आव्यूह सामान्य वितरण: Difference between revisions
m (Abhishek moved page मैट्रिक्स सामान्य वितरण to आव्यूह सामान्य वितरण without leaving a redirect) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 191: | Line 191: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 01/06/2023]] | [[Category:Created On 01/06/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 17:31, 12 June 2023
Notation | |||
---|---|---|---|
Parameters |
location (real matrix) | ||
Support | |||
Mean | |||
Variance | (among-row) and (among-column) |
आंकड़ों में, आव्यूह सामान्य वितरण या आव्यूह गॉसियन वितरण एक संभाव्यता वितरण मात्र है जो आव्यूह-मान यादृच्छिक चर के लिए बहुभिन्नरूपी सामान्य वितरण का सामान्यीकरण है।
परिभाषा
यादृच्छिक आव्यूह X (n ×p) के लिए प्रायिकता घनत्व फलन जो आव्यूह सामान्य वितरण का अनुसरण करता है, जिसका रूप है:
जहाँ ट्रेस (रैखिक बीजगणित) को दर्शाता है और M n × 'p, U n × n और V p × p है, साथ ही घनत्व को प्रायिकता घनत्व फलन के रूप में समझा जाता है, जिसमें मानक लेबेसेग माप के संबंध में अर्थात के संबंध में एकीकरण के अनुरूप प्रणाली .के द्वारा अभिगृहीत किया जा सकता है।
आव्यूह सामान्य निम्नलिखित तरीके से बहुभिन्नरूपी सामान्य वितरण से संबंधित है:
यदि
जहाँ क्रोनकर उत्पाद को दर्शाता है और के वैश्वीकरण (गणित) को दर्शाता है।
प्रमाण
उपरोक्त आव्यूह सामान्य और बहुभिन्नरूपी सामान्य घनत्व कार्यों के बीच समानता को ट्रेस (रैखिक बीजगणित) और क्रोनकर उत्पाद के कई गुणों का उपयोग करके निम्नानुसार दिखाया जा सकता है। हम आव्यूह सामान्य पीडीएफ के प्रतिपादक के तर्क से प्रारम्भ करते हैं:
जो लेबेसेग माप के संबंध में बहुभिन्नरूपी सामान्य पीडीएफ के प्रतिपादक का तर्क है, निर्धारक संपत्ति का उपयोग करके प्रमाणित किया जा सकता है।
गुण
यदि मान निर्धारित करता है, तो हमारे पास निम्नलिखित गुण हैं:[1][2]
अपेक्षित मान
माध्य, या अपेक्षित मान है:
और हमारे पास निम्नलिखित दूसरे क्रम की अपेक्षाएँ हैं:
जहाँ ट्रेस (रैखिक बीजगणित) को दर्शाता है।
अधिक सामान्यतः, उचित रूप से आयाम वाले आव्यूह A, B, C के लिए:
परिवर्तन
पक्षान्तर परिवर्तन:
रैखिक परिवर्तन: D (r-by-n), पूर्ण रैंक (रैखिक बीजगणित) r ≤ n और C (p-by-s) का होना ), पूर्ण रैंक s ≤ p का हो, पुनः:
उदाहरण
इस निमयानुसार n स्वतंत्र P-आयामी यादृच्छिक चर के एक नमूने की कल्पना करें जो एक बहुभिन्नरूपी सामान्य वितरण के अनुसार समान रूप से वितरित किया गया हो:
- .
n × p आव्यूह को परिभाषित करते समय जिसके लिए ith पंक्ति है, इस प्रकार हमने प्राप्त किया कि:
जहां की प्रत्येक पंक्ति के बराबर है, वह , n × n पहचान आव्यूह है, अर्थात पंक्तियाँ और स्वतंत्र हैं।
अधिकतम संभावित मापदंड पूर्व-संकल्पना
दिए गए k आव्यूह प्रत्येक आकार n × p, निरूपित करते हैं, जिसे हम मानते हैं कि Iid|i.i.d का नमूना लिया गया है। आव्यूह सामान्य वितरण से, मापदंडों का अधिकतम संभावित पूर्व-संकल्पना अधिकतम करके प्राप्त किया जा सकता है:
माध्य के समाधान का एक सकल रूप है, अर्थात्
लेकिन सहप्रसरण मापदंड नहीं है। हालाँकि, इन मापदंडों को उनके ग्रेडिएंट को शून्य करके पुनरावृत्त रूप से अधिकतम किया जा सकता है:
और
उदाहरण के लिए संदर्भ देखें [3] और उसमें सहप्रसरण मापदंड इस अर्थ में गैर-पहचाने जाने योग्य हैं कि किसी भी पैमाने के कारक के लिए s>0 है, परिणामस्वरूप हमे प्राप्त होता है कि:
वितरण पद्धति द्वारा मान निकालना
आव्यूह सामान्य वितरण से नमूनाकरण बहुभिन्नरूपी सामान्य वितरण के लिए नमूनाकरण प्रक्रिया का एक विशेष प्रकरण है। मानक सामान्य वितरण से एनपी स्वतंत्र नमूनों के P आव्यूह द्वारा n बनें, ताकि
- निर्गत करे
- ताकि
- जहां A और B को चॉल्स्की अपघटन या एक समान आव्यूह वर्गमूल संचालन द्वारा चयन किया जा सकता है।
अन्य वितरणों से संबंध
दाविद (1981) विशार्ट वितरण, व्युत्क्रम-विशार्ट वितरण और आव्यूह टी-वितरण सहित अन्य वितरणों के लिए आव्यूह-मान सामान्य वितरण के संबंध की चर्चा प्रदान करता है, लेकिन यहां नियोजित से अलग संकेतन का उपयोग किया किया जाता है। आव्यूह सामान्य वितरण से, मापदंडों का अधिकतम संभावित पूर्व-संकल्पना अधिकतम करके प्राप्त किया जा सकता है।
यह भी देखें
संदर्भ
- ↑ A K Gupta; D K Nagar (22 October 1999). "Chapter 2: MATRIX VARIATE NORMAL DISTRIBUTION". मैट्रिक्स भिन्न वितरण. CRC Press. ISBN 978-1-58488-046-2. Retrieved 23 May 2014.
- ↑ Ding, Shanshan; R. Dennis Cook (2014). "मैट्रिक्स-वैल्यूड प्रिडिक्टर्स के लिए डायमेंशन फोल्डिंग पीसीए और पीएफसी". Statistica Sinica. 24 (1): 463–492.
- ↑ Glanz, Hunter; Carvalho, Luis (2013). "मैट्रिक्स सामान्य वितरण के लिए एक अपेक्षा-अधिकतमीकरण एल्गोरिथम". arXiv:1309.6609 [stat.ME].
- Dawid, A.P. (1981). "Some matrix-variate distribution theory: Notational considerations and a Bayesian application". Biometrika. 68 (1): 265–274. doi:10.1093/biomet/68.1.265. JSTOR 2335827. MR 0614963.
- Dutilleul, P (1999). "The MLE algorithm for the matrix normal distribution". Journal of Statistical Computation and Simulation. 64 (2): 105–123. doi:10.1080/00949659908811970.
- Arnold, S.F. (1981), The theory of linear models and multivariate analysis, New York: John Wiley & Sons, ISBN 0471050652