वर्तमान डिवाइडर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Current division example.svg|thumbnail|250px|चित्र 1: वर्तमान विभाजन को दर्शाने वाले विद्युत परिपथ का आरेख। संकेतन आर<sub>T<sub>.</sub></sub> रोकनेवाला R के दाईं ओर परिपथ के कुल प्रतिरोध को संदर्भित करता है<sub>X</sub>.]][[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] में, वर्तमान डिवाइडर साधारण [[रैखिक सर्किट|रैखिक परिपथ]] होता है, जो आउटपुट [[विद्युत प्रवाह]] (''I<sub>X</sub>'') उत्पन्न करता है।) जो कि इसके इनपुट धारा (I<sub>T</sub>) का अंश होता है। वर्तमान विभाजन | [[Image:Current division example.svg|thumbnail|250px|चित्र 1: वर्तमान विभाजन को दर्शाने वाले विद्युत परिपथ का आरेख। संकेतन आर<sub>T<sub>.</sub></sub> रोकनेवाला R के दाईं ओर परिपथ के कुल प्रतिरोध को संदर्भित करता है<sub>X</sub>.]][[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] में, '''वर्तमान डिवाइडर''' साधारण [[रैखिक सर्किट|रैखिक परिपथ]] होता है, जो आउटपुट [[विद्युत प्रवाह]] (''I<sub>X</sub>'') उत्पन्न करता है।) जो कि इसके इनपुट धारा (I<sub>T</sub>) का अंश होता है। चूँकि '''वर्तमान विभाजन''' [[भाजक|विभाजक]] की शाखाओं के मध्य वर्तमान के विभाजन को संदर्भित करता है। इस प्रकार के परिपथ की विभिन्न शाखाओं में धाराएं हमेशा इस प्रकार से विभाजित होती है कि खर्च की गई कुल ऊर्जा को कम किया जा सकता है। | ||
वर्तमान विभक्त का वर्णन करने वाला सूत्र [[वोल्टेज विभक्त]] के समान होता है। चूंकि, वर्तमान विभाजन का वर्णन करने वाला अनुपात वोल्टेज विभाजन के विपरीत माने जाने वाली शाखाओं के प्रतिबाधा को विभाजक में रखता है, जहां विचारित प्रतिबाधा अंश में होती है। ऐसा इसलिए होता है, जिससे कि वर्तमान डिवाइडर में, खर्च की गई कुल ऊर्जा कम से कम हो जाती है। जिसके परिणामस्वरूप धाराएं कम से कम प्रतिबाधा के पथ से गुजरती हैं, अतः प्रतिबाधा के साथ व्युत्क्रम संबंध तुलनात्मक रूप से, किरचॉफ का वोल्टेज नियम (केवीएल) को संतुष्ट करने के लिए वोल्टेज डिवाइडर का उपयोग किया जाता है। इस प्रकार लूप के चारों ओर वोल्टेज का योग शून्य होता है, अतः वोल्टेज की गिरावट को प्रतिबाधा के साथ सीधे संबंध में समान रूप से विभाजित किया जाता है। | वर्तमान विभक्त का वर्णन करने वाला सूत्र [[वोल्टेज विभक्त]] के समान होता है। चूंकि, वर्तमान विभाजन का वर्णन करने वाला अनुपात वोल्टेज विभाजन के विपरीत माने जाने वाली शाखाओं के प्रतिबाधा को विभाजक में रखता है, जहां विचारित प्रतिबाधा अंश में होती है। ऐसा इसलिए होता है, जिससे कि वर्तमान डिवाइडर में, खर्च की गई कुल ऊर्जा कम से कम हो जाती है। जिसके परिणामस्वरूप धाराएं कम से कम प्रतिबाधा के पथ से गुजरती हैं, अतः प्रतिबाधा के साथ व्युत्क्रम संबंध तुलनात्मक रूप से, किरचॉफ का वोल्टेज नियम (केवीएल) को संतुष्ट करने के लिए वोल्टेज डिवाइडर का उपयोग किया जाता है। इस प्रकार लूप के चारों ओर वोल्टेज का योग शून्य होता है, अतः वोल्टेज की गिरावट को प्रतिबाधा के साथ सीधे संबंध में समान रूप से विभाजित किया जाता है। | ||
Line 13: | Line 13: | ||
:<math>\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\ldots+\frac{1}{R_n}</math> | :<math>\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\ldots+\frac{1}{R_n}</math> | ||
== सामान्य स्थिति == | == सामान्य स्थिति == | ||
चूंकि प्रतिरोधी विभाजक | चूंकि प्रतिरोधी विभाजक सबसे सामान्य होता है, अतः वर्तमान विभाजक आवृत्ति निर्भर विद्युत प्रतिबाधाओं से बना हो सकता है। सामान्य स्थिति में, | ||
:<math>\frac{1}{Z_T}\longleftarrow{Z_T}=\frac{1}{Z_1}+\frac{1}{Z_2}+\ldots+\frac{1}{Z_n}</math> | :<math>\frac{1}{Z_T}\longleftarrow{Z_T}=\frac{1}{Z_1}+\frac{1}{Z_2}+\ldots+\frac{1}{Z_n}</math> | ||
और वर्तमान | और वर्तमान I<sub>X</sub> इसके द्वारा दिया गया है। | ||
:<math>I_X = \frac{Z_T} {Z_X}I_T \ ,</math><ref>{{cite book |first1=Charles |last1=Alexander| first2=Matthew |last2=Sadiku| title=इलेक्ट्रिक सर्किट के मूल तत्व|url=https://archive.org/details/fundamentalselec00sadi |url-access=limited |year=2007|publisher=McGraw-Hill|location=New York, NY|isbn=978-0-07-128441-7|page=[https://archive.org/details/fundamentalselec00sadi/page/n393 392]}}</ref> | :<math>I_X = \frac{Z_T} {Z_X}I_T \ ,</math><ref>{{cite book |first1=Charles |last1=Alexander| first2=Matthew |last2=Sadiku| title=इलेक्ट्रिक सर्किट के मूल तत्व|url=https://archive.org/details/fundamentalselec00sadi |url-access=limited |year=2007|publisher=McGraw-Hill|location=New York, NY|isbn=978-0-07-128441-7|page=[https://archive.org/details/fundamentalselec00sadi/page/n393 392]}}</ref> | ||
जहां | जहां Z<sub>T</sub> पूर्ण परिपथ के समतुल्य प्रतिबाधा को संदर्भित करता है।<ref>{{Cite news|url=https://www.allaboutcircuits.com/textbook/direct-current/chpt-6/current-divider-circuits/|title=Current Divider Circuits {{!}} Divider Circuits And Kirchhoff's Laws {{!}} Electronics Textbook|access-date=2018-01-10|language=en}}</ref> | ||
== [[प्रवेश]] का प्रयोग == | == [[प्रवेश]] का प्रयोग == | ||
विद्युत प्रतिबाधाओं का उपयोग करने के अतिरिक्त, वर्तमान विभक्त नियम को वोल्टेज विभक्त नियम की | विद्युत प्रतिबाधाओं का उपयोग करने के अतिरिक्त, वर्तमान विभक्त नियम को वोल्टेज विभक्त नियम की भांति ही प्रयुक्त किया जा सकता है, यदि प्रवेश (प्रतिबाधा का व्युत्क्रम) का उपयोग किया जाता है। | ||
:<math>I_X = \frac{Y_X} {Y_{Total}}I_T</math> | :<math>I_X = \frac{Y_X} {Y_{Total}}I_T</math> | ||
ध्यान रहे कि | ध्यान रहे कि Y<sub>Total</sub> सीधा जोड़ होता है, अतः उल्टे व्युत्क्रमों का योग (जैसा कि आप मानक समानांतर प्रतिरोधक नेटवर्क के लिए करते है) नहीं होता है। इस प्रकार चित्र 1 के लिए वर्तमान I<sub>X</sub> होता है। | ||
:<math>I_X = \frac{Y_X} {Y_{Total}}I_T = \frac{\frac{1}{R_X}} {\frac{1}{R_X} + \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}I_T</math> | :<math>I_X = \frac{Y_X} {Y_{Total}}I_T = \frac{\frac{1}{R_X}} {\frac{1}{R_X} + \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}I_T</math> | ||
=== उदाहरण: आरसी संयोजन === | === उदाहरण: आरसी संयोजन === | ||
[[Image:Low pass RC filter.PNG|thumbnail|220px|चित्र 2: लो पास आरसी वर्तमान डिवाइडर]] | [[Image:Low pass RC filter.PNG|thumbnail|220px|चित्र 2: लो पास आरसी वर्तमान डिवाइडर]]चित्र 2 [[संधारित्र]] और प्रतिरोधी से बना साधारण वर्तमान विभाजक दिखाता है। इस प्रकार नीचे दिए गए सूत्र का उपयोग करते हुए, प्रतिरोधक में धारा निम्न द्वारा दी गई है। | ||
::<math> I_R = \frac {\frac{1}{j \omega C}} {R + \frac{1}{j \omega C} }I_T </math> :::<math> = \frac {1} {1+j \omega CR} I_T \ , </math> | ::<math> I_R = \frac {\frac{1}{j \omega C}} {R + \frac{1}{j \omega C} }I_T </math> :::<math> = \frac {1} {1+j \omega CR} I_T \ , </math> | ||
जहां | जहां Z<sub>C</sub> = 1/(jωC) संधारित्र की प्रतिबाधा होता है और <var>j</var> [[काल्पनिक इकाई]] होती है। | ||
गुणनफल τ = CR को परिपथ के समय स्थिरांक के रूप में जाना जाता है | गुणनफल τ = CR को परिपथ के समय स्थिरांक के रूप में जाना जाता है और आवृत्ति जिसके लिए ωCR = 1 को परिपथ की कोण आवृत्ति कहा जाता है। जिससे कि संधारित्र में उच्च आवृत्तियों पर शून्य प्रतिबाधा होती है और कम आवृत्तियों पर अनंत प्रतिबाधा होती है। इस प्रकार प्रतिरोधक में धारा कोण की आवृत्ति तक की आवृत्तियों के लिए अपने DC मान I<sub>T</sub> पर बनी रहती है, जहां यह उच्च आवृत्तियों के लिए शून्य की ओर गिरता है जिससे कि संधारित्र प्रभावी रूप से प्रतिरोधक को [[ शार्ट सर्किट |शार्ट परिपथ]] करता है। अतः दूसरे शब्दों में, वर्तमान डिवाइडर अवरोध में धारा के लिए [[लो पास फिल्टर]] होता है। | ||
== | == लोडिंग प्रभाव == | ||
[[File:Current Division.svg|thumbnail|300px|चित्र 3: नॉर्टन स्रोत द्वारा संचालित वर्तमान एम्पलीफायर (ग्रे बॉक्स) (i<sub>S</sub>, आर<sub>S</sub>) और प्रतिरोधक भार R के साथ<sub>L</sub>. इनपुट पर ब्लू बॉक्स में वर्तमान डिवाइडर (R<sub>S</sub>,आर<sub>in</sub>) वर्तमान लाभ को कम करता है, जैसा कि आउटपुट पर हरे रंग के बॉक्स में वर्तमान डिवाइडर करता है (R<sub>out</sub>,आर<sub>L</sub>)]]एम्पलीफायर का लाभ सामान्यतः इसके स्रोत और लोड समाप्ति पर निर्भर करता है। वर्तमान एम्पलीफायरों और ट्रांसकंडक्शन एम्पलीफायरों को शॉर्ट-परिपथ आउटपुट स्थिति की विशेषता होती है | [[File:Current Division.svg|thumbnail|300px|चित्र 3: नॉर्टन स्रोत द्वारा संचालित वर्तमान एम्पलीफायर (ग्रे बॉक्स) (i<sub>S</sub>, आर<sub>S</sub>) और प्रतिरोधक भार R के साथ<sub>L</sub>. इनपुट पर ब्लू बॉक्स में वर्तमान डिवाइडर (R<sub>S</sub>,आर<sub>in</sub>) वर्तमान लाभ को कम करता है, जैसा कि आउटपुट पर हरे रंग के बॉक्स में वर्तमान डिवाइडर करता है (R<sub>out</sub>,आर<sub>L</sub>)]]सामान्यतः एम्पलीफायर का लाभ सामान्यतः इसके स्रोत और लोड समाप्ति पर निर्भर करता है। चूँकि वर्तमान एम्पलीफायरों और ट्रांसकंडक्शन एम्पलीफायरों को शॉर्ट-परिपथ आउटपुट स्थिति की विशेषता होती है और वर्तमान एम्पलीफायरों और ट्रांसरेसिस्टेंस एम्पलीफायरों को आदर्श अनंत प्रतिबाधा वर्तमान स्रोतों का उपयोग करके चित्रित किया जाता है। इस प्रकार जब एम्पलीफायर परिमित, गैर-शून्य समाप्ति द्वारा समाप्त होता है और गैर-आदर्श स्रोत द्वारा संचालित होता है, तब आउटपुट और इनपुट पर '''लोडिंग प्रभाव''' के कारण प्रभावी लाभ कम हो जाता है, जिसे वर्तमान विभाजन के शब्दों में समझा जा सकता है। | ||
चित्र 3 वर्तमान एम्पलीफायर उदाहरण दिखाता है। इस प्रकार एम्पलीफायर (ग्रे बॉक्स) में इनपुट प्रतिरोध R<sub>in</sub> और आउटपुट प्रतिरोध R<sub>out</sub> और आदर्श वर्तमान लाभ A<sub>i</sub> होता है। अतः आदर्श वर्तमान चालक (अनंत नॉर्टन प्रतिरोध) के साथ सभी स्रोत वर्तमान i<sub>S</sub>एम्पलीफायर के लिए इनपुट धारा बन जाते है। चूँकि नॉर्टन के प्रमेय के लिए इनपुट पर वर्तमान डिवाइडर बनता है जो इनपुट धारा को कम कर देता है। | |||
::<math>i_{i} = \frac {R_S} {R_S+R_{in}} i_S \ , </math> | ::<math>i_{i} = \frac {R_S} {R_S+R_{in}} i_S \ , </math> | ||
जो स्पष्ट रूप से i | जो स्पष्ट रूप से i<sub>S</sub> से कम होता है। इसी प्रकार, आउटपुट पर शॉर्ट परिपथ के लिए, एम्पलीफायर आउटपुट धारा i<sub>o</sub> = A<sub>i</sub> i<sub>i</sub> को शॉर्ट सर्किट में डिलीवर करता है। चूँकि, जब लोड गैर-शून्य अवरोधक R<sub>L</sub> होता है, तब लोड करने के लिए दिया गया धारा वर्तमान विभाजन द्वारा मान में घटाया जाता है। | ||
::<math>i_L = \frac {R_{out}} {R_{out}+R_{L}} A_i i_{i} \ . </math> | ::<math>i_L = \frac {R_{out}} {R_{out}+R_{L}} A_i i_{i} \ . </math> | ||
इन परिणामों का संयोजन, आदर्श वर्तमान लाभ | इन परिणामों का संयोजन, आदर्श वर्तमान लाभ A<sub>i</sub> को आदर्श चालक के साथ महसूस किया जाता है और शॉर्ट-परिपथ लोड को लोड किए गए लाभ A<sub>loaded</sub> से कम किया जाता है। | ||
::<math>A_{loaded} =\frac {i_L} {i_S} = \frac {R_S} {R_S+R_{in}}</math> <math> \frac {R_{out}} {R_{out}+R_{L}} A_i \ . </math> | ::<math>A_{loaded} =\frac {i_L} {i_S} = \frac {R_S} {R_S+R_{in}}</math> <math> \frac {R_{out}} {R_{out}+R_{L}} A_i \ . </math> | ||
उपरोक्त अभिव्यक्ति में प्रतिरोधक अनुपात को लोडिंग कारक कहा जाता है। अन्य प्रवर्धक प्रकारों में लोड करने की अधिक चर्चा के लिए, वोल्टेज विभाजन | उपरोक्त अभिव्यक्ति में प्रतिरोधक अनुपात को लोडिंग कारक कहा जाता है। इस प्रकार अन्य प्रवर्धक प्रकारों में लोड करने की अधिक चर्चा के लिए, वोल्टेज विभाजन लोडिंग प्रभाव देखते है। | ||
=== एकतरफा बनाम द्विपक्षीय | === एकतरफा बनाम द्विपक्षीय एम्पलीफायर === | ||
[[Image:H-parameter current amplifier.PNG|thumbnail|300px|चित्र 4: द्विपक्षीय दो-पोर्ट नेटवर्क के रूप में वर्तमान प्रवर्धक; लाभ के निर्भर वोल्टेज स्रोत के माध्यम से प्रतिक्रिया βV/V]] | [[Image:H-parameter current amplifier.PNG|thumbnail|300px|चित्र 4: द्विपक्षीय दो-पोर्ट नेटवर्क के रूप में वर्तमान प्रवर्धक; लाभ के निर्भर वोल्टेज स्रोत के माध्यम से प्रतिक्रिया βV/V]]चित्र 3 और संबंधित चर्चा इलेक्ट्रॉनिक एम्पलीफायर एकतरफा या द्विपक्षीय एम्पलीफायर को संदर्भित करती है। इस प्रकार अधिक सामान्य स्थिति में जहां एम्पलीफायर को [[दो-पोर्ट नेटवर्क]] द्वारा दर्शाया जाता है, अतः एम्पलीफायर का इनपुट प्रतिरोध उसके भार पर निर्भर करता है और आउटपुट प्रतिरोध स्रोत प्रतिबाधा पर निर्भर करता है। इन स्थितियों में लोडिंग कारकों को इन द्विपक्षीय प्रभावों सहित वास्तविक प्रवर्धक प्रतिबाधाओं को नियोजित किया जाता है। उदाहरण के लिए, चित्र 3 के एकतरफा वर्तमान प्रवर्धक को लेते हुए, संबंधित द्विपक्षीय दो-पोर्ट नेटवर्क को चित्र 4 में दो-पोर्ट नेटवर्क हाइब्रिड पैरामीटर (एच-पैरामीटर) के आधार पर दिखाया गया है। इस प्रकार एच-पैरामीटर<ref>The [[Two-port network#Hybrid parameters (h-parameters)|h-parameter two port]] is the only two-port among the four standard choices that has a current-controlled current source on the output side.</ref> इस परिपथ के लिए विश्लेषण करते हुए, प्रतिक्रिया A<sub>fb</sub> के साथ वर्तमान लाभ होना पाया जाता है। | ||
::<math> A_{fb} = \frac {i_L}{i_S} = \frac {A_{loaded}} {1+ {\beta}(R_L/R_S) A_{loaded}} \ . </math> | ::<math> A_{fb} = \frac {i_L}{i_S} = \frac {A_{loaded}} {1+ {\beta}(R_L/R_S) A_{loaded}} \ . </math> | ||
अर्थात् आदर्श | अर्थात् आदर्श वर्तमान लाभ A<sub>i</sub> न केवल लोडिंग कारकों द्वारा कम किया जाता है, बल्कि अतिरिक्त कारक (1 + β (R<sub>L</sub> / R<sub>S</sub> ) A<sub>loaded</sub> द्वारा दो-पोर्ट की द्विपक्षीय प्रकृति के कारण होता है।<ref>Often called the ''improvement factor'' or the ''desensitivity factor''.</ref> जो विशिष्ट [[नकारात्मक प्रतिक्रिया एम्पलीफायर]] परिपथ की खासियत होती है। इस प्रकार कारक β (R<sub>L</sub> / R<sub>S</sub> ) वोल्टेज लाभ β V/V के वोल्टेज प्रतिक्रिया स्रोत द्वारा प्रदान की जाने वाली वर्तमान प्रतिक्रिया होती है। उदाहरण के लिए, R<sub>S</sub>= Ω के साथ आदर्श वर्तमान स्रोत के लिए वोल्टेज प्रतिक्रिया का कोई प्रभाव नहीं होता है और R<sub>L</sub>= 0 Ω के लिए, शून्य लोड वोल्टेज होता है, जो पुनः प्रतिक्रिया को अक्षम कर देता है। | ||
==संदर्भ और नोट्स== | ==संदर्भ और नोट्स== | ||
Line 57: | Line 57: | ||
* वोल्टेज विभक्त | * वोल्टेज विभक्त | ||
* | * अवरोध | ||
* ओम | * ओम नियम | ||
* थेवेनिन प्रमेय | * थेवेनिन प्रमेय | ||
* [[वोल्टेज अधिनियम]] | * [[वोल्टेज अधिनियम]] |
Revision as of 21:50, 20 June 2023
इलेक्ट्रानिक्स में, वर्तमान डिवाइडर साधारण रैखिक परिपथ होता है, जो आउटपुट विद्युत प्रवाह (IX) उत्पन्न करता है।) जो कि इसके इनपुट धारा (IT) का अंश होता है। चूँकि वर्तमान विभाजन विभाजक की शाखाओं के मध्य वर्तमान के विभाजन को संदर्भित करता है। इस प्रकार के परिपथ की विभिन्न शाखाओं में धाराएं हमेशा इस प्रकार से विभाजित होती है कि खर्च की गई कुल ऊर्जा को कम किया जा सकता है।
वर्तमान विभक्त का वर्णन करने वाला सूत्र वोल्टेज विभक्त के समान होता है। चूंकि, वर्तमान विभाजन का वर्णन करने वाला अनुपात वोल्टेज विभाजन के विपरीत माने जाने वाली शाखाओं के प्रतिबाधा को विभाजक में रखता है, जहां विचारित प्रतिबाधा अंश में होती है। ऐसा इसलिए होता है, जिससे कि वर्तमान डिवाइडर में, खर्च की गई कुल ऊर्जा कम से कम हो जाती है। जिसके परिणामस्वरूप धाराएं कम से कम प्रतिबाधा के पथ से गुजरती हैं, अतः प्रतिबाधा के साथ व्युत्क्रम संबंध तुलनात्मक रूप से, किरचॉफ का वोल्टेज नियम (केवीएल) को संतुष्ट करने के लिए वोल्टेज डिवाइडर का उपयोग किया जाता है। इस प्रकार लूप के चारों ओर वोल्टेज का योग शून्य होता है, अतः वोल्टेज की गिरावट को प्रतिबाधा के साथ सीधे संबंध में समान रूप से विभाजित किया जाता है।
विशिष्ट होने के लिए, यदि दो या दो से अधिक विद्युत प्रतिबाधा समानांतर में होती हैं, तब संयोजन में प्रवेश करने वाली धारा उनके प्रतिबाधाओं के व्युत्क्रम अनुपात में उनके मध्य विभाजित हो जाती है (ओम के नियम के अनुसार)। इससे यह भी अनुमान लगाया जा सकता है कि यदि प्रतिबाधाओं का मान समान होता है, तब धारा समान रूप से विभाजित हो जाती है।
वर्तमान विभाजक
कुल प्रतिरोध RT के अन्य प्रतिरोधों के संयोजन के साथ समानांतर में प्रतिरोधी RX में वर्तमान IX के लिए सामान्य सूत्र होता है। (चित्र 1 देखें)
जहां IT, RT के समानांतर RX के संयुक्त नेटवर्क में प्रवेश करने वाली कुल धारा होती है। ध्यान दीजिए कि जब RT प्रतिरोधकों के समानांतर संयोजन से बना होता है। जैसे R1, R2, ... आदि, तब कुल प्रतिरोध RT का व्युत्क्रम ज्ञात करने के लिए प्रत्येक प्रतिरोधक के व्युत्क्रम को जोड़ा जाता है।
सामान्य स्थिति
चूंकि प्रतिरोधी विभाजक सबसे सामान्य होता है, अतः वर्तमान विभाजक आवृत्ति निर्भर विद्युत प्रतिबाधाओं से बना हो सकता है। सामान्य स्थिति में,
और वर्तमान IX इसके द्वारा दिया गया है।
जहां ZT पूर्ण परिपथ के समतुल्य प्रतिबाधा को संदर्भित करता है।[3]
प्रवेश का प्रयोग
विद्युत प्रतिबाधाओं का उपयोग करने के अतिरिक्त, वर्तमान विभक्त नियम को वोल्टेज विभक्त नियम की भांति ही प्रयुक्त किया जा सकता है, यदि प्रवेश (प्रतिबाधा का व्युत्क्रम) का उपयोग किया जाता है।
ध्यान रहे कि YTotal सीधा जोड़ होता है, अतः उल्टे व्युत्क्रमों का योग (जैसा कि आप मानक समानांतर प्रतिरोधक नेटवर्क के लिए करते है) नहीं होता है। इस प्रकार चित्र 1 के लिए वर्तमान IX होता है।
उदाहरण: आरसी संयोजन
चित्र 2 संधारित्र और प्रतिरोधी से बना साधारण वर्तमान विभाजक दिखाता है। इस प्रकार नीचे दिए गए सूत्र का उपयोग करते हुए, प्रतिरोधक में धारा निम्न द्वारा दी गई है।
- :::
जहां ZC = 1/(jωC) संधारित्र की प्रतिबाधा होता है और j काल्पनिक इकाई होती है।
गुणनफल τ = CR को परिपथ के समय स्थिरांक के रूप में जाना जाता है और आवृत्ति जिसके लिए ωCR = 1 को परिपथ की कोण आवृत्ति कहा जाता है। जिससे कि संधारित्र में उच्च आवृत्तियों पर शून्य प्रतिबाधा होती है और कम आवृत्तियों पर अनंत प्रतिबाधा होती है। इस प्रकार प्रतिरोधक में धारा कोण की आवृत्ति तक की आवृत्तियों के लिए अपने DC मान IT पर बनी रहती है, जहां यह उच्च आवृत्तियों के लिए शून्य की ओर गिरता है जिससे कि संधारित्र प्रभावी रूप से प्रतिरोधक को शार्ट परिपथ करता है। अतः दूसरे शब्दों में, वर्तमान डिवाइडर अवरोध में धारा के लिए लो पास फिल्टर होता है।
लोडिंग प्रभाव
सामान्यतः एम्पलीफायर का लाभ सामान्यतः इसके स्रोत और लोड समाप्ति पर निर्भर करता है। चूँकि वर्तमान एम्पलीफायरों और ट्रांसकंडक्शन एम्पलीफायरों को शॉर्ट-परिपथ आउटपुट स्थिति की विशेषता होती है और वर्तमान एम्पलीफायरों और ट्रांसरेसिस्टेंस एम्पलीफायरों को आदर्श अनंत प्रतिबाधा वर्तमान स्रोतों का उपयोग करके चित्रित किया जाता है। इस प्रकार जब एम्पलीफायर परिमित, गैर-शून्य समाप्ति द्वारा समाप्त होता है और गैर-आदर्श स्रोत द्वारा संचालित होता है, तब आउटपुट और इनपुट पर लोडिंग प्रभाव के कारण प्रभावी लाभ कम हो जाता है, जिसे वर्तमान विभाजन के शब्दों में समझा जा सकता है।
चित्र 3 वर्तमान एम्पलीफायर उदाहरण दिखाता है। इस प्रकार एम्पलीफायर (ग्रे बॉक्स) में इनपुट प्रतिरोध Rin और आउटपुट प्रतिरोध Rout और आदर्श वर्तमान लाभ Ai होता है। अतः आदर्श वर्तमान चालक (अनंत नॉर्टन प्रतिरोध) के साथ सभी स्रोत वर्तमान iSएम्पलीफायर के लिए इनपुट धारा बन जाते है। चूँकि नॉर्टन के प्रमेय के लिए इनपुट पर वर्तमान डिवाइडर बनता है जो इनपुट धारा को कम कर देता है।
जो स्पष्ट रूप से iS से कम होता है। इसी प्रकार, आउटपुट पर शॉर्ट परिपथ के लिए, एम्पलीफायर आउटपुट धारा io = Ai ii को शॉर्ट सर्किट में डिलीवर करता है। चूँकि, जब लोड गैर-शून्य अवरोधक RL होता है, तब लोड करने के लिए दिया गया धारा वर्तमान विभाजन द्वारा मान में घटाया जाता है।
इन परिणामों का संयोजन, आदर्श वर्तमान लाभ Ai को आदर्श चालक के साथ महसूस किया जाता है और शॉर्ट-परिपथ लोड को लोड किए गए लाभ Aloaded से कम किया जाता है।
उपरोक्त अभिव्यक्ति में प्रतिरोधक अनुपात को लोडिंग कारक कहा जाता है। इस प्रकार अन्य प्रवर्धक प्रकारों में लोड करने की अधिक चर्चा के लिए, वोल्टेज विभाजन लोडिंग प्रभाव देखते है।
एकतरफा बनाम द्विपक्षीय एम्पलीफायर
चित्र 3 और संबंधित चर्चा इलेक्ट्रॉनिक एम्पलीफायर एकतरफा या द्विपक्षीय एम्पलीफायर को संदर्भित करती है। इस प्रकार अधिक सामान्य स्थिति में जहां एम्पलीफायर को दो-पोर्ट नेटवर्क द्वारा दर्शाया जाता है, अतः एम्पलीफायर का इनपुट प्रतिरोध उसके भार पर निर्भर करता है और आउटपुट प्रतिरोध स्रोत प्रतिबाधा पर निर्भर करता है। इन स्थितियों में लोडिंग कारकों को इन द्विपक्षीय प्रभावों सहित वास्तविक प्रवर्धक प्रतिबाधाओं को नियोजित किया जाता है। उदाहरण के लिए, चित्र 3 के एकतरफा वर्तमान प्रवर्धक को लेते हुए, संबंधित द्विपक्षीय दो-पोर्ट नेटवर्क को चित्र 4 में दो-पोर्ट नेटवर्क हाइब्रिड पैरामीटर (एच-पैरामीटर) के आधार पर दिखाया गया है। इस प्रकार एच-पैरामीटर[4] इस परिपथ के लिए विश्लेषण करते हुए, प्रतिक्रिया Afb के साथ वर्तमान लाभ होना पाया जाता है।
अर्थात् आदर्श वर्तमान लाभ Ai न केवल लोडिंग कारकों द्वारा कम किया जाता है, बल्कि अतिरिक्त कारक (1 + β (RL / RS ) Aloaded द्वारा दो-पोर्ट की द्विपक्षीय प्रकृति के कारण होता है।[5] जो विशिष्ट नकारात्मक प्रतिक्रिया एम्पलीफायर परिपथ की खासियत होती है। इस प्रकार कारक β (RL / RS ) वोल्टेज लाभ β V/V के वोल्टेज प्रतिक्रिया स्रोत द्वारा प्रदान की जाने वाली वर्तमान प्रतिक्रिया होती है। उदाहरण के लिए, RS= Ω के साथ आदर्श वर्तमान स्रोत के लिए वोल्टेज प्रतिक्रिया का कोई प्रभाव नहीं होता है और RL= 0 Ω के लिए, शून्य लोड वोल्टेज होता है, जो पुनः प्रतिक्रिया को अक्षम कर देता है।
संदर्भ और नोट्स
- ↑ Nilsson, James; Riedel, Susan (2015). इलेक्ट्रिक सर्किट्स. Edinburgh Gate, England: Pearson Education Limited. p. 85. ISBN 978-1-292-06054-5.
- ↑ Alexander, Charles; Sadiku, Matthew (2007). इलेक्ट्रिक सर्किट के मूल तत्व. New York, NY: McGraw-Hill. p. 392. ISBN 978-0-07-128441-7.
- ↑ "Current Divider Circuits | Divider Circuits And Kirchhoff's Laws | Electronics Textbook" (in English). Retrieved 2018-01-10.
- ↑ The h-parameter two port is the only two-port among the four standard choices that has a current-controlled current source on the output side.
- ↑ Often called the improvement factor or the desensitivity factor.
यह भी देखें
- वोल्टेज विभक्त
- अवरोध
- ओम नियम
- थेवेनिन प्रमेय
- वोल्टेज अधिनियम