पॉइंटलेस टोपोलॉजी: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
== इतिहास == | == इतिहास == | ||
टोपोलॉजी के लिए पहला दृष्टिकोण ज्यामितीय था, जहां एक ने [[यूक्लिडियन अंतरिक्ष]] से शुरुआत की और चीजों को एक साथ जोड़ दिया। किन्तु 1930 के दशक में स्टोन द्वैत पर [[मार्शल स्टोन]] के काम ने दिखाया कि टोपोलॉजी को बीजगणितीय दृष्टिकोण (जाली-सैद्धांतिक) से देखा जा सकता है। इस प्रकार स्टोन के अतिरिक्त, [[हेनरी वॉलमैन]] इस विचार का फायदा उठाने वाले पहले व्यक्ति थे। दूसरों ने [[चार्ल्स एह्रेसमैन]] और उनके छात्र जीन बेनाबौ (और साथ ही साथ अन्य) तक इस रास्ते को जारी रखा, पचास के दशक के अंत में अगला मौलिक कदम | टोपोलॉजी के लिए पहला दृष्टिकोण ज्यामितीय था, जहां एक ने [[यूक्लिडियन अंतरिक्ष]] से शुरुआत की और चीजों को एक साथ जोड़ दिया। किन्तु 1930 के दशक में स्टोन द्वैत पर [[मार्शल स्टोन]] के काम ने दिखाया कि टोपोलॉजी को बीजगणितीय दृष्टिकोण (जाली-सैद्धांतिक) से देखा जा सकता है। इस प्रकार स्टोन के अतिरिक्त, [[हेनरी वॉलमैन]] इस विचार का फायदा उठाने वाले पहले व्यक्ति थे। दूसरों ने [[चार्ल्स एह्रेसमैन]] और उनके छात्र जीन बेनाबौ (और साथ ही साथ अन्य) तक इस रास्ते को जारी रखा, पचास के दशक के अंत में अगला मौलिक कदम उठाया गया था। इस प्रकार उनकी अंतर्दृष्टि टोपोलॉजिकल और डिफरेंशियल श्रेणियों (गणित) के अध्ययन से उत्पन्न हुई।{{sfn|Johnstone|1983|p=42}} | ||
एह्रेसमैन के दृष्टिकोण में एक श्रेणी का उपयोग करना सम्मिलित था, जिनकी वस्तुएं [[पूर्ण जाली]] थीं, इस प्रकार जो एक वितरण संपत्ति कानून को संतुष्ट करती थीं और जिनके आकारिकी नक्शे थे, जो सीमित रूप से जुड़ते थे और मिलते थे और मनमाने ढंग से जुड़ते थे। उन्होंने ऐसे जालक को "स्थानीय जाली" कहा; [[जाली सिद्धांत]] में अन्य धारणाओं के साथ अस्पष्टता से बचने के लिए आज उन्हें फ्रेम कहा जाता है।{{sfn|Johnstone|1983|p=43}} | एह्रेसमैन के दृष्टिकोण में एक श्रेणी का उपयोग करना सम्मिलित था, जिनकी वस्तुएं [[पूर्ण जाली]] थीं, इस प्रकार जो एक वितरण संपत्ति कानून को संतुष्ट करती थीं और जिनके आकारिकी नक्शे थे, जो सीमित रूप से जुड़ते थे और मिलते थे और मनमाने ढंग से जुड़ते थे। उन्होंने ऐसे जालक को "स्थानीय जाली" कहा; [[जाली सिद्धांत]] में अन्य धारणाओं के साथ अस्पष्टता से बचने के लिए आज उन्हें फ्रेम कहा जाता है।{{sfn|Johnstone|1983|p=43}} | ||
Line 14: | Line 14: | ||
जहां <math>a_i</math> और <math>b</math> स्पॉट और इंडेक्स परिवार हैं <math>I</math> मनमाने ढंग से बड़ा हो सकता है। यह वितरण कानून एक टोपोलॉजिकल स्पेस के खुले सेटों की जाली से भी संतुष्ट है। | जहां <math>a_i</math> और <math>b</math> स्पॉट और इंडेक्स परिवार हैं <math>I</math> मनमाने ढंग से बड़ा हो सकता है। यह वितरण कानून एक टोपोलॉजिकल स्पेस के खुले सेटों की जाली से भी संतुष्ट है। | ||
यदि <math>X</math> और <math>Y</math> द्वारा निरूपित खुले सेट के जाली के साथ सामयिक स्थान हैं <math>\Omega(X)</math> और <math>\Omega(Y)</math>, क्रमशः, और <math>f\colon X\to Y</math> एक सतत कार्य है, फिर, चूंकि निरंतर मानचित्र के अनुसार | यदि <math>X</math> और <math>Y</math> द्वारा निरूपित खुले सेट के जाली के साथ सामयिक स्थान हैं <math>\Omega(X)</math> और <math>\Omega(Y)</math>, क्रमशः, और <math>f\colon X\to Y</math> एक सतत कार्य है, फिर, चूंकि निरंतर मानचित्र के अनुसार खुले सेट की पूर्व-छवि खुली है, हम विपरीत दिशा में जाली का नक्शा प्राप्त करते हैं: <math>f^*\colon \Omega(Y)\to \Omega(X)</math>. इस तरह के विपरीत दिशा वाले जाली मानचित्र बिंदु-मुक्त सेटिंग में निरंतर मानचित्रों के उचित सामान्यीकरण के रूप में कार्य करते हैं। | ||
== औपचारिक परिभाषाएँ == | == औपचारिक परिभाषाएँ == | ||
Line 26: | Line 26: | ||
== स्थानों के उदाहरण == | == स्थानों के उदाहरण == | ||
* जैसा ऊपर बताया गया है, प्रत्येक टोपोलॉजिकल स्पेस <math>T</math> एक ढाँचे को जन्म देता है <math>\Omega(T)</math> खुले सेट के और इस प्रकार एक स्थान के लिए, परिभाषा के अनुसार एक | * जैसा ऊपर बताया गया है, प्रत्येक टोपोलॉजिकल स्पेस <math>T</math> एक ढाँचे को जन्म देता है <math>\Omega(T)</math> खुले सेट के और इस प्रकार एक स्थान के लिए, परिभाषा के अनुसार एक स्थानिक होगा।। | ||
* एक टोपोलॉजिकल स्पेस दिया गया <math>T</math>, हम इसके [[ नियमित खुला सेट |नियमित खुला सेट]] के संग्रह पर भी विचार कर सकते हैं। यह एक फ्रेम है जिसका उपयोग के रूप में संघ के बंद होने के इंटीरियर में सम्मिलित होने के लिए किया जाता है, और चौराहे को पूरा करने के रूप में किया जाता है। इस प्रकार हम इससे संबंधित एक अन्य लोकेल प्राप्त करते हैं <math>T</math>. यह स्थान सामान्यतः स्थानिक नहीं होगा। | * एक टोपोलॉजिकल स्पेस दिया गया <math>T</math>, हम इसके [[ नियमित खुला सेट |नियमित खुला सेट]] के संग्रह पर भी विचार कर सकते हैं। यह एक फ्रेम है जिसका उपयोग के रूप में संघ के बंद होने के इंटीरियर में सम्मिलित होने के लिए किया जाता है, और चौराहे को पूरा करने के रूप में किया जाता है। इस प्रकार हम इससे संबंधित एक अन्य लोकेल प्राप्त करते हैं <math>T</math>. यह स्थान सामान्यतः स्थानिक नहीं होगा। | ||
* प्रत्येक के लिए <math>n\in\N</math> और प्रत्येक <math>a\in\R</math>, प्रतीक का प्रयोग करें <math>U_{n,a}</math> और इन प्रतीकों पर मुक्त फ्रेम का निर्माण करें, संबंधों को संशोधित करें | * प्रत्येक के लिए <math>n\in\N</math> और प्रत्येक <math>a\in\R</math>, प्रतीक का प्रयोग करें <math>U_{n,a}</math> और इन प्रतीकों पर मुक्त फ्रेम का निर्माण करें, संबंधों को संशोधित करें | ||
Line 38: | Line 38: | ||
हमने देखा है कि हमारे पास एक मज़ेदार है <math>\Omega</math> टोपोलॉजिकल स्पेस की श्रेणी से लोकेशंस की श्रेणी तक यदि हम इस फ़ंक्टर को [[सोबर स्पेस]] की पूरी उपश्रेणी तक सीमित रखते हैं, इस प्रकार तो हम सोबर स्पेस की श्रेणी और लोकेशंस की श्रेणी में निरंतर मानचित्रों की [[पूर्ण एम्बेडिंग]] प्राप्त करते हैं। इस अर्थ में, लोकेशंस सोबर स्पेस के सामान्यीकरण हैं। | हमने देखा है कि हमारे पास एक मज़ेदार है <math>\Omega</math> टोपोलॉजिकल स्पेस की श्रेणी से लोकेशंस की श्रेणी तक यदि हम इस फ़ंक्टर को [[सोबर स्पेस]] की पूरी उपश्रेणी तक सीमित रखते हैं, इस प्रकार तो हम सोबर स्पेस की श्रेणी और लोकेशंस की श्रेणी में निरंतर मानचित्रों की [[पूर्ण एम्बेडिंग]] प्राप्त करते हैं। इस अर्थ में, लोकेशंस सोबर स्पेस के सामान्यीकरण हैं। | ||
इस प्रकार स्थान के संदर्भ में [[बिंदु-सेट टोपोलॉजी]] की अधिकांश अवधारणाओं का अनुवाद करना और अनुरूप प्रमेयों को सिद्ध करना संभव है। पसंद के स्वयंसिद्ध के आधार पर मौलिक | इस प्रकार स्थान के संदर्भ में [[बिंदु-सेट टोपोलॉजी]] की अधिकांश अवधारणाओं का अनुवाद करना और अनुरूप प्रमेयों को सिद्ध करना संभव है। पसंद के स्वयंसिद्ध के आधार पर मौलिक टोपोलॉजी के कुछ महत्वपूर्ण तथ्य विकल्प-मुक्त हो जाते हैं (अर्थात, रचनावाद (गणित), जो विशेष रूप से कंप्यूटर विज्ञान के लिए आकर्षक है)। उदाहरण के लिए, [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] लोकेशंस के मनमाने उत्पाद रचनात्मक रूप से कॉम्पैक्ट होते हैं (यह पॉइंट-सेट टोपोलॉजी में टायकोनॉफ़ का प्रमेय है), या समान स्थानों की पूर्णता रचनात्मक होती है। इस प्रकार यह उपयोगी हो सकता है यदि कोई ऐसे टॉपोज़ में काम करता है जिसमें [[पसंद का स्वयंसिद्ध]] नहीं है।{{sfn|Johnstone|1983}} अन्य लाभों में सम्मिलित हैं [[पैराकॉम्पैक्ट स्पेस]] का उत्तम व्यवहार, पैराकॉम्पैक्ट लोकेशंस के स्वैच्छिक उत्पाद पैराकॉम्पैक्ट के साथ, जो पैराकॉम्पैक्ट स्पेस के लिए सही नहीं है, या तथ्य यह है कि स्थानीय समूहों के उपसमूह हमेशा बंद रहते हैं। | ||
एक अन्य बिंदु जहां टोपोलॉजी और लोकेल थ्योरी दृढ़ता से अलग हो जाती है, सबस्पेस बनाम सबलोकल्स और घनत्व की अवधारणा है: किसी लोकेल के घने सबलोकल्स के किसी भी संग्रह को देखते हुए <math>X</math>, उनका चौराहा भी घना है <math>X</math>.<ref>{{Cite book |last=Johnstone |first=Peter T. |title=एक हाथी के रेखाचित्र|year=2002 |chapter=C1.2 Locales and Spaces}}</ref> यह जॉन आर. इसबेल के घनत्व प्रमेय की ओर ले जाता है: इस प्रकार प्रत्येक लोकेल में एक सबसे छोटा सघन सबलोकेल होता है। इन परिणामों का टोपोलॉजिकल स्पेस के दायरे में कोई समकक्ष नहीं है। | एक अन्य बिंदु जहां टोपोलॉजी और लोकेल थ्योरी दृढ़ता से अलग हो जाती है, सबस्पेस बनाम सबलोकल्स और घनत्व की अवधारणा है: किसी लोकेल के घने सबलोकल्स के किसी भी संग्रह को देखते हुए <math>X</math>, उनका चौराहा भी घना है <math>X</math>.<ref>{{Cite book |last=Johnstone |first=Peter T. |title=एक हाथी के रेखाचित्र|year=2002 |chapter=C1.2 Locales and Spaces}}</ref> यह जॉन आर. इसबेल के घनत्व प्रमेय की ओर ले जाता है: इस प्रकार प्रत्येक लोकेल में एक सबसे छोटा सघन सबलोकेल होता है। इन परिणामों का टोपोलॉजिकल स्पेस के दायरे में कोई समकक्ष नहीं है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* हेटिंग बीजगणित। फ्रेम पूर्ण हेयटिंग बीजगणित के समान होते हैं (यदि | * हेटिंग बीजगणित। फ्रेम पूर्ण हेयटिंग बीजगणित के समान होते हैं (यदि फ्रेम होमोमोर्फिज्म को बीजगणित होमोमोर्फिज्म को हेटिंग करने की आवश्यकता नहीं है।) | ||
* [[पूर्ण बूलियन बीजगणित]]। कोई भी पूर्ण बूलियन बीजगणित एक फ्रेम है (यह एक स्थानिक फ्रेम है यदि और केवल यदि यह परमाणु है)। | * [[पूर्ण बूलियन बीजगणित]]। कोई भी पूर्ण बूलियन बीजगणित एक फ्रेम है (यह एक स्थानिक फ्रेम है यदि और केवल यदि यह परमाणु है)। | ||
* सोबर स्पेस और स्थानिक लोकेशंस के बीच समानता के स्पष्ट निर्माण सहित टोपोलॉजिकल रिक्त स्थान की श्रेणी और लोकेशंस की श्रेणी के बीच संबंधों पर विवरण स्टोन द्वंद्व पर लेख में पाया जा सकता है। | * सोबर स्पेस और स्थानिक लोकेशंस के बीच समानता के स्पष्ट निर्माण सहित टोपोलॉजिकल रिक्त स्थान की श्रेणी और लोकेशंस की श्रेणी के बीच संबंधों पर विवरण स्टोन द्वंद्व पर लेख में पाया जा सकता है। |
Revision as of 11:33, 21 June 2023
गणित में, पॉइंटलेस टोपोलॉजी, जिसे पॉइंट-फ्री टोपोलॉजी (या पॉइंटफ्री टोपोलॉजी) और लोकेल थ्योरी भी कहा जाता है, इस प्रकार टोपोलॉजी के लिए एक दृष्टिकोण है जो पॉइंट्स (गणित) का उल्लेख करने से बचता है और जिसमें खुला सेटों की जाली (आदेश) आदिम धारणाएँ हैं।[1] इस प्रकार इस दृष्टिकोण में विशुद्ध रूप से बीजगणितीय डेटा से स्थलीय रूप से रोचक स्थान बनाना संभव हो जाता है।[2]
इतिहास
टोपोलॉजी के लिए पहला दृष्टिकोण ज्यामितीय था, जहां एक ने यूक्लिडियन अंतरिक्ष से शुरुआत की और चीजों को एक साथ जोड़ दिया। किन्तु 1930 के दशक में स्टोन द्वैत पर मार्शल स्टोन के काम ने दिखाया कि टोपोलॉजी को बीजगणितीय दृष्टिकोण (जाली-सैद्धांतिक) से देखा जा सकता है। इस प्रकार स्टोन के अतिरिक्त, हेनरी वॉलमैन इस विचार का फायदा उठाने वाले पहले व्यक्ति थे। दूसरों ने चार्ल्स एह्रेसमैन और उनके छात्र जीन बेनाबौ (और साथ ही साथ अन्य) तक इस रास्ते को जारी रखा, पचास के दशक के अंत में अगला मौलिक कदम उठाया गया था। इस प्रकार उनकी अंतर्दृष्टि टोपोलॉजिकल और डिफरेंशियल श्रेणियों (गणित) के अध्ययन से उत्पन्न हुई।[2]
एह्रेसमैन के दृष्टिकोण में एक श्रेणी का उपयोग करना सम्मिलित था, जिनकी वस्तुएं पूर्ण जाली थीं, इस प्रकार जो एक वितरण संपत्ति कानून को संतुष्ट करती थीं और जिनके आकारिकी नक्शे थे, जो सीमित रूप से जुड़ते थे और मिलते थे और मनमाने ढंग से जुड़ते थे। उन्होंने ऐसे जालक को "स्थानीय जाली" कहा; जाली सिद्धांत में अन्य धारणाओं के साथ अस्पष्टता से बचने के लिए आज उन्हें फ्रेम कहा जाता है।[3]
इस प्रकार समसामयिक अर्थों में फ़्रेम और लोकेल का सिद्धांत निम्नलिखित दशकों (जॉन इसबेल, पीटर जॉनस्टोन (गणितज्ञ), हेरोल्ड सिमंस, बर्नहार्ड बानाशेवस्की, एल्स पुल्ट्र, टिल प्लेवे, जेपी वर्म्यूलेन, स्टीव विकर्स) के माध्यम से टोपोलॉजी की एक जीवंत शाखा में विकसित किया गया था, आवेदन के साथ विभिन्न क्षेत्रों में, विशेष रूप से सैद्धांतिक कंप्यूटर विज्ञान में भी व लोकेल थ्योरी के इतिहास के बारे में अधिक जानकारी के लिए जॉनस्टोन का अवलोकन देखें। [4]
अंतर्ज्ञान
परंपरागत रूप से, एक टोपोलॉजिकल स्पेस में एक टोपोलॉजी के साथ बिंदु (टोपोलॉजी) का एक सेट (गणित) होता है, उपसमुच्चय की एक प्रणाली जिसे ओपन सेट कहा जाता है जो संघ (सेट सिद्धांत) (जॉइन (गणित) के रूप में) और चौराहे (सेट) के संचालन के साथ होता है। विशेष रूप से, खुले सेटों के किसी भी परिवार का मिलन फिर से एक खुला सेट होता है, और बहुत से खुले सेटों का प्रतिच्छेदन फिर से खुला होता है। व्यर्थ टोपोलॉजी में हम जाली के इन गुणों को मौलिक के रूप में लेते हैं, इसके बिना यह आवश्यक है कि जाली तत्व कुछ अंतर्निहित स्थान के बिंदुओं के सेट हों और जाली संचालन चौराहे और मिलन हो। बल्कि, बिंदु-मुक्त टोपोलॉजी बिना सीमा के बिंदु के बजाय "यथार्थवादी स्थान" की अवधारणा पर आधारित है। ये धब्बे सम्मिलित हो सकते हैं (गणित) (प्रतीक ), एक संघ के समान, और हमारे पास स्पॉट के लिए मीट (गणित) ऑपरेशन भी है (प्रतीक ), एक चौराहे के समान। इन दो परिचालनों का उपयोग करके धब्बे एक पूर्ण जाली बनाते हैं। यदि कोई स्थान दूसरों के जुड़ने से मिलता है तो उसे कुछ घटकों से मिलना पड़ता है, जो मोटे तौर पर बोलना वितरण कानून की ओर ले जाता है
जहां और स्पॉट और इंडेक्स परिवार हैं मनमाने ढंग से बड़ा हो सकता है। यह वितरण कानून एक टोपोलॉजिकल स्पेस के खुले सेटों की जाली से भी संतुष्ट है।
यदि और द्वारा निरूपित खुले सेट के जाली के साथ सामयिक स्थान हैं और , क्रमशः, और एक सतत कार्य है, फिर, चूंकि निरंतर मानचित्र के अनुसार खुले सेट की पूर्व-छवि खुली है, हम विपरीत दिशा में जाली का नक्शा प्राप्त करते हैं: . इस तरह के विपरीत दिशा वाले जाली मानचित्र बिंदु-मुक्त सेटिंग में निरंतर मानचित्रों के उचित सामान्यीकरण के रूप में कार्य करते हैं।
औपचारिक परिभाषाएँ
मूल अवधारणा एक फ्रेम की है, एक पूर्ण जाली जो उपरोक्त सामान्य वितरण कानून को संतुष्ट करती है; फ़्रेम होमोमोर्फिज़्म फ़्रेम के बीच मानचित्र हैं जो सभी जोड़ों (विशेष रूप से, जाली का सबसे कम तत्व) और परिमित मीट (विशेष रूप से, जाली का सबसे बड़ा तत्व) का सम्मान करते हैं। फ़्रेम, फ़्रेम होमोमोर्फिज़्म के साथ मिलकर एक श्रेणी बनाते हैं।
फ़्रेम की श्रेणी की विपरीत श्रेणी को लोकेल की श्रेणी के रूप में जाना जाता है। एक स्थान इस प्रकार एक फ्रेम के अतिरिक्त और कुछ नहीं है; यदि हम इसे एक फ्रेम के रूप में मानते हैं, तो हम इसे लिखेंगे . एक स्थानीय रूपवाद स्थान से स्थान के लिए एक फ्रेम समरूपता द्वारा दिया जाता है .
हर टोपोलॉजिकल स्पेस एक ढाँचे को जन्म देता है खुले सेटों की और इस प्रकार एक लोकेल की। एक लोकेल को स्थानिक कहा जाता है यदि यह इस तरह से एक टोपोलॉजिकल स्पेस से उत्पन्न होने वाले लोकेल के लिए आइसोमॉर्फिक (लोकेल की श्रेणी में) है।
स्थानों के उदाहरण
- जैसा ऊपर बताया गया है, प्रत्येक टोपोलॉजिकल स्पेस एक ढाँचे को जन्म देता है खुले सेट के और इस प्रकार एक स्थान के लिए, परिभाषा के अनुसार एक स्थानिक होगा।।
- एक टोपोलॉजिकल स्पेस दिया गया , हम इसके नियमित खुला सेट के संग्रह पर भी विचार कर सकते हैं। यह एक फ्रेम है जिसका उपयोग के रूप में संघ के बंद होने के इंटीरियर में सम्मिलित होने के लिए किया जाता है, और चौराहे को पूरा करने के रूप में किया जाता है। इस प्रकार हम इससे संबंधित एक अन्य लोकेल प्राप्त करते हैं . यह स्थान सामान्यतः स्थानिक नहीं होगा।
- प्रत्येक के लिए और प्रत्येक , प्रतीक का प्रयोग करें और इन प्रतीकों पर मुक्त फ्रेम का निर्माण करें, संबंधों को संशोधित करें
- (कहाँ सबसे बड़ा तत्व दर्शाता है और फ़्रेम का सबसे छोटा तत्व।) परिणामी स्थान को विशेषण कार्यों के स्थान के रूप में जाना जाता है . संबंधों की व्याख्या का सुझाव देने के लिए डिज़ाइन किया गया है उन सभी विशेषण कार्यों के सेट के रूप में साथ . बेशक, ऐसे कोई विशेषण कार्य नहीं हैं , और यह स्थानिक स्थान नहीं है।
स्थानों का सिद्धांत
हमने देखा है कि हमारे पास एक मज़ेदार है टोपोलॉजिकल स्पेस की श्रेणी से लोकेशंस की श्रेणी तक यदि हम इस फ़ंक्टर को सोबर स्पेस की पूरी उपश्रेणी तक सीमित रखते हैं, इस प्रकार तो हम सोबर स्पेस की श्रेणी और लोकेशंस की श्रेणी में निरंतर मानचित्रों की पूर्ण एम्बेडिंग प्राप्त करते हैं। इस अर्थ में, लोकेशंस सोबर स्पेस के सामान्यीकरण हैं।
इस प्रकार स्थान के संदर्भ में बिंदु-सेट टोपोलॉजी की अधिकांश अवधारणाओं का अनुवाद करना और अनुरूप प्रमेयों को सिद्ध करना संभव है। पसंद के स्वयंसिद्ध के आधार पर मौलिक टोपोलॉजी के कुछ महत्वपूर्ण तथ्य विकल्प-मुक्त हो जाते हैं (अर्थात, रचनावाद (गणित), जो विशेष रूप से कंप्यूटर विज्ञान के लिए आकर्षक है)। उदाहरण के लिए, कॉम्पैक्ट जगह लोकेशंस के मनमाने उत्पाद रचनात्मक रूप से कॉम्पैक्ट होते हैं (यह पॉइंट-सेट टोपोलॉजी में टायकोनॉफ़ का प्रमेय है), या समान स्थानों की पूर्णता रचनात्मक होती है। इस प्रकार यह उपयोगी हो सकता है यदि कोई ऐसे टॉपोज़ में काम करता है जिसमें पसंद का स्वयंसिद्ध नहीं है।[4] अन्य लाभों में सम्मिलित हैं पैराकॉम्पैक्ट स्पेस का उत्तम व्यवहार, पैराकॉम्पैक्ट लोकेशंस के स्वैच्छिक उत्पाद पैराकॉम्पैक्ट के साथ, जो पैराकॉम्पैक्ट स्पेस के लिए सही नहीं है, या तथ्य यह है कि स्थानीय समूहों के उपसमूह हमेशा बंद रहते हैं।
एक अन्य बिंदु जहां टोपोलॉजी और लोकेल थ्योरी दृढ़ता से अलग हो जाती है, सबस्पेस बनाम सबलोकल्स और घनत्व की अवधारणा है: किसी लोकेल के घने सबलोकल्स के किसी भी संग्रह को देखते हुए , उनका चौराहा भी घना है .[5] यह जॉन आर. इसबेल के घनत्व प्रमेय की ओर ले जाता है: इस प्रकार प्रत्येक लोकेल में एक सबसे छोटा सघन सबलोकेल होता है। इन परिणामों का टोपोलॉजिकल स्पेस के दायरे में कोई समकक्ष नहीं है।
यह भी देखें
- हेटिंग बीजगणित। फ्रेम पूर्ण हेयटिंग बीजगणित के समान होते हैं (यदि फ्रेम होमोमोर्फिज्म को बीजगणित होमोमोर्फिज्म को हेटिंग करने की आवश्यकता नहीं है।)
- पूर्ण बूलियन बीजगणित। कोई भी पूर्ण बूलियन बीजगणित एक फ्रेम है (यह एक स्थानिक फ्रेम है यदि और केवल यदि यह परमाणु है)।
- सोबर स्पेस और स्थानिक लोकेशंस के बीच समानता के स्पष्ट निर्माण सहित टोपोलॉजिकल रिक्त स्थान की श्रेणी और लोकेशंस की श्रेणी के बीच संबंधों पर विवरण स्टोन द्वंद्व पर लेख में पाया जा सकता है।
- व्हाइटहेड की बिंदु-मुक्त ज्यामिति।
- मेरिओटोपोलॉजी ।
उद्धरण
- ↑ Johnstone 1983, p. 41.
- ↑ 2.0 2.1 Johnstone 1983, p. 42.
- ↑ Johnstone 1983, p. 43.
- ↑ Johnstone 1983.
- ↑ Johnstone, Peter T. (2002). "C1.2 Locales and Spaces". एक हाथी के रेखाचित्र.
ग्रन्थसूची
A general introduction to pointless topology is
- Johnstone, Peter T. (1983). "The point of pointless topology". Bulletin of the American Mathematical Society. New Series. 8 (1): 41–53. doi:10.1090/S0273-0979-1983-15080-2. ISSN 0273-0979. Retrieved 2016-05-09.
This is, in its own words, to be read as the trailer for Johnstone's monograph (which appeared already in 1982 and can still be used for basic reference):
- Johnstone, Peter T. (1982). Stone Spaces. Cambridge University Press, ISBN 978-0-521-33779-3.
There is a recent monograph
- Picado, Jorge, Pultr, Aleš (2012). Frames and locales: Topology without points. Frontiers in Mathematics, vol. 28, Springer, Basel.
where one also finds a more extensive bibliography.
For relations with logic:
- Vickers, Steven (1996). Topology via Logic. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.
For a more concise account see the respective chapters in:
- Pedicchio, Maria Cristina, Tholen, Walter (Eds.). Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory. Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press, 2003, pp. 49–101.
- Hazewinkel, Michiel (Ed.). Handbook of Algebra. Vol. 3, North-Holland, Amsterdam, 2003, pp. 791–857.
- Grätzer, George, Wehrung, Friedrich (Eds.). Lattice Theory: Special Topics and Applications. Vol. 1, Springer, Basel, 2014, pp. 55–88.