कणों द्वारा प्रकाश का प्रकीर्णन: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
=== परिमित-अंतर समय-डोमेन विधि === | === परिमित-अंतर समय-डोमेन विधि === | ||
{{main| | {{main|परिमित-अंतर समय-डोमेन विधि}} | ||
FDTD विधि ग्रिड-आधारित अंतर समय-डोमेन संख्यात्मक मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। समय-निर्भर मैक्सवेल के समीकरण (आंशिक अंतर रूप में) अंतरिक्ष और समय आंशिक डेरिवेटिव के केंद्रीय-अंतर सन्निकटन का उपयोग करके अलग-अलग होते हैं। परिणामी परिमित-अंतर समीकरणों को सॉफ़्टवेयर या हार्डवेयर में एक छलांग तरीके से हल किया जाता है: अंतरिक्ष की मात्रा में विद्युत क्षेत्र वेक्टर घटकों को एक निश्चित समय पर हल किया जाता है; फिर उसी स्थानिक आयतन में चुंबकीय क्षेत्र वेक्टर घटकों को अगले समय में हल किया जाता है; और प्रक्रिया को बार-बार दोहराया जाता है जब तक कि वांछित क्षणिक या स्थिर-स्थिति विद्युत चुम्बकीय क्षेत्र व्यवहार पूरी तरह से विकसित नहीं हो जाता। | FDTD विधि ग्रिड-आधारित अंतर समय-डोमेन संख्यात्मक मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। समय-निर्भर मैक्सवेल के समीकरण (आंशिक अंतर रूप में) अंतरिक्ष और समय आंशिक डेरिवेटिव के केंद्रीय-अंतर सन्निकटन का उपयोग करके अलग-अलग होते हैं। परिणामी परिमित-अंतर समीकरणों को सॉफ़्टवेयर या हार्डवेयर में एक छलांग तरीके से हल किया जाता है: अंतरिक्ष की मात्रा में विद्युत क्षेत्र वेक्टर घटकों को एक निश्चित समय पर हल किया जाता है; फिर उसी स्थानिक आयतन में चुंबकीय क्षेत्र वेक्टर घटकों को अगले समय में हल किया जाता है; और प्रक्रिया को बार-बार दोहराया जाता है जब तक कि वांछित क्षणिक या स्थिर-स्थिति विद्युत चुम्बकीय क्षेत्र व्यवहार पूरी तरह से विकसित नहीं हो जाता। | ||
=== टी-मैट्रिक्स === | === टी-मैट्रिक्स === | ||
{{main| | {{main|टी-मैट्रिक्स विधि}} | ||
तकनीक को अशक्त क्षेत्र विधि और विस्तारित सीमा तकनीक विधि (EBCM) के रूप में भी जाना जाता है। मैक्सवेल समीकरणों के समाधान के लिए सीमा स्थितियों का मिलान करके मैट्रिक्स तत्व प्राप्त किए जाते हैं। घटना, संचरित और बिखरा हुआ क्षेत्र गोलाकार वेक्टर तरंग कार्यों में विस्तारित होता है। | तकनीक को अशक्त क्षेत्र विधि और विस्तारित सीमा तकनीक विधि (EBCM) के रूप में भी जाना जाता है। मैक्सवेल समीकरणों के समाधान के लिए सीमा स्थितियों का मिलान करके मैट्रिक्स तत्व प्राप्त किए जाते हैं। घटना, संचरित और बिखरा हुआ क्षेत्र गोलाकार वेक्टर तरंग कार्यों में विस्तारित होता है। | ||
Line 23: | Line 23: | ||
=== मी सन्निकटन === | === मी सन्निकटन === | ||
{{main| | {{main|मी सिद्धांत}} | ||
मनमाने आकार के पैरामीटर वाले किसी भी गोलाकार कणों से बिखरने को मी सिद्धांत द्वारा समझाया गया है। मी सिद्धांत, जिसे लॉरेंज-मी सिद्धांत या लॉरेंज-मी-डेबी सिद्धांत भी कहा जाता है, गोलाकार कणों (बोरेन और हफमैन, 1998) द्वारा विद्युत चुम्बकीय विकिरण के बिखरने के लिए मैक्सवेल के समीकरणों का एक पूर्ण विश्लेषणात्मक समाधान है। | मनमाने आकार के पैरामीटर वाले किसी भी गोलाकार कणों से बिखरने को मी सिद्धांत द्वारा समझाया गया है। मी सिद्धांत, जिसे लॉरेंज-मी सिद्धांत या लॉरेंज-मी-डेबी सिद्धांत भी कहा जाता है, गोलाकार कणों (बोरेन और हफमैन, 1998) द्वारा विद्युत चुम्बकीय विकिरण के बिखरने के लिए मैक्सवेल के समीकरणों का एक पूर्ण विश्लेषणात्मक समाधान है। | ||
अधिक जटिल आकृतियों के लिए जैसे लेपित गोले, [[ | अधिक जटिल आकृतियों के लिए जैसे लेपित गोले, [[Index.php?title=मल्टीस्फीयर|मल्टीस्फीयर]], स्फेरोइड्स और अनंत सिलेंडरों में ऐसे विस्तार होते हैं जो समाधान को अनंत श्रृंखला के संदर्भ में व्यक्त करते हैं। गोले, स्तरित गोले, और कई क्षेत्रों और सिलेंडरों के लिए Mi सन्निकटन में प्रकाश के बिखरने का अध्ययन करने के लिए कोड उपलब्ध हैं। | ||
गोले | |||
=== असतत द्विध्रुवीय सन्निकटन === | === असतत द्विध्रुवीय सन्निकटन === | ||
{{main| | {{main|असतत द्विध्रुवीय सन्निकटन}} | ||
मनमाने आकार के कणों द्वारा विकिरण के प्रकीर्णन की गणना के लिए कई तकनीकें हैं। [[असतत द्विध्रुवीय सन्निकटन]], ध्रुवीकरण योग्य बिंदुओं की एक परिमित सरणी द्वारा सातत्य लक्ष्य का एक सन्निकटन है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। इन बिंदुओं के द्विध्रुव अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ परस्पर क्रिया करते हैं। | मनमाने आकार के कणों द्वारा विकिरण के प्रकीर्णन की गणना के लिए कई तकनीकें हैं। [[असतत द्विध्रुवीय सन्निकटन]], ध्रुवीकरण योग्य बिंदुओं की एक परिमित सरणी द्वारा सातत्य लक्ष्य का एक सन्निकटन है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। इन बिंदुओं के द्विध्रुव अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ परस्पर क्रिया करते हैं। डीडीए सन्निकटन में प्रकाश प्रकीर्णन गुणों की गणना करने के लिए डीडीए कोड उपलब्ध हैं। | ||
डीडीए सन्निकटन में प्रकाश प्रकीर्णन गुणों की गणना करने के लिए | |||
== अनुमानित तरीके == | == अनुमानित तरीके == |
Revision as of 20:19, 8 June 2023
कणों द्वारा प्रकाश का प्रकीर्णन वह प्रक्रिया है जिसके द्वारा छोटे कण (जैसे बर्फ के क्रिस्टल, धूल, वायुमंडलीय कण, ब्रह्मांडीय धूल और रक्त कोशिकाएं) प्रकाश को बिखेरते हैं, जिससे आकाश के नीले रंग और प्रभामंडल जैसी ऑप्टिकल घटनाएं होती हैं।
मैक्सवेल के समीकरण प्रकाश प्रकीर्णन का वर्णन करने वाले सैद्धांतिक और कम्प्यूटेशनल तरीकों का आधार हैं, लेकिन चूंकि मैक्सवेल के समीकरणों के सटीक समाधान केवल चयनित कण ज्यामिति (जैसे गोलाकार) के लिए जाने जाते हैं, कणों द्वारा प्रकाश का प्रकीर्णन कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स की एक शाखा है जो इलेक्ट्रोमैग्नेटिक रेडिएशन स्कैटरिंग से संबंधित है और कणों द्वारा अवशोषण है।
ज्यामिति के मामले में जिसके लिए विश्लेषणात्मक समाधान ज्ञात हैं (जैसे गोले, गोले के समूह, अनंत सिलेंडर), समाधान आमतौर पर अनंत श्रृंखला के संदर्भ में गणना किए जाते हैं। अधिक जटिल ज्यामिति और विषम कणों के मामले में मूल मैक्सवेल के समीकरण अलग और हल किए जाते हैं। कणों द्वारा प्रकाश के प्रकीर्णन के बहु-प्रकीर्णन प्रभावों का उपचार विकिरण अंतरण तकनीकों द्वारा किया जाता है।
एक प्रकीर्णन कण के सापेक्ष आकार को उसके आकार पैरामीटर x द्वारा परिभाषित किया जाता है, जो कि इसके तरंग दैर्ध्य के विशिष्ट आयाम का अनुपात है:
सटीक कम्प्यूटेशनल तरीके
परिमित-अंतर समय-डोमेन विधि
FDTD विधि ग्रिड-आधारित अंतर समय-डोमेन संख्यात्मक मॉडलिंग विधियों के सामान्य वर्ग से संबंधित है। समय-निर्भर मैक्सवेल के समीकरण (आंशिक अंतर रूप में) अंतरिक्ष और समय आंशिक डेरिवेटिव के केंद्रीय-अंतर सन्निकटन का उपयोग करके अलग-अलग होते हैं। परिणामी परिमित-अंतर समीकरणों को सॉफ़्टवेयर या हार्डवेयर में एक छलांग तरीके से हल किया जाता है: अंतरिक्ष की मात्रा में विद्युत क्षेत्र वेक्टर घटकों को एक निश्चित समय पर हल किया जाता है; फिर उसी स्थानिक आयतन में चुंबकीय क्षेत्र वेक्टर घटकों को अगले समय में हल किया जाता है; और प्रक्रिया को बार-बार दोहराया जाता है जब तक कि वांछित क्षणिक या स्थिर-स्थिति विद्युत चुम्बकीय क्षेत्र व्यवहार पूरी तरह से विकसित नहीं हो जाता।
टी-मैट्रिक्स
तकनीक को अशक्त क्षेत्र विधि और विस्तारित सीमा तकनीक विधि (EBCM) के रूप में भी जाना जाता है। मैक्सवेल समीकरणों के समाधान के लिए सीमा स्थितियों का मिलान करके मैट्रिक्स तत्व प्राप्त किए जाते हैं। घटना, संचरित और बिखरा हुआ क्षेत्र गोलाकार वेक्टर तरंग कार्यों में विस्तारित होता है।
कम्प्यूटेशनल सन्निकटन
मी सन्निकटन
मनमाने आकार के पैरामीटर वाले किसी भी गोलाकार कणों से बिखरने को मी सिद्धांत द्वारा समझाया गया है। मी सिद्धांत, जिसे लॉरेंज-मी सिद्धांत या लॉरेंज-मी-डेबी सिद्धांत भी कहा जाता है, गोलाकार कणों (बोरेन और हफमैन, 1998) द्वारा विद्युत चुम्बकीय विकिरण के बिखरने के लिए मैक्सवेल के समीकरणों का एक पूर्ण विश्लेषणात्मक समाधान है।
अधिक जटिल आकृतियों के लिए जैसे लेपित गोले, मल्टीस्फीयर, स्फेरोइड्स और अनंत सिलेंडरों में ऐसे विस्तार होते हैं जो समाधान को अनंत श्रृंखला के संदर्भ में व्यक्त करते हैं। गोले, स्तरित गोले, और कई क्षेत्रों और सिलेंडरों के लिए Mi सन्निकटन में प्रकाश के बिखरने का अध्ययन करने के लिए कोड उपलब्ध हैं।
असतत द्विध्रुवीय सन्निकटन
मनमाने आकार के कणों द्वारा विकिरण के प्रकीर्णन की गणना के लिए कई तकनीकें हैं। असतत द्विध्रुवीय सन्निकटन, ध्रुवीकरण योग्य बिंदुओं की एक परिमित सरणी द्वारा सातत्य लक्ष्य का एक सन्निकटन है। अंक स्थानीय विद्युत क्षेत्र की प्रतिक्रिया में द्विध्रुव आघूर्ण प्राप्त करते हैं। इन बिंदुओं के द्विध्रुव अपने विद्युत क्षेत्रों के माध्यम से एक दूसरे के साथ परस्पर क्रिया करते हैं। डीडीए सन्निकटन में प्रकाश प्रकीर्णन गुणों की गणना करने के लिए डीडीए कोड उपलब्ध हैं।
अनुमानित तरीके
Approximation | Refractive index | Size parameter | Phase shift |
Rayleigh scattering | abs(mx) very small | very small | |
Geometric optics | very large | very large | |
Anomalous Diffraction Theory | abs(m-1) very small | x large | |
Complex Angular Momentum | moderate m | large x |
रेले स्कैटरिंग
रेले स्कैटरिंग शासन प्रकाश की तरंग दैर्ध्य की तुलना में बहुत छोटे कणों द्वारा प्रकाश, या अन्य विद्युत चुम्बकीय विकिरण का प्रकीर्णन है। रेले स्कैटरिंग को छोटे आकार के पैरामीटर शासन में स्कैटरिंग के रूप में परिभाषित किया जा सकता है .
ज्यामितीय प्रकाशिकी (किरण अनुरेखण)
रे ट्रेसिंग (भौतिकी) तकनीक न केवल गोलाकार कणों बल्कि किसी भी निर्दिष्ट आकार (और अभिविन्यास) के द्वारा प्रकाश के प्रकीर्णन का अनुमान लगा सकती है, जब तक कि किसी कण का आकार और महत्वपूर्ण आयाम प्रकाश की तरंग दैर्ध्य से बहुत बड़ा हो। प्रकाश को किरणों के संग्रह के रूप में माना जा सकता है जिनकी चौड़ाई तरंग दैर्ध्य की तुलना में बहुत बड़ी होती है लेकिन कण की तुलना में छोटी होती है। कण से टकराने वाली प्रत्येक किरण (आंशिक) परावर्तन और/या अपवर्तन से गुजर सकती है। ये किरणें दिशाओं में बाहर निकलती हैं जिससे उनकी पूरी शक्ति के साथ गणना की जाती है या (जब आंशिक प्रतिबिंब शामिल होता है) दो (या अधिक) निकलने वाली किरणों के बीच विभाजित घटना शक्ति के साथ। जैसे लेंस और अन्य ऑप्टिकल घटकों के साथ, किरण अनुरेखण एक एकल स्कैटर से निकलने वाले प्रकाश को निर्धारित करता है, और उस परिणाम को बड़ी संख्या में यादृच्छिक रूप से उन्मुख और स्थित स्कैटर के लिए सांख्यिकीय रूप से जोड़कर, पानी की बूंदों के कारण इंद्रधनुष जैसे वायुमंडलीय ऑप्टिकल घटनाओं का वर्णन कर सकता है और हेलो (ऑप्टिकल घटना) बर्फ के क्रिस्टल के कारण होता है। वायुमंडलीय प्रकाशिकी रे-ट्रेसिंग कोड उपलब्ध हैं।
यह भी देखें
- गोले द्वारा इलेक्ट्रोमैग्नेटिक स्कैटरिंग के लिए कोड
- सिलेंडरों द्वारा इलेक्ट्रोमैग्नेटिक स्कैटरिंग के लिए कोड
- असतत द्विध्रुवीय सन्निकटन कोड
- परिमित-अंतर समय-डोमेन विधि
- बिखराव
संदर्भ
- Barber,P.W. and S.C. Hill, Light scattering by particles : computational methods, Singapore ; Teaneck, N.J., World Scientific, c1990, 261 p.+ 2 computer disks (3½ in.), ISBN 9971-5-0813-3, ISBN 9971-5-0832-X (pbk.)
- Bohren, Craig F. and Donald R. Huffman, Title Absorption and scattering of light by small particles, New York : Wiley, 1998, 530 p., ISBN 0-471-29340-7, ISBN 978-0-471-29340-8
- Hulst, H. C. van de, Light scattering by small particles, New York, Dover Publications, 1981, 470 p., ISBN 0-486-64228-3.
- Kerker, Milton, The scattering of light, and other electromagnetic radiation, New York, Academic Press, 1969, 666 p.
- Mishchenko, Michael I., Joop W. Hovenier, Larry D. Travis, Light scattering by nonspherical particles: theory, measurements, and applications, San Diego : Academic Press, 2000, 690 p., ISBN 0-12-498660-9.
- Stratton, Julius Adams, Electromagnetic theory, New York, London, McGraw-Hill book company, inc., 1941. 615 p.