विश्वसनीय अंतराल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
बायेसियन आंकड़ों में, एक विश्वसनीय अंतराल एक [[अंतराल (सांख्यिकी)]] होता है जिसके भीतर एक अनदेखे पैरामीटर गणितीय मॉडल मान एक विशेष [[संभावना]] के साथ आता है। यह [[पश्च वितरण]] या [[सफलता की अनुमानित संभावना]] के क्षेत्र में एक अंतराल होता है।<ref>Edwards, Ward, Lindman, Harold, Savage, Leonard J. (1963) "Bayesian statistical inference in psychological research". ''Psychological Review'', '''70''', 193-242</ref> बहुभिन्नरूपी समस्याओं का सामान्यीकरण विश्वसनीय क्षेत्र में होता है।
बायेसियन आंकड़ों में, एक विश्वसनीय अंतराल एक [[अंतराल (सांख्यिकी)]] होता है जिसके भीतर एक अनदेखे पैरामीटर गणितीय मॉडल मान एक विशेष [[संभावना]] के साथ आता है। यह [[पश्च वितरण]] या [[सफलता की अनुमानित संभावना]] के क्षेत्र में एक अंतराल होता है।<ref>Edwards, Ward, Lindman, Harold, Savage, Leonard J. (1963) "Bayesian statistical inference in psychological research". ''Psychological Review'', '''70''', 193-242</ref> बहुभिन्नरूपी समस्याओं का सामान्यीकरण विश्वसनीय क्षेत्र में होता है।


विश्वसनीय अंतराल फ़्रीक्वेंटिस्ट सांख्यिकी में [[विश्वास अंतराल]] और [[विश्वास क्षेत्र]] के अनुरूप होते हैं,<ref>Lee, P.M. (1997) ''Bayesian Statistics: An Introduction'', Arnold. {{ISBN|0-340-67785-6}}</ref> यदपि वे दार्शनिक आधार पर भिन्न होते हैं:<ref name="VanderPlas2014">{{cite web |last1=VanderPlas |first1=Jake |title=Frequentism and Bayesianism III: Confidence, Credibility, and why Frequentism and Science do not Mix {{!}} Pythonic Perambulations |url=https://jakevdp.github.io/blog/2014/06/12/frequentism-and-bayesianism-3-confidence-credibility/ |website=jakevdp.github.io}}</ref> इस प्रकार बायेसियन अंतराल अपनी सीमाओं को निश्चित और अनुमानित पैरामीटर को एक यादृच्छिक चर के रूप में मानते हैं, जबकि फ़्रीक्वेंटिस्ट कॉन्फिडेंस इंटरवल अपनी सीमाओं को यादृच्छिक चर और पैरामीटर को एक निश्चित मान के रूप में मानते हैं। इसके अतिरिक्त, बायेसियन विश्वसनीय अंतराल स्थिति-विशिष्ट [[पूर्व वितरण]] के ज्ञान का उपयोग (और वास्तव में, आवश्यक) करते हैं, जबकि फ़्रीक्वेंटिस्ट विश्वास अंतराल नहीं करते हैं।
विश्वसनीय अंतराल फ़्रीक्वेंटिस्ट सांख्यिकी में [[विश्वास अंतराल]] और [[विश्वास क्षेत्र]] के अनुरूप होते हैं,<ref>Lee, P.M. (1997) ''Bayesian Statistics: An Introduction'', Arnold. {{ISBN|0-340-67785-6}}</ref> यदपि वे दार्शनिक आधार पर भिन्न होते हैं:<ref name="VanderPlas2014">{{cite web |last1=VanderPlas |first1=Jake |title=Frequentism and Bayesianism III: Confidence, Credibility, and why Frequentism and Science do not Mix {{!}} Pythonic Perambulations |url=https://jakevdp.github.io/blog/2014/06/12/frequentism-and-bayesianism-3-confidence-credibility/ |website=jakevdp.github.io}}</ref> इस प्रकार बायेसियन अंतराल अपनी सीमाओं को निश्चित और अनुमानित पैरामीटर को एक यादृच्छिक चर के रूप में मानते हैं, जबकि फ़्रीक्वेंटिस्ट कॉन्फिडेंस इंटरवल अपनी सीमाओं को यादृच्छिक चर और पैरामीटर को एक निश्चित मान के रूप में मानते हैं। इसके अतिरिक्त, बायेसियन विश्वसनीय अंतराल स्थिति-विशिष्ट [[पूर्व वितरण]] के ज्ञान का उपयोग (और वास्तव में, आवश्यक) करते हैं, जबकि फ़्रीक्वेंटिस्ट विश्वास अंतराल नहीं करते हैं।


उदाहरण के लिए, एक प्रयोग में जो पैरामीटर के संभावित मानों का वितरण निर्धारित करता है <math>\mu</math>, अगर [[व्यक्तिपरक संभावना]] है कि <math>\mu</math> 35 और 45 के बीच स्थित 0.95 है, तब <math>35 \le \mu \le 45</math> 95% क्रेडिबल इंटरवल है।
उदाहरण के लिए, एक प्रयोग में जो पैरामीटर के संभावित मानों का वितरण निर्धारित करता है <math>\mu</math>, अगर [[व्यक्तिपरक संभावना]] है कि <math>\mu</math> 35 और 45 के बीच स्थित 0.95 है, तब <math>35 \le \mu \le 45</math> 95% क्रेडिबल इंटरवल है।

Revision as of 01:00, 21 June 2023

बायेसियन आंकड़ों में, एक विश्वसनीय अंतराल एक अंतराल (सांख्यिकी) होता है जिसके भीतर एक अनदेखे पैरामीटर गणितीय मॉडल मान एक विशेष संभावना के साथ आता है। यह पश्च वितरण या सफलता की अनुमानित संभावना के क्षेत्र में एक अंतराल होता है।[1] बहुभिन्नरूपी समस्याओं का सामान्यीकरण विश्वसनीय क्षेत्र में होता है।

विश्वसनीय अंतराल फ़्रीक्वेंटिस्ट सांख्यिकी में विश्वास अंतराल और विश्वास क्षेत्र के अनुरूप होते हैं,[2] यदपि वे दार्शनिक आधार पर भिन्न होते हैं:[3] इस प्रकार बायेसियन अंतराल अपनी सीमाओं को निश्चित और अनुमानित पैरामीटर को एक यादृच्छिक चर के रूप में मानते हैं, जबकि फ़्रीक्वेंटिस्ट कॉन्फिडेंस इंटरवल अपनी सीमाओं को यादृच्छिक चर और पैरामीटर को एक निश्चित मान के रूप में मानते हैं। इसके अतिरिक्त, बायेसियन विश्वसनीय अंतराल स्थिति-विशिष्ट पूर्व वितरण के ज्ञान का उपयोग (और वास्तव में, आवश्यक) करते हैं, जबकि फ़्रीक्वेंटिस्ट विश्वास अंतराल नहीं करते हैं।

उदाहरण के लिए, एक प्रयोग में जो पैरामीटर के संभावित मानों का वितरण निर्धारित करता है , अगर व्यक्तिपरक संभावना है कि 35 और 45 के बीच स्थित 0.95 है, तब 95% क्रेडिबल इंटरवल है।

एक विश्वसनीय अंतराल चुनना

पश्च वितरण पर विश्वसनीय अंतराल अद्वितीय नहीं हैं। उपयुक्त विश्वसनीय अंतराल को परिभाषित करने के तरीकों में शामिल हैं:

  • सबसे संकरे अंतराल का चयन करना, जिसमें एक असमान वितरण के लिए मोड (सांख्यिकी) (अधिकतम पश्चवर्ती) सहित उच्चतम संभाव्यता घनत्व के उन मूल्यों को चुनना शामिल होगा। इसे कभी-कभी 'उच्चतम पश्च घनत्व अंतराल' (एचपीडीआई) कहा जाता है।
  • अंतराल का चयन करना जहां अंतराल के नीचे होने की संभावना इसके ऊपर होने की संभावना है। इस अंतराल में माध्यिका (सांख्यिकी) शामिल होगी। इसे कभी-कभी 'समान-पुच्छ अंतराल' कहा जाता है।
  • यह मानते हुए कि माध्य मौजूद है, उस अंतराल को चुनना जिसके लिए माध्य (सांख्यिकी) केंद्रीय बिंदु है।

निर्णय सिद्धांत के भीतर एक विश्वसनीय अंतराल की पसंद को फ्रेम करना संभव है और उस संदर्भ में, सबसे छोटा अंतराल हमेशा उच्चतम संभाव्यता घनत्व सेट होगा। यह घनत्व के समोच्च से घिरा है।[4] मार्कोव चेन मोंटे कार्लो जैसी सिमुलेशन तकनीकों के उपयोग के माध्यम से विश्वसनीय अंतराल का भी अनुमान लगाया जा सकता है।[5]


कॉन्फिडेंस इंटरवल के साथ कंट्रास्ट

फ़्रीक्वेंटिस्ट 95% विश्वास अंतराल का अर्थ है कि बड़ी संख्या में दोहराए गए नमूनों के साथ, ऐसे परिकलित विश्वास अंतरालों के 95% उपद्रव पैरामीटर का सही मान शामिल होगा। फ़्रीक्वेंटिस्ट शब्दों में, पैरामीटर निश्चित है (संभावित मूल्यों का वितरण नहीं माना जा सकता है) और विश्वास अंतराल यादृच्छिक है (क्योंकि यह यादृच्छिक नमूने पर निर्भर करता है)।

बायेसियन क्रेडिबल इंटरवल फ़्रीक्वेंटिस्ट कॉन्फिडेंस इंटरवल से दो कारणों से काफी भिन्न हो सकते हैं:

  • विश्वसनीय अंतराल में पूर्व वितरण से समस्या-विशिष्ट प्रासंगिक जानकारी शामिल होती है जबकि विश्वास अंतराल केवल डेटा पर आधारित होते हैं;
  • क्रेडिबल इंटरवल और कॉन्फिडेंस इंटरवल उपद्रव मापदंडों का मौलिक रूप से अलग-अलग तरीकों से इलाज करते हैं।

एकल पैरामीटर और डेटा के मामले में जिसे एक पर्याप्त आंकड़े में सारांशित किया जा सकता है, यह दिखाया जा सकता है कि विश्वसनीय अंतराल और विश्वास अंतराल मेल खाएगा यदि अज्ञात पैरामीटर एक स्थान पैरामीटर है (यानी आगे की संभावना फ़ंक्शन का रूप है) ), एक पूर्व के साथ जो एक समान फ्लैट वितरण है;[6] और यह भी कि अगर अज्ञात पैरामीटर एक स्केल पैरामीटर है (अर्थात फॉरवर्ड प्रायिकता फ़ंक्शन का रूप है ), जेफ़रीज़ के पूर्व के साथ [6]- बाद वाला निम्नलिखित क्योंकि इस तरह के पैमाने के पैरामीटर का लघुगणक लेने से यह एक समान वितरण के साथ एक स्थान पैरामीटर में बदल जाता है। लेकिन ये विशिष्ट रूप से विशेष (यद्यपि महत्वपूर्ण) मामले हैं; सामान्य तौर पर ऐसी कोई समानता नहीं बनाई जा सकती है।

संदर्भ

  1. Edwards, Ward, Lindman, Harold, Savage, Leonard J. (1963) "Bayesian statistical inference in psychological research". Psychological Review, 70, 193-242
  2. Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold. ISBN 0-340-67785-6
  3. VanderPlas, Jake. "Frequentism and Bayesianism III: Confidence, Credibility, and why Frequentism and Science do not Mix | Pythonic Perambulations". jakevdp.github.io.
  4. O'Hagan, A. (1994) Kendall's Advanced Theory of Statistics, Vol 2B, Bayesian Inference, Section 2.51. Arnold, ISBN 0-340-52922-9
  5. Chen, Ming-Hui; Shao, Qi-Man (1 March 1999). "बायेसियन विश्वसनीय और एचपीडी अंतराल का मोंटे कार्लो अनुमान". Journal of Computational and Graphical Statistics. 8 (1): 69–92. doi:10.1080/10618600.1999.10474802.
  6. 6.0 6.1 Jaynes, E. T. (1976). "Confidence Intervals vs Bayesian Intervals", in Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, (W. L. Harper and C. A. Hooker, eds.), Dordrecht: D. Reidel, pp. 175 et seq


अग्रिम पठन