पॉइंटलेस टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, '''पॉइंटलेस [[टोपोलॉजी]]''', जिसे पॉइंट-फ्री टोपोलॉजी (या पॉइंटफ्री टोपोलॉजी) और लोकेल थ्योरी भी कहा जाता है, इस प्रकार टोपोलॉजी के लिए एक दृष्टिकोण है जो पॉइंट्स (गणित) का उल्लेख करने से बचता है और जिसमें [[ खुला सेट |खुला सेटों]] की [[ जाली (आदेश) |जाली (आदेश)]] आदिम धारणाएँ हैं।{{sfn|Johnstone|1983|p=41}} इस प्रकार इस दृष्टिकोण में विशुद्ध रूप से बीजगणितीय डेटा से स्थलीय रूप से रोचक स्थान बनाना संभव हो जाता है।{{sfn|Johnstone|1983|p=42}}
गणित में, '''पॉइंटलेस [[टोपोलॉजी]]''', जिसे '''बिंदु-मुफ्त टोपोलॉजी''' (या '''बिन्दुमुफ्त टोपोलॉजी''') और '''स्थान सिद्धांत''' भी कहा जाता है। इस प्रकार टोपोलॉजी के लिए दृष्टिकोण होता है, जो बिन्दुयो (गणित) का उल्लेख करने से बचता है और जिसमें [[ खुला सेट |मुक्त समूह]] की [[ जाली (आदेश) |जाली (आदेश)]] आदिम धारणाएँ होती हैं।{{sfn|Johnstone|1983|p=41}} इस प्रकार इस दृष्टिकोण में विशुद्ध रूप से बीजगणितीय डेटा से स्थलीय रूप से रोचक स्थान बनाना संभव हो जाता है।{{sfn|Johnstone|1983|p=42}}


== इतिहास ==
== इतिहास ==
इस प्रकार टोपोलॉजी के लिए पहला दृष्टिकोण ज्यामितीय था, जहां एक ने [[यूक्लिडियन अंतरिक्ष]] से शुरुआत की और चीजों को एक साथ जोड़ दिया। किन्तु 1930 के दशक में स्टोन द्वैत पर [[मार्शल स्टोन]] के काम ने दिखाया कि टोपोलॉजी को बीजगणितीय दृष्टिकोण (जाली-सैद्धांतिक) से देखा जा सकता है। इस प्रकार स्टोन के अतिरिक्त, [[हेनरी वॉलमैन]] इस विचार का फायदा उठाने वाले पहले व्यक्ति थे। दूसरों ने [[चार्ल्स एह्रेसमैन]] और उनके छात्र जीन बेनाबौ (और साथ ही साथ अन्य) तक इस रास्ते को जारी रखा, पचास के दशक के अंत में अगला मौलिक कदम उठाया गया था। इस प्रकार उनकी अंतर्दृष्टि टोपोलॉजिकल और डिफरेंशियल श्रेणियों (गणित) के अध्ययन से उत्पन्न हुई।{{sfn|Johnstone|1983|p=42}}
टोपोलॉजी के लिए पहला दृष्टिकोण ज्यामितीय था, जहां इसने [[यूक्लिडियन अंतरिक्ष]] से प्रारंभ की थी और चीजों को साथ जोड़ दिया था। किन्तु सन्न 1930 के दशक में स्टोन द्वैत पर [[मार्शल स्टोन]] के कार्य ने दिखाया था कि टोपोलॉजी को बीजगणितीय दृष्टिकोण (जाली-सैद्धांतिक) से देखा जा सकता है। इस प्रकार स्टोन के अतिरिक्त, [[हेनरी वॉलमैन]] इस विचार का लाभ उठाने वाले प्रथम व्यक्ति थे। अतः दूसरों ने [[चार्ल्स एह्रेसमैन]] और उनके छात्र जीन बेनाबौ (और साथ ही साथ अन्य) तक इस मार्ग को जारी रखा था, जिसे पचास के दशक के अंत में अगला मौलिक कदम उठाया था। इस प्रकार उनकी अंतर्दृष्टि टोपोलॉजिकल और भिन्नता श्रेणियों (गणित) के अध्ययन से उत्पन्न हुई थी।{{sfn|Johnstone|1983|p=42}}


एह्रेसमैन के दृष्टिकोण में एक श्रेणी का उपयोग करना सम्मिलित था, जिनकी वस्तुएं [[पूर्ण जाली]] थीं, इस प्रकार जो एक वितरण संपत्ति कानून को संतुष्ट करती थीं और जिनके आकारिकी नक्शे थे, जो सीमित रूप से जुड़ते थे और मिलते थे और मनमाने ढंग से जुड़ते थे। उन्होंने ऐसे जालक को "स्थानीय जाली" कहा; [[जाली सिद्धांत]] में अन्य धारणाओं के साथ अस्पष्टता से बचने के लिए आज उन्हें फ्रेम कहा जाता है।{{sfn|Johnstone|1983|p=43}}
एह्रेसमैन के दृष्टिकोण में श्रेणी का उपयोग करना सम्मिलित होता था, जिनकी वस्तुएं [[पूर्ण जाली]] होती थीं। इस प्रकार जो वितरण संपत्ति नियम को संतुष्ट करती थीं और जिनके आकारिकी मानचित्र होते थे, जो सीमित रूप से जुड़ते थे और मिलते थे और अनैतिक रूप से जुड़ते थे। इस प्रकार उन्होंने ऐसे जालक को "स्थानीय जाली" कहा; [[जाली सिद्धांत]] में अन्य धारणाओं के साथ अस्पष्टता से बचने के लिए आज उन्हें फ्रेम कहा जाता है।{{sfn|Johnstone|1983|p=43}}


इस प्रकार समसामयिक अर्थों में फ़्रेम और लोकेल का सिद्धांत निम्नलिखित दशकों (जॉन इसबेल, [[पीटर जॉनस्टोन (गणितज्ञ)]], [http://staff.cs.manchester.ac.uk/~hsimmons/ हेरोल्ड सिमंस], बर्नहार्ड बानाशेवस्की, एल्स पुल्ट्र, टिल प्लेवे, जेपी वर्म्यूलेन, स्टीव विकर्स) के माध्यम से टोपोलॉजी की एक जीवंत शाखा में विकसित किया गया था, आवेदन के साथ विभिन्न क्षेत्रों में, विशेष रूप से सैद्धांतिक कंप्यूटर विज्ञान में भी व लोकेल थ्योरी के इतिहास के बारे में अधिक जानकारी के लिए जॉनस्टोन का अवलोकन देखें। [4]
सामान्यतः समसामयिक अर्थों में फ़्रेम और स्थानों का सिद्धांत निम्नलिखित दशकों (जॉन इसबेल, [[पीटर जॉनस्टोन (गणितज्ञ)]], [http://staff.cs.manchester.ac.uk/~hsimmons/ हेरोल्ड सिमंस], बर्नहार्ड बानाशेवस्की, एल्स पुल्ट्र, टिल प्लेवे, जेपी वर्म्यूलेन, स्टीव विकर्स) के माध्यम से टोपोलॉजी की जीवंत शाखा में विकसित किया गया था। इस प्रकार आवेदन के साथ विभिन्न क्षेत्रों में, विशेष रूप से सैद्धांतिक कंप्यूटर विज्ञान में भी व स्थान सिद्धांत के इतिहास के बारे में अधिक जानकारी के लिए जॉनस्टोन का अवलोकन देख है। [4]


== अंतर्ज्ञान ==
== अंतर्ज्ञान ==
परंपरागत रूप से, एक [[टोपोलॉजिकल स्पेस]] में एक टोपोलॉजी के साथ [[बिंदु (टोपोलॉजी)]] का एक [[सेट (गणित)]] होता है, उपसमुच्चय की एक प्रणाली जिसे ओपन सेट कहा जाता है जो [[संघ (सेट सिद्धांत)]] (जॉइन (गणित) के रूप में) और चौराहे (सेट) के संचालन के साथ होता है। विशेष रूप से, खुले सेटों के किसी भी परिवार का मिलन फिर से एक खुला सेट होता है, और बहुत से खुले सेटों का प्रतिच्छेदन फिर से खुला होता है। व्यर्थ टोपोलॉजी में हम जाली के इन गुणों को मौलिक के रूप में लेते हैं, इसके बिना यह आवश्यक है कि जाली तत्व कुछ अंतर्निहित स्थान के बिंदुओं के सेट हों और जाली संचालन चौराहे और मिलन हो। बल्कि, बिंदु-मुक्त टोपोलॉजी बिना सीमा के बिंदु के बजाय "यथार्थवादी स्थान" की अवधारणा पर आधारित है।इस प्रकार ये धब्बे सम्मिलित हो सकते हैं (गणित) (प्रतीक <math>\vee </math>), एक संघ के समान, और हमारे पास स्पॉट के लिए [[मीट (गणित)]] ऑपरेशन भी है (प्रतीक <math>\and </math>), एक चौराहे के समान। इन दो परिचालनों का उपयोग करके धब्बे एक पूर्ण जाली बनाते हैं। यदि कोई स्थान दूसरों के जुड़ने से मिलता है तो उसे कुछ घटकों से मिलना पड़ता है, जो मोटे तौर पर बोलना वितरण कानून की ओर ले जाता है
परंपरागत रूप से, [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल अंतराल]] में टोपोलॉजी के साथ [[बिंदु (टोपोलॉजी)]] का [[सेट (गणित)|समूह (गणित)]] होता है, उपसमुच्चय की प्रणाली जिसे खुला समूह कहा जाता है, जो [[संघ (सेट सिद्धांत)]] (जॉइन (गणित) के रूप में) और प्रतिच्छेदन (समूह) के संचालन के साथ होता है। विशेष रूप से, खुले समूहों के किसी भी समूह का मिलन पुनः खुला समूह होता है और बहुत से खुले समूहों का प्रतिच्छेदन पुनः खुला होता है। इस प्रकार व्यर्थ टोपोलॉजी में हम जाली के इन गुणों को मौलिक के रूप में लेते हैं, इसके बिना यह आवश्यक होता है कि जाली तत्व कुछ अंतर्निहित स्थान के बिंदुओं के समूह होंता है और जाली संचालन प्रतिच्छेदन और मिलन होते है। बल्कि, बिंदु-मुक्त टोपोलॉजी बिना सीमा के बिंदु के अतिरिक्त "यथार्थवादी स्थान" की अवधारणा पर आधारित होती है। यह धब्बे सम्मिलित हो सकते हैं (गणित) (प्रतीक <math>\vee </math>), संघ के समान और हमारे समीप स्पॉट के लिए [[मीट (गणित)]] ऑपरेशन (प्रतीक <math>\and </math>) प्रतिच्छेदन के समान भी होते है। इन दो परिचालनों का उपयोग करके धब्बे पूर्ण जाली बनाते हैं। यदि कोई स्थान दूसरों के जुड़ने से मिलता है तब उसे कुछ घटकों से मिलना पड़ता है, जो सामान्यतः बोलना वितरण नियम की ओर ले जाता है।


:<math>b \wedge \left( \bigvee_{i\in I} a_i\right) = \bigvee_{i\in I} \left(b\wedge a_i\right)</math>
:<math>b \wedge \left( \bigvee_{i\in I} a_i\right) = \bigvee_{i\in I} \left(b\wedge a_i\right)</math>
जहां <math>a_i</math> और <math>b</math> स्पॉट और इंडेक्स परिवार हैं <math>I</math> मनमाने ढंग से बड़ा हो सकता है। इस प्रकार यह वितरण कानून एक टोपोलॉजिकल स्पेस के खुले सेटों की जाली से भी संतुष्ट है।
जहां <math>a_i</math> और <math>b</math> स्पॉट और अनुक्रमणिका समूह होते हैं, जिसे <math>I</math> अनैतिक रूप से बड़ा हो सकता है। इस प्रकार यह वितरण नियम टोपोलॉजिकल स्थान के खुले समूहों की जाली से भी संतुष्ट किया जाता है।


यदि <math>X</math> और <math>Y</math> द्वारा निरूपित खुले सेट के जाली के साथ सामयिक स्थान हैं <math>\Omega(X)</math> और <math>\Omega(Y)</math>, क्रमशः, और <math>f\colon X\to Y</math> एक सतत कार्य है, फिर, चूंकि निरंतर मानचित्र के अनुसार खुले सेट की पूर्व-छवि खुली है, हम विपरीत दिशा में जाली का नक्शा प्राप्त करते हैं: <math>f^*\colon \Omega(Y)\to \Omega(X)</math>. इस तरह के विपरीत दिशा वाले जाली मानचित्र बिंदु-मुक्त सेटिंग में निरंतर मानचित्रों के उचित सामान्यीकरण के रूप में कार्य करते हैं।
यदि <math>X</math> और <math>Y</math> द्वारा निरूपित खुले समूह के जाली के साथ सामयिक स्थान क्रमशः <math>\Omega(X)</math> और <math>\Omega(Y)</math> होता हैं और <math>f\colon X\to Y</math> सतत कार्य होते है, चूंकि निरंतर मानचित्र के अनुसार खुले समूह के पूर्व-प्रतिबिंब खुले होते है, हम विपरीत दिशा में जाली का मानचित्र <math>f^*\colon \Omega(Y)\to \Omega(X)</math> प्राप्त करते हैं। इस प्रकार के विपरीत दिशा वाले जाली मानचित्र बिंदु-मुक्त सेटिंग में निरंतर मानचित्रों के उचित सामान्यीकरण के रूप में कार्य करते हैं।


== औपचारिक परिभाषाएँ ==
== औपचारिक परिभाषाएँ ==


इस प्रकार मूल अवधारणा एक फ्रेम की है, एक पूर्ण जाली जो उपरोक्त सामान्य वितरण कानून को संतुष्ट करती है; फ़्रेम होमोमोर्फिज़्म फ़्रेम के बीच मानचित्र हैं जो सभी जोड़ों (विशेष रूप से, जाली का सबसे कम तत्व) और परिमित मीट (विशेष रूप से, जाली का [[सबसे बड़ा तत्व]]) का सम्मान करते हैं। फ़्रेम, फ़्रेम होमोमोर्फिज़्म के साथ मिलकर एक श्रेणी बनाते हैं।
मूल अवधारणा '''फ्रेम''' की होती है, चूँकि पूर्ण जाली जो उपरोक्त सामान्य वितरण नियम को संतुष्ट करती है। इस प्रकार '''फ़्रेम समरूपता''' फ़्रेम के मध्य मानचित्र होते हैं जो सभी जोड़ों (विशेष रूप से, जाली का सबसे कम तत्व) और परिमित मीट (विशेष रूप से, जाली का [[सबसे बड़ा तत्व]]) का सम्मान करते हैं। जो फ़्रेम, फ़्रेम समरूपता के साथ मिलकर श्रेणी बनाते हैं।


फ़्रेम की श्रेणी की [[विपरीत श्रेणी]] को लोकेल की श्रेणी के रूप में जाना जाता है। एक स्थान <math>X</math> इस प्रकार एक फ्रेम के अतिरिक्त और कुछ नहीं है; यदि हम इसे एक फ्रेम के रूप में मानते हैं, तो हम इसे लिखेंगे <math>O(X)</math>. एक स्थानीय रूपवाद <math>X\to Y</math> स्थान से <math>X</math> स्थान के लिए <math>Y</math> एक फ्रेम समरूपता द्वारा दिया जाता है <math>O(Y)\to O(X)</math>.
फ़्रेम की श्रेणी की [[विपरीत श्रेणी]] को '''स्थान की श्रेणी''' के रूप में जाना जाता है। इस प्रकार स्थान <math>X</math> इस प्रकार फ्रेम के अतिरिक्त और कुछ नहीं होता है। यदि हम इसे फ्रेम के रूप में मानते हैं, तब हम इसे लिखेंगे <math>O(X)</math>. '''स्थानीय रूपवाद''' <math>X\to Y</math> स्थान से <math>X</math> स्थान के लिए <math>Y</math> फ्रेम समरूपता <math>O(Y)\to O(X)</math> द्वारा दिया जाता है।


हर टोपोलॉजिकल स्पेस <math>T</math> एक ढाँचे को जन्म देता है <math>\Omega(T)</math> खुले सेटों की और इस प्रकार एक लोकेल की। एक लोकेल को स्थानिक कहा जाता है यदि यह इस तरह से एक टोपोलॉजिकल स्पेस से उत्पन्न होने वाले लोकेल के लिए आइसोमॉर्फिक (लोकेल की श्रेणी में) है।
प्रत्येक टोपोलॉजिकल अंतराल <math>T</math> ढाँचे को जन्म देता है और इस प्रकार स्थान की <math>\Omega(T)</math> खुले समूहों के स्थान को '''स्थानिक''' कहा जाता है। यदि यह इस प्रकार से टोपोलॉजिकल अंतराल से उत्पन्न होने वाले स्थान के लिए आइसोमॉर्फिक (स्थान की श्रेणी में) होता है।


== स्थानों के उदाहरण ==
== स्थानों के उदाहरण ==


* जैसा ऊपर बताया गया है, प्रत्येक टोपोलॉजिकल स्पेस <math>T</math> एक ढाँचे को जन्म देता है <math>\Omega(T)</math> खुले सेट के और इस प्रकार एक स्थान के लिए, परिभाषा के अनुसार एक स्थानिक होगा।।
* जैसा ऊपर बताया गया हैकि प्रत्येक टोपोलॉजिकल अंतराल <math>T</math> ढाँचे को जन्म देता है और इस प्रकार स्थान के लिए <math>\Omega(T)</math> खुले समूह के लिए परिभाषा के अनुसार स्थानिक होते है।
* एक टोपोलॉजिकल स्पेस दिया गया <math>T</math>, हम इसके [[ नियमित खुला सेट |नियमित खुला सेट]] के संग्रह पर भी विचार कर सकते हैं। इस प्रकार यह एक फ्रेम है जिसका उपयोग के रूप में संघ के बंद होने के इंटीरियर में सम्मिलित होने के लिए किया जाता है, और चौराहे को पूरा करने के रूप में किया जाता है। इस प्रकार हम इससे संबंधित एक अन्य लोकेल प्राप्त करते हैं <math>T</math>. यह स्थान सामान्यतः स्थानिक नहीं होगा।
* सामान्यतः टोपोलॉजिकल अंतराल <math>T</math> दिया गया है, हम इसके [[ नियमित खुला सेट |नियमित मुक्त समूह]] के संग्रह पर भी विचार कर सकते हैं। यह विशेष प्रकार का फ्रेम होता है, जिसके उपयोग के रूप में संघ के बंद होने के आंतरिक भाग में सम्मिलित होने के लिए किया जाता है और प्रतिच्छेदन को पूर्ण करने के रूप में किया जाता है। इस प्रकार हम इससे संबंधित अन्य स्थान <math>T</math> प्राप्त करते हैं। यह स्थान सामान्यतः स्थानिक नहीं होता है।
* प्रत्येक के लिए <math>n\in\N</math> और प्रत्येक <math>a\in\R</math>, प्रतीक का प्रयोग करें <math>U_{n,a}</math> और इन प्रतीकों पर मुक्त फ्रेम का निर्माण करें, संबंधों को संशोधित करें
* प्रत्येक के लिए <math>n\in\N</math> और प्रत्येक <math>a\in\R</math>, प्रतीक का <math>U_{n,a}</math> प्रयोग करते है और इन प्रतीकों पर मुक्त फ्रेम का निर्माण करते हुए संबंधों को संशोधित करता है।


::<math>\bigvee_{a\in\R} U_{n,a}=\top  \ \text{  for every }n\in\N</math>
::<math>\bigvee_{a\in\R} U_{n,a}=\top  \ \text{  for every }n\in\N</math>
::<math>U_{n,a}\and U_{n,b}=\bot  \ \text{  for every }n\in\N\text{ and all }a,b\in\R\text{ with } a\ne b</math>
::<math>U_{n,a}\and U_{n,b}=\bot  \ \text{  for every }n\in\N\text{ and all }a,b\in\R\text{ with } a\ne b</math>
::<math>\bigvee_{n\in\N} U_{n,a}=\top  \ \text{  for every }a\in\R</math>
::<math>\bigvee_{n\in\N} U_{n,a}=\top  \ \text{  for every }a\in\R</math>
:(कहाँ <math>\top</math> सबसे बड़ा तत्व दर्शाता है और <math>\bot</math> फ़्रेम का सबसे छोटा तत्व।) परिणामी स्थान को विशेषण कार्यों के स्थान के रूप में जाना जाता है <math>\N\to\R</math>. संबंधों की व्याख्या का सुझाव देने के लिए डिज़ाइन किया गया है <math>U_{n,a}</math> इस प्रकार उन सभी विशेषण कार्यों के सेट के रूप में <math>f:\N\to\R</math> साथ <math>f(n)=a</math>. बेशक, ऐसे कोई विशेषण कार्य नहीं हैं <math>\N\to\R</math>, और यह स्थानिक स्थान नहीं है।
:(जहाँ <math>\top</math> सबसे बड़ा तत्व दर्शाता है और <math>\bot</math> फ़्रेम का सबसे छोटा तत्व दर्शाता है।) परिणामी स्थान को विशेषण कार्यों के स्थान <math>\N\to\R</math> के रूप में जाना जाता है। इस प्रकार संबंधों की व्याख्या का सुझाव देने के लिए <math>U_{n,a}</math> डिज़ाइन किया गया है, उन सभी विशेषण कार्यों के समूह के रूप में <math>f:\N\to\R</math> साथ <math>f(n)=a</math>. निस्संदेह, ऐसे कोई विशेषण <math>\N\to\R</math> कार्य नहीं होते हैं और यह स्थानिक स्थान नहीं होता है।


== स्थानों का सिद्धांत ==
== स्थानों का सिद्धांत ==
हमने देखा है कि हमारे पास एक मज़ेदार है <math>\Omega</math> टोपोलॉजिकल स्पेस की श्रेणी से लोकेशंस की श्रेणी तक यदि हम इस फ़ंक्टर को [[सोबर स्पेस]] की पूरी उपश्रेणी तक सीमित रखते हैं, इस प्रकार तो हम सोबर स्पेस की श्रेणी और लोकेशंस की श्रेणी में निरंतर मानचित्रों की [[पूर्ण एम्बेडिंग]] प्राप्त करते हैं। इस अर्थ में, लोकेशंस सोबर स्पेस के सामान्यीकरण हैं।
हमने देखा है कि हमारे समीप <math>\Omega</math> आकर्षक होते है। इस प्रकार टोपोलॉजिकल अंतराल की श्रेणी से स्थानों की श्रेणी तक यदि हम इस फ़ंक्टर को [[सोबर स्पेस|सोबर अंतराल]] की पूर्ण उपश्रेणी तक सीमित रखते हैं, अतः तब हम सोबर अंतराल की श्रेणी और स्थानों की श्रेणी में निरंतर मानचित्रों की [[पूर्ण एम्बेडिंग]] प्राप्त करते हैं। इस अर्थ में, स्थानों सोबर अंतराल के सामान्यीकरण होता हैं।


इस प्रकार स्थान के संदर्भ में [[बिंदु-सेट टोपोलॉजी]] की अधिकांश अवधारणाओं का अनुवाद करना और अनुरूप प्रमेयों को सिद्ध करना संभव है। पसंद के स्वयंसिद्ध के आधार पर मौलिक टोपोलॉजी के कुछ महत्वपूर्ण तथ्य विकल्प-मुक्त हो जाते हैं (अर्थात, रचनावाद (गणित), जो विशेष रूप से कंप्यूटर विज्ञान के लिए आकर्षक है)। उदाहरण के लिए, [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] लोकेशंस के मनमाने उत्पाद रचनात्मक रूप से कॉम्पैक्ट होते हैं (यह पॉइंट-सेट टोपोलॉजी में टायकोनॉफ़ का प्रमेय है), या समान स्थानों की पूर्णता रचनात्मक होती है। इस प्रकार यह उपयोगी हो सकता है यदि कोई ऐसे टॉपोज़ में काम करता है जिसमें [[पसंद का स्वयंसिद्ध]] नहीं है।{{sfn|Johnstone|1983}} अन्य लाभों में सम्मिलित हैं [[पैराकॉम्पैक्ट स्पेस]] का उत्तम व्यवहार, पैराकॉम्पैक्ट लोकेशंस के स्वैच्छिक उत्पाद पैराकॉम्पैक्ट के साथ, जो पैराकॉम्पैक्ट स्पेस के लिए सही नहीं है, या तथ्य यह है कि स्थानीय समूहों के उपसमूह हमेशा बंद रहते हैं।
इस प्रकार स्थान के संदर्भ में [[बिंदु-सेट टोपोलॉजी|बिंदु-समूह टोपोलॉजी]] की अधिकांश अवधारणाओं का अनुवाद करना और अनुरूप प्रमेयों को सिद्ध करना संभव होता है। इस प्रकार पसंद के स्वयंसिद्ध के आधार पर मौलिक टोपोलॉजी के कुछ महत्वपूर्ण तथ्य विकल्प-मुक्त हो जाते हैं (अर्थात्, रचनावाद (गणित), जो विशेष रूप से कंप्यूटर विज्ञान के लिए आकर्षक होते है)। उदाहरण के लिए, सघन [[ कॉम्पैक्ट जगह |स्थान,]] स्थानों के अनैतिक उत्पाद रचनात्मक रूप से सघन होते हैं (यह बिंदु-समूह टोपोलॉजी में टायकोनॉफ़ का प्रमेय होता है) या समान स्थानों की पूर्णता रचनात्मक होती है। इस प्रकार यह उपयोगी हो सकता है कि यदि कोई ऐसे टॉपोज़ में कार्य करता है, जिसमें [[पसंद का स्वयंसिद्ध]] नहीं होता है।{{sfn|Johnstone|1983}} इस प्रकार अन्य लाभों में सम्मिलित होते हैं, अतः [[पैराकॉम्पैक्ट स्पेस|उप-सघन स्थान]] का उत्तम व्यवहार, उप-सघन स्थानों के स्वैच्छिक उत्पाद उप-सघन के साथ, जो उप-सघन स्थान के लिए सही नहीं होता है या तथ्य यह होता है कि स्थानीय समूहों के उपसमूह हमेशा बंद रहते हैं।


इस प्रकार एक अन्य बिंदु जहां टोपोलॉजी और लोकेल थ्योरी दृढ़ता से अलग हो जाती है, सबस्पेस बनाम सबलोकल्स और घनत्व की अवधारणा है: किसी लोकेल के घने सबलोकल्स के किसी भी संग्रह को देखते हुए <math>X</math>, उनका चौराहा भी घना है <math>X</math>.<ref>{{Cite book |last=Johnstone |first=Peter T. |title=एक हाथी के रेखाचित्र|year=2002 |chapter=C1.2 Locales and Spaces}}</ref> यह जॉन आर. इसबेल के घनत्व प्रमेय की ओर ले जाता है: इस प्रकार प्रत्येक लोकेल में एक सबसे छोटा सघन सबलोकेल होता है। इन परिणामों का टोपोलॉजिकल स्पेस के दायरे में कोई समकक्ष नहीं है।
सामान्यतः अन्य बिंदु जहां टोपोलॉजी और स्थान सिद्धांत दृढ़ता से भिन्न हो जाती है। इस प्रकार उपस्थान बनाम उप्स्थानो और घनत्व की अवधारणा होती है, अतः किसी स्थान के घने उप्स्थानो के किसी भी संग्रह को देखते हुए <math>X</math>, उनका चौराहा <math>X</math> भी घना है,<ref>{{Cite book |last=Johnstone |first=Peter T. |title=एक हाथी के रेखाचित्र|year=2002 |chapter=C1.2 Locales and Spaces}}</ref> यह जॉन आर. इसबेल के घनत्व प्रमेय की ओर ले जाता है। इस प्रकार प्रत्येक स्थान में सबसे छोटा सघन उपस्थान होता है। इन परिणामों का टोपोलॉजिकल अंतराल की सीमा में कोई समकक्ष नहीं होता है।


== यह भी देखें ==
== यह भी देखें ==
* हेटिंग बीजगणित। फ्रेम पूर्ण हेयटिंग बीजगणित के समान होते हैं (यदि फ्रेम होमोमोर्फिज्म को बीजगणित होमोमोर्फिज्म को हेटिंग करने की आवश्यकता नहीं है।)
* हेटिंग बीजगणित फ्रेम पूर्ण हेयटिंग बीजगणित के समान होते हैं (यदि फ्रेम होमोमोर्फिज्म को बीजगणित होमोमोर्फिज्म को हेटिंग करने की आवश्यकता नहीं होती है।)
* [[पूर्ण बूलियन बीजगणित]]कोई भी पूर्ण बूलियन बीजगणित एक फ्रेम है (यह एक स्थानिक फ्रेम है यदि और केवल यदि यह परमाणु है)।
* [[पूर्ण बूलियन बीजगणित]] कोई भी पूर्ण बूलियन बीजगणित फ्रेम होता है (यह स्थानिक फ्रेम है और यदि यह परमाणु होता है)।
* सोबर स्पेस और स्थानिक लोकेशंस के बीच समानता के स्पष्ट निर्माण सहित टोपोलॉजिकल रिक्त स्थान की श्रेणी और लोकेशंस की श्रेणी के बीच संबंधों पर विवरण स्टोन द्वंद्व पर लेख में पाया जा सकता है।
* सोबर अंतराल और स्थानिक स्थानों के मध्य समानता के स्पष्ट निर्माण सहित टोपोलॉजिकल रिक्त स्थान की श्रेणी और स्थानों की श्रेणी के मध्य संबंधों पर विवरण स्टोन द्वंद्व पर लेख में पाया जा सकता है।
* व्हाइटहेड की बिंदु-मुक्त ज्यामिति।
* व्हाइटहेड की बिंदु-मुक्त ज्यामिति।
*[[ मेरिओटोपोलॉजी ]]।
*[[ मेरिओटोपोलॉजी ]]।

Revision as of 11:54, 21 June 2023

गणित में, पॉइंटलेस टोपोलॉजी, जिसे बिंदु-मुफ्त टोपोलॉजी (या बिन्दुमुफ्त टोपोलॉजी) और स्थान सिद्धांत भी कहा जाता है। इस प्रकार टोपोलॉजी के लिए दृष्टिकोण होता है, जो बिन्दुयो (गणित) का उल्लेख करने से बचता है और जिसमें मुक्त समूह की जाली (आदेश) आदिम धारणाएँ होती हैं।[1] इस प्रकार इस दृष्टिकोण में विशुद्ध रूप से बीजगणितीय डेटा से स्थलीय रूप से रोचक स्थान बनाना संभव हो जाता है।[2]

इतिहास

टोपोलॉजी के लिए पहला दृष्टिकोण ज्यामितीय था, जहां इसने यूक्लिडियन अंतरिक्ष से प्रारंभ की थी और चीजों को साथ जोड़ दिया था। किन्तु सन्न 1930 के दशक में स्टोन द्वैत पर मार्शल स्टोन के कार्य ने दिखाया था कि टोपोलॉजी को बीजगणितीय दृष्टिकोण (जाली-सैद्धांतिक) से देखा जा सकता है। इस प्रकार स्टोन के अतिरिक्त, हेनरी वॉलमैन इस विचार का लाभ उठाने वाले प्रथम व्यक्ति थे। अतः दूसरों ने चार्ल्स एह्रेसमैन और उनके छात्र जीन बेनाबौ (और साथ ही साथ अन्य) तक इस मार्ग को जारी रखा था, जिसे पचास के दशक के अंत में अगला मौलिक कदम उठाया था। इस प्रकार उनकी अंतर्दृष्टि टोपोलॉजिकल और भिन्नता श्रेणियों (गणित) के अध्ययन से उत्पन्न हुई थी।[2]

एह्रेसमैन के दृष्टिकोण में श्रेणी का उपयोग करना सम्मिलित होता था, जिनकी वस्तुएं पूर्ण जाली होती थीं। इस प्रकार जो वितरण संपत्ति नियम को संतुष्ट करती थीं और जिनके आकारिकी मानचित्र होते थे, जो सीमित रूप से जुड़ते थे और मिलते थे और अनैतिक रूप से जुड़ते थे। इस प्रकार उन्होंने ऐसे जालक को "स्थानीय जाली" कहा; जाली सिद्धांत में अन्य धारणाओं के साथ अस्पष्टता से बचने के लिए आज उन्हें फ्रेम कहा जाता है।[3]

सामान्यतः समसामयिक अर्थों में फ़्रेम और स्थानों का सिद्धांत निम्नलिखित दशकों (जॉन इसबेल, पीटर जॉनस्टोन (गणितज्ञ), हेरोल्ड सिमंस, बर्नहार्ड बानाशेवस्की, एल्स पुल्ट्र, टिल प्लेवे, जेपी वर्म्यूलेन, स्टीव विकर्स) के माध्यम से टोपोलॉजी की जीवंत शाखा में विकसित किया गया था। इस प्रकार आवेदन के साथ विभिन्न क्षेत्रों में, विशेष रूप से सैद्धांतिक कंप्यूटर विज्ञान में भी व स्थान सिद्धांत के इतिहास के बारे में अधिक जानकारी के लिए जॉनस्टोन का अवलोकन देख है। [4]

अंतर्ज्ञान

परंपरागत रूप से, टोपोलॉजिकल अंतराल में टोपोलॉजी के साथ बिंदु (टोपोलॉजी) का समूह (गणित) होता है, उपसमुच्चय की प्रणाली जिसे खुला समूह कहा जाता है, जो संघ (सेट सिद्धांत) (जॉइन (गणित) के रूप में) और प्रतिच्छेदन (समूह) के संचालन के साथ होता है। विशेष रूप से, खुले समूहों के किसी भी समूह का मिलन पुनः खुला समूह होता है और बहुत से खुले समूहों का प्रतिच्छेदन पुनः खुला होता है। इस प्रकार व्यर्थ टोपोलॉजी में हम जाली के इन गुणों को मौलिक के रूप में लेते हैं, इसके बिना यह आवश्यक होता है कि जाली तत्व कुछ अंतर्निहित स्थान के बिंदुओं के समूह होंता है और जाली संचालन प्रतिच्छेदन और मिलन होते है। बल्कि, बिंदु-मुक्त टोपोलॉजी बिना सीमा के बिंदु के अतिरिक्त "यथार्थवादी स्थान" की अवधारणा पर आधारित होती है। यह धब्बे सम्मिलित हो सकते हैं (गणित) (प्रतीक ), संघ के समान और हमारे समीप स्पॉट के लिए मीट (गणित) ऑपरेशन (प्रतीक ) प्रतिच्छेदन के समान भी होते है। इन दो परिचालनों का उपयोग करके धब्बे पूर्ण जाली बनाते हैं। यदि कोई स्थान दूसरों के जुड़ने से मिलता है तब उसे कुछ घटकों से मिलना पड़ता है, जो सामान्यतः बोलना वितरण नियम की ओर ले जाता है।

जहां और स्पॉट और अनुक्रमणिका समूह होते हैं, जिसे अनैतिक रूप से बड़ा हो सकता है। इस प्रकार यह वितरण नियम टोपोलॉजिकल स्थान के खुले समूहों की जाली से भी संतुष्ट किया जाता है।

यदि और द्वारा निरूपित खुले समूह के जाली के साथ सामयिक स्थान क्रमशः और होता हैं और सतत कार्य होते है, चूंकि निरंतर मानचित्र के अनुसार खुले समूह के पूर्व-प्रतिबिंब खुले होते है, हम विपरीत दिशा में जाली का मानचित्र प्राप्त करते हैं। इस प्रकार के विपरीत दिशा वाले जाली मानचित्र बिंदु-मुक्त सेटिंग में निरंतर मानचित्रों के उचित सामान्यीकरण के रूप में कार्य करते हैं।

औपचारिक परिभाषाएँ

मूल अवधारणा फ्रेम की होती है, चूँकि पूर्ण जाली जो उपरोक्त सामान्य वितरण नियम को संतुष्ट करती है। इस प्रकार फ़्रेम समरूपता फ़्रेम के मध्य मानचित्र होते हैं जो सभी जोड़ों (विशेष रूप से, जाली का सबसे कम तत्व) और परिमित मीट (विशेष रूप से, जाली का सबसे बड़ा तत्व) का सम्मान करते हैं। जो फ़्रेम, फ़्रेम समरूपता के साथ मिलकर श्रेणी बनाते हैं।

फ़्रेम की श्रेणी की विपरीत श्रेणी को स्थान की श्रेणी के रूप में जाना जाता है। इस प्रकार स्थान इस प्रकार फ्रेम के अतिरिक्त और कुछ नहीं होता है। यदि हम इसे फ्रेम के रूप में मानते हैं, तब हम इसे लिखेंगे . स्थानीय रूपवाद स्थान से स्थान के लिए फ्रेम समरूपता द्वारा दिया जाता है।

प्रत्येक टोपोलॉजिकल अंतराल ढाँचे को जन्म देता है और इस प्रकार स्थान की खुले समूहों के स्थान को स्थानिक कहा जाता है। यदि यह इस प्रकार से टोपोलॉजिकल अंतराल से उत्पन्न होने वाले स्थान के लिए आइसोमॉर्फिक (स्थान की श्रेणी में) होता है।

स्थानों के उदाहरण

  • जैसा ऊपर बताया गया हैकि प्रत्येक टोपोलॉजिकल अंतराल ढाँचे को जन्म देता है और इस प्रकार स्थान के लिए खुले समूह के लिए परिभाषा के अनुसार स्थानिक होते है।
  • सामान्यतः टोपोलॉजिकल अंतराल दिया गया है, हम इसके नियमित मुक्त समूह के संग्रह पर भी विचार कर सकते हैं। यह विशेष प्रकार का फ्रेम होता है, जिसके उपयोग के रूप में संघ के बंद होने के आंतरिक भाग में सम्मिलित होने के लिए किया जाता है और प्रतिच्छेदन को पूर्ण करने के रूप में किया जाता है। इस प्रकार हम इससे संबंधित अन्य स्थान प्राप्त करते हैं। यह स्थान सामान्यतः स्थानिक नहीं होता है।
  • प्रत्येक के लिए और प्रत्येक , प्रतीक का प्रयोग करते है और इन प्रतीकों पर मुक्त फ्रेम का निर्माण करते हुए संबंधों को संशोधित करता है।
(जहाँ सबसे बड़ा तत्व दर्शाता है और फ़्रेम का सबसे छोटा तत्व दर्शाता है।) परिणामी स्थान को विशेषण कार्यों के स्थान के रूप में जाना जाता है। इस प्रकार संबंधों की व्याख्या का सुझाव देने के लिए डिज़ाइन किया गया है, उन सभी विशेषण कार्यों के समूह के रूप में साथ . निस्संदेह, ऐसे कोई विशेषण कार्य नहीं होते हैं और यह स्थानिक स्थान नहीं होता है।

स्थानों का सिद्धांत

हमने देखा है कि हमारे समीप आकर्षक होते है। इस प्रकार टोपोलॉजिकल अंतराल की श्रेणी से स्थानों की श्रेणी तक यदि हम इस फ़ंक्टर को सोबर अंतराल की पूर्ण उपश्रेणी तक सीमित रखते हैं, अतः तब हम सोबर अंतराल की श्रेणी और स्थानों की श्रेणी में निरंतर मानचित्रों की पूर्ण एम्बेडिंग प्राप्त करते हैं। इस अर्थ में, स्थानों सोबर अंतराल के सामान्यीकरण होता हैं।

इस प्रकार स्थान के संदर्भ में बिंदु-समूह टोपोलॉजी की अधिकांश अवधारणाओं का अनुवाद करना और अनुरूप प्रमेयों को सिद्ध करना संभव होता है। इस प्रकार पसंद के स्वयंसिद्ध के आधार पर मौलिक टोपोलॉजी के कुछ महत्वपूर्ण तथ्य विकल्प-मुक्त हो जाते हैं (अर्थात्, रचनावाद (गणित), जो विशेष रूप से कंप्यूटर विज्ञान के लिए आकर्षक होते है)। उदाहरण के लिए, सघन स्थान, स्थानों के अनैतिक उत्पाद रचनात्मक रूप से सघन होते हैं (यह बिंदु-समूह टोपोलॉजी में टायकोनॉफ़ का प्रमेय होता है) या समान स्थानों की पूर्णता रचनात्मक होती है। इस प्रकार यह उपयोगी हो सकता है कि यदि कोई ऐसे टॉपोज़ में कार्य करता है, जिसमें पसंद का स्वयंसिद्ध नहीं होता है।[4] इस प्रकार अन्य लाभों में सम्मिलित होते हैं, अतः उप-सघन स्थान का उत्तम व्यवहार, उप-सघन स्थानों के स्वैच्छिक उत्पाद उप-सघन के साथ, जो उप-सघन स्थान के लिए सही नहीं होता है या तथ्य यह होता है कि स्थानीय समूहों के उपसमूह हमेशा बंद रहते हैं।

सामान्यतः अन्य बिंदु जहां टोपोलॉजी और स्थान सिद्धांत दृढ़ता से भिन्न हो जाती है। इस प्रकार उपस्थान बनाम उप्स्थानो और घनत्व की अवधारणा होती है, अतः किसी स्थान के घने उप्स्थानो के किसी भी संग्रह को देखते हुए , उनका चौराहा भी घना है,[5] यह जॉन आर. इसबेल के घनत्व प्रमेय की ओर ले जाता है। इस प्रकार प्रत्येक स्थान में सबसे छोटा सघन उपस्थान होता है। इन परिणामों का टोपोलॉजिकल अंतराल की सीमा में कोई समकक्ष नहीं होता है।

यह भी देखें

  • हेटिंग बीजगणित फ्रेम पूर्ण हेयटिंग बीजगणित के समान होते हैं (यदि फ्रेम होमोमोर्फिज्म को बीजगणित होमोमोर्फिज्म को हेटिंग करने की आवश्यकता नहीं होती है।)
  • पूर्ण बूलियन बीजगणित कोई भी पूर्ण बूलियन बीजगणित फ्रेम होता है (यह स्थानिक फ्रेम है और यदि यह परमाणु होता है)।
  • सोबर अंतराल और स्थानिक स्थानों के मध्य समानता के स्पष्ट निर्माण सहित टोपोलॉजिकल रिक्त स्थान की श्रेणी और स्थानों की श्रेणी के मध्य संबंधों पर विवरण स्टोन द्वंद्व पर लेख में पाया जा सकता है।
  • व्हाइटहेड की बिंदु-मुक्त ज्यामिति।
  • मेरिओटोपोलॉजी

उद्धरण

  1. Johnstone 1983, p. 41.
  2. 2.0 2.1 Johnstone 1983, p. 42.
  3. Johnstone 1983, p. 43.
  4. Johnstone 1983.
  5. Johnstone, Peter T. (2002). "C1.2 Locales and Spaces". एक हाथी के रेखाचित्र.


ग्रन्थसूची

A general introduction to pointless topology is

This is, in its own words, to be read as the trailer for Johnstone's monograph (which appeared already in 1982 and can still be used for basic reference):

There is a recent monograph

where one also finds a more extensive bibliography.

For relations with logic:

  • Vickers, Steven (1996). Topology via Logic. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

For a more concise account see the respective chapters in:

  • Pedicchio, Maria Cristina, Tholen, Walter (Eds.). Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory. Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press, 2003, pp. 49–101.
  • Hazewinkel, Michiel (Ed.). Handbook of Algebra. Vol. 3, North-Holland, Amsterdam, 2003, pp. 791–857.
  • Grätzer, George, Wehrung, Friedrich (Eds.). Lattice Theory: Special Topics and Applications. Vol. 1, Springer, Basel, 2014, pp. 55–88.