्रेडिंग <math>A \otimes B</math> को स्वाभाविक रूप से <math>B \otimes A</math> के लिए आइसोमोर्फिक बनाता है, बाईं ओर टेंसरिंग और दाईं ओर टेंसरिंग के बीच का अंतर सारहीन हो जाता है इसलिए प्रत्येक दाएँ बंद लट में मोनोइडल श्रेणी एक विहित विधि से बंद और इसके विपरीत हो जाती है।
एक सममित मोनोइडल श्रेणी को बंद छोड़ दिया जाता है यदि और केवल यदि यह सही बंद हो इस प्रकार हम सुरक्षित रूप से एक 'सममित मोनोइडल बंद श्रेणी' कह सकते हैं यह निर्दिष्ट किए बिना कि यह बाएं या दाएं बंद है या नहीं। वास्तव में, समान रूप से लट वाली मोनोइडल श्रेणियों के लिए भी यही सच है: चूंकि ब्रेडिंग <math>A \otimes B</math> को स्वाभाविक रूप से <math>B \otimes A</math> के लिए आइसोमोर्फिक बनाता है, बाईं ओर टेंसरिंग और दाईं ओर टेंसरिंग के बीच का अंतर सारहीन हो जाता है इसलिए प्रत्येक दाएँ बंद लट में मोनोइडल श्रेणी एक विहित विधि से बंद और इसके विपरीत हो जाती है।


हमने बंद मोनोइडल श्रेणियों को एक अतिरिक्त संपत्ति के साथ मोनोइडल श्रेणियों के रूप में वर्णित किया है। एक समान रूप से एक बंद मोनोइडल श्रेणी को एक अतिरिक्त संपत्ति के साथ एक बंद श्रेणी के रूप में परिभाषित कर सकता है। अर्थात्, हम एक मोनोइडल श्रेणी के अस्तित्व की मांग कर सकते हैं जो कि आंतरिक होम फ़ंक्शनर से सटे हुए हैं।
हमने बंद मोनोइडल श्रेणियों को एक अतिरिक्त संपत्ति के साथ मोनोइडल श्रेणियों के रूप में वर्णित किया है। एक समान रूप से एक बंद मोनोइडल श्रेणी को एक अतिरिक्त संपत्ति के साथ एक बंद श्रेणी के रूप में परिभाषित कर सकता है। अर्थात्, हम एक मोनोइडल श्रेणी के अस्तित्व की मांग कर सकते हैं जो कि आंतरिक होम फ़ंक्शनर से सटे हुए हैं।
Line 41: Line 41:
== उदाहरण ==
== उदाहरण ==


*प्रत्येक [[कार्टेशियन बंद श्रेणी]] एक सममित मोनोइडल बंद श्रेणी है जब मोनोइडल संरचना कार्टेशियन उत्पाद संरचना है। आंतरिक होम कारक एक्सपोनेंशियल वस्तु <math>B^A</math> द्वारा दिया जाता है।
*प्रत्येक [[कार्टेशियन बंद श्रेणी]] एक सममित मोनोइडल बंद श्रेणी है जब मोनोइडल संरचना कार्टेशियन उत्पाद संरचना है। आंतरिक होम कारक एक्सपोनेंशियल वस्तु <math>B^A</math> द्वारा दिया जाता है।
**विशेष रूप से, सेट की श्रेणी, सेट एक सममित बंद मोनोइडल श्रेणी है। यहां आंतरिक होम <math>A \Rightarrow B</math> <math>A</math> से <math>B</math> तक के कार्यों का सेट है।
**विशेष रूप से, सेट की श्रेणी, सेट एक सममित बंद मोनोइडल श्रेणी है। यहां आंतरिक होम <math>A \Rightarrow B</math> <math>A</math> से <math>B</math> तक के कार्यों का सेट है।
*[[मॉड्यूल की श्रेणी]], एक कम्यूटेटिव वलय ''R'' पर ''R''-मॉड एक गैर-कार्टेशियन, सममित, मोनोइडल बंद श्रेणी है। मोनोइडल उत्पाद मॉड्यूल के टेन्सर उत्पाद द्वारा दिया जाता है और आंतरिक होम <math>M\Rightarrow N</math>आर-रैखिक मानचित्र <math>\operatorname{Hom}_R(M, N)</math> के स्थान द्वारा अपने प्राकृतिक आर-मॉड्यूल संरचना के साथ दिया जाता है।  
*[[मॉड्यूल की श्रेणी]], एक कम्यूटेटिव वलय ''R'' पर ''R''-मॉड एक गैर-कार्टेशियन, सममित, मोनोइडल बंद श्रेणी है। मोनोइडल उत्पाद मॉड्यूल के टेन्सर उत्पाद द्वारा दिया जाता है और आंतरिक होम <math>M\Rightarrow N</math>आर-रैखिक मानचित्र <math>\operatorname{Hom}_R(M, N)</math> के स्थान द्वारा अपने प्राकृतिक आर-मॉड्यूल संरचना के साथ दिया जाता है।  
**विशेष रूप से, क्षेत्र <math>K</math> पर वेक्टर रिक्त स्थान की श्रेणी एक सममित बंद मोनोइडल श्रेणी है।
**विशेष रूप से, क्षेत्र <math>K</math> पर वेक्टर रिक्त स्थान की श्रेणी एक सममित बंद मोनोइडल श्रेणी है।
** [[एबेलियन समूह|एबेलियन समूहों]] को जेड-मॉड्यूल के रूप में माना जा सकता है, इसलिए [[एबेलियन समूहों की श्रेणी]] भी एक सममित, बंद मोनोइडल श्रेणी है।
** [[एबेलियन समूह|एबेलियन समूहों]] को जेड-मॉड्यूल के रूप में माना जा सकता है, इसलिए [[एबेलियन समूहों की श्रेणी]] भी एक सममित, बंद मोनोइडल श्रेणी है।
*एक [[कॉम्पैक्ट बंद श्रेणी]] एक सममित, मोनोइडल बंद श्रेणी है, जिसमें आंतरिक होम कारक  <math>A\Rightarrow B</math>,<math>A^*\otimes B</math> द्वारा दिया जाता है। विहित उदाहरण परिमित-आयामी सदिश रिक्त स्थान एफडीवेक्ट की श्रेणी है।
*एक [[कॉम्पैक्ट बंद श्रेणी]] एक सममित, मोनोइडल बंद श्रेणी है, जिसमें आंतरिक होम कारक  <math>A\Rightarrow B</math>,<math>A^*\otimes B</math> द्वारा दिया जाता है। विहित उदाहरण परिमित-आयामी सदिश रिक्त स्थान एफडीवेक्ट की श्रेणी है।


=== प्रति उदाहरण ===
=== प्रति उदाहरण ===


*[[अंगूठियों की श्रेणी|वलय की श्रेणी]] वलय के टेंसर उत्पाद के तहत एक सममित, मोनोइडल श्रेणी है, जिसमें <math>\Z</math> इकाई वस्तु के रूप में सेवारत है। यह श्रेणी बंद नहीं है। यदि ऐसा होता, तो वलय की किसी भी जोड़ी के बीच ठीक एक समरूपता होती: <math>\operatorname{Hom}(R,S)\cong\operatorname{Hom}(\Z\otimes R,S)\cong\operatorname{Hom}(\Z,R\Rightarrow S)\cong\{\bullet\}</math> क्रमविनिमेय वलय R के ऊपर R-बीजगणित की श्रेणी के लिए भी यही प्रयुक्त होता है।
*[[अंगूठियों की श्रेणी|वलय की श्रेणी]] वलय के टेंसर उत्पाद के तहत एक सममित, मोनोइडल श्रेणी है, जिसमें <math>\Z</math> इकाई वस्तु के रूप में सेवारत है। यह श्रेणी बंद नहीं है। यदि ऐसा होता, तो वलय की किसी भी जोड़ी के बीच ठीक एक समरूपता होती: <math>\operatorname{Hom}(R,S)\cong\operatorname{Hom}(\Z\otimes R,S)\cong\operatorname{Hom}(\Z,R\Rightarrow S)\cong\{\bullet\}</math> क्रमविनिमेय वलय R के ऊपर R-बीजगणित की श्रेणी के लिए भी यही प्रयुक्त होता है।
'''अर्थात्, हम एक मोनोइडल श्रेणी के अस्तित्व की मांग कर सकते हैं जो कि आंतरिक होम फ़ंक्शनर से सटे हुए हैं।
'''अर्थात्, हम एक मोनोइडल श्रेणी के अस्तित्व की मांग कर सकते हैं जो कि आंतरिक होम फ़ंक्शनर से सटे हुए हैं।
इस दृष्टिकोण में, बंद मोनोइडल श्रेणियों को मोनोइडल बंद श्रे'''


== यह भी देखें                    ==
== यह भी देखें                    ==

Revision as of 15:15, 24 May 2023

गणित में, विशेष रूप से श्रेणी सिद्धांत में, एक बंद मोनोइडल श्रेणी (या एक मोनॉयडल बंद श्रेणी) एक श्रेणी (गणित) है जो एक मोनोइडल श्रेणी और एक बंद श्रेणी दोनों है, इस तरह से कि संरचनाएं संगत हैं।

एक क्लासिक उदाहरण सेट की श्रेणी है, सेट, जहां सेट का मोनोइडल उत्पाद है और सामान्य कार्तीय उत्पाद है और आंतरिक होम से के कार्यों (गणित) का सेट है एक गैर-कार्टेशियन मोनोइडल श्रेणी का उदाहरण सदिश रिक्त स्थान की श्रेणी है, K-Vect, एक क्षेत्र पर (गणित) यहां मोनोइडल उत्पाद सदिश रिक्त स्थान का सामान्य टेन्सर उत्पाद है, और आंतरिक होम एक सदिश स्थान से दूसरे तक रैखिक मानचित्रों का सदिश स्थान है।


बंद सममित मोनोइडल श्रेणियों की आंतरिक भाषा रैखिक तर्क है और प्रकार प्रणाली रैखिक प्रकार की प्रणाली है। बंद मोनोइडल श्रेणियों के कई उदाहरण सममित मोनोइडल श्रेणी हैं। चूँकि यह सदैव स्थिति नहीं होना चाहिए क्योंकि भाषाविज्ञान के श्रेणी-सैद्धांतिक योगों में गैर-सममित मोनोइडल श्रेणियों का सामना किया जा सकता है; सामान्यतः बोलना यह इसलिए है क्योंकि प्राकृतिक भाषा में शब्द-क्रम मायने रखता है।

परिभाषा

एक बंद मोनोइडल श्रेणी एक मोनोइडल श्रेणी है, जैसे कि प्रत्येक वस्तु के लिए के साथ सही टेंसरिंग द्वारा दिया गया कारक है ।

एक सही आसन्न लिखा है
इसका अर्थ यह है कि होम सेट के बीच एक आक्षेप उपस्थित है, जिसे 'करीइंग' कहा जाता है

यह A और C दोनों में स्वाभाविक है। एक अलग किंतु सामान्य संकेतन में कोई कहेगा कि कारक

दाहिना जोड़ है

समतुल्य रूप से, एक बंद मोनोइडल श्रेणी प्रत्येक दो वस्तुओं A और B के साथ सुसज्जित श्रेणी है

  • एक वस्तु ,
  • एक रूपवाद ,

निम्नलिखित सार्वभौमिक संपत्ति को संतुष्ट करना: प्रत्येक रूपवाद के लिए

एक अद्वितीय रूपवाद उपस्थित है

ऐसा है कि

यह दिखाया जा सकता है [उद्धरण वांछित] कि यह निर्माण एक कारक को परिभाषित करता है इस कारक को आंतरिक होम कारक कहा जाता है, और वस्तु को और का आंतरिक होम कहा जाता है। आंतरिक होम के लिए कई अन्य नोटेशन सामान्य उपयोग में हैं। जब पर टेन्सर गुणनफल कार्तीय गुणनफल होता है, तो सामान्य अंकन होता है और इस वस्तु को चरघातांकी वस्तु कहते हैं।

दो बंद और सममित श्रेणियां

सख्ती से बोलते हुए हमने एक सही बंद मोनोइडल श्रेणी को परिभाषित किया है क्योंकि हमें आवश्यक है कि किसी वस्तु के साथ सही टेंसरिंग का एक सही संबंध है। बाएं बंद मोनोइडल श्रेणी में, हम इसके अतिरिक्त मांग करते हैं कि किसी वस्तु के साथ बाएं टेंसरिंग का कारक है .

एक सही जोड़ है

एक बाइक्लोज्ड मोनोइडल श्रेणी एक मोनोइडल श्रेणी है जो बाएँ और दाएँ दोनों बंद होती है।

एक सममित मोनोइडल श्रेणी को बंद छोड़ दिया जाता है यदि और केवल यदि यह सही बंद हो इस प्रकार हम सुरक्षित रूप से एक 'सममित मोनोइडल बंद श्रेणी' कह सकते हैं यह निर्दिष्ट किए बिना कि यह बाएं या दाएं बंद है या नहीं। वास्तव में, समान रूप से लट वाली मोनोइडल श्रेणियों के लिए भी यही सच है: चूंकि ब्रेडिंग को स्वाभाविक रूप से के लिए आइसोमोर्फिक बनाता है, बाईं ओर टेंसरिंग और दाईं ओर टेंसरिंग के बीच का अंतर सारहीन हो जाता है इसलिए प्रत्येक दाएँ बंद लट में मोनोइडल श्रेणी एक विहित विधि से बंद और इसके विपरीत हो जाती है।

हमने बंद मोनोइडल श्रेणियों को एक अतिरिक्त संपत्ति के साथ मोनोइडल श्रेणियों के रूप में वर्णित किया है। एक समान रूप से एक बंद मोनोइडल श्रेणी को एक अतिरिक्त संपत्ति के साथ एक बंद श्रेणी के रूप में परिभाषित कर सकता है। अर्थात्, हम एक मोनोइडल श्रेणी के अस्तित्व की मांग कर सकते हैं जो कि आंतरिक होम फ़ंक्शनर से सटे हुए हैं। इस दृष्टिकोण में, बंद मोनोइडल श्रेणियों को मोनोइडल बंद श्रेणियां भी कहा जाता है।

उदाहरण

  • प्रत्येक कार्टेशियन बंद श्रेणी एक सममित मोनोइडल बंद श्रेणी है जब मोनोइडल संरचना कार्टेशियन उत्पाद संरचना है। आंतरिक होम कारक एक्सपोनेंशियल वस्तु द्वारा दिया जाता है।
    • विशेष रूप से, सेट की श्रेणी, सेट एक सममित बंद मोनोइडल श्रेणी है। यहां आंतरिक होम से तक के कार्यों का सेट है।
  • मॉड्यूल की श्रेणी, एक कम्यूटेटिव वलय R पर R-मॉड एक गैर-कार्टेशियन, सममित, मोनोइडल बंद श्रेणी है। मोनोइडल उत्पाद मॉड्यूल के टेन्सर उत्पाद द्वारा दिया जाता है और आंतरिक होम आर-रैखिक मानचित्र के स्थान द्वारा अपने प्राकृतिक आर-मॉड्यूल संरचना के साथ दिया जाता है।
    • विशेष रूप से, क्षेत्र पर वेक्टर रिक्त स्थान की श्रेणी एक सममित बंद मोनोइडल श्रेणी है।
    • एबेलियन समूहों को जेड-मॉड्यूल के रूप में माना जा सकता है, इसलिए एबेलियन समूहों की श्रेणी भी एक सममित, बंद मोनोइडल श्रेणी है।
  • एक कॉम्पैक्ट बंद श्रेणी एक सममित, मोनोइडल बंद श्रेणी है, जिसमें आंतरिक होम कारक , द्वारा दिया जाता है। विहित उदाहरण परिमित-आयामी सदिश रिक्त स्थान एफडीवेक्ट की श्रेणी है।

प्रति उदाहरण

  • वलय की श्रेणी वलय के टेंसर उत्पाद के तहत एक सममित, मोनोइडल श्रेणी है, जिसमें इकाई वस्तु के रूप में सेवारत है। यह श्रेणी बंद नहीं है। यदि ऐसा होता, तो वलय की किसी भी जोड़ी के बीच ठीक एक समरूपता होती: क्रमविनिमेय वलय R के ऊपर R-बीजगणित की श्रेणी के लिए भी यही प्रयुक्त होता है।

अर्थात्, हम एक मोनोइडल श्रेणी के अस्तित्व की मांग कर सकते हैं जो कि आंतरिक होम फ़ंक्शनर से सटे हुए हैं।

यह भी देखें

  • इसबेल संयुग्मी

संदर्भ

  • Kelly, G.M. (1982). Basic Concepts of Enriched Category Theory (PDF). London Mathematical Society Lecture Note Series. Vol. 64. Cambridge University Press. ISBN 978-0-521-28702-9. OCLC 1015056596.
  • Melliès, Paul-André (2009). "Categorical Semantics of Linear Logic" (PDF). Panoramas et Synthèses. 27: 1–197. CiteSeerX 10.1.1.62.5117.
  • Closed monoidal category at the nLab