स्ट्रिंग सिद्धांत परिदृश्य: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Collection of possible string theory vacua}} {{String theory|cTopic=Theory}} स्ट्रिंग सिद्धांत में, स्ट...")
 
No edit summary
Line 2: Line 2:
{{String theory|cTopic=Theory}}
{{String theory|cTopic=Theory}}


[[ स्ट्रिंग सिद्धांत ]] में, स्ट्रिंग थ्योरी लैंडस्केप (या वैकुआ का लैंडस्केप) संभावित झूठे वैक्यूम का संग्रह है,<ref name=Ashok>The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10<sup>500</sup>. See [[Michael R. Douglas|M. Douglas]], "The statistics of string / M theory vacua", ''JHEP'' '''0305''', 46 (2003). {{arxiv|hep-th/0303194}}; S. Ashok and M. Douglas, "Counting flux vacua", ''JHEP'' '''0401''', 060 (2004).</ref> एक साथ [[संघनन (भौतिकी)]]भौतिकी) को नियंत्रित करने वाले मापदंडों के विकल्पों का एक सामूहिक परिदृश्य शामिल है।
[[ स्ट्रिंग सिद्धांत |स्ट्रिंग सिद्धांत]] में, स्ट्रिंग थ्योरी लैंडस्केप (या वैकुआ का लैंडस्केप) संभावित असत्यवादी वैक्यूम का संग्रह है,<ref name=Ashok>The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10<sup>500</sup>. See [[Michael R. Douglas|M. Douglas]], "The statistics of string / M theory vacua", ''JHEP'' '''0305''', 46 (2003). {{arxiv|hep-th/0303194}}; S. Ashok and M. Douglas, "Counting flux vacua", ''JHEP'' '''0401''', 060 (2004).</ref> एक साथ [[संघनन (भौतिकी)]] को नियंत्रित करने वाले मापदंडों के विकल्पों का सामूहिक परिदृश्य सम्मिलित है।


परिदृश्य शब्द [[विकासवादी जीव विज्ञान]] में एक [[फिटनेस परिदृश्य]] की धारणा से आया है।<ref>{{cite book |first=Jim |last=Baggott |year=2018 |title=क्वांटम स्पेस लूप क्वांटम ग्रेविटी एंड द सर्च फॉर द स्ट्रक्चर ऑफ स्पेस, टाइम एंड द यूनिवर्स|location= |publisher=Oxford University Press |isbn=978-0-19-253681-5 |page=288 |url=https://books.google.com/books?id=HwN6DwAAQBAJ&pg=PA288 }}</ref> यह पहली बार [[ली स्मोलिन]] द्वारा अपनी पुस्तक द लाइफ ऑफ द कॉसमॉस (1997) में ब्रह्माण्ड विज्ञान पर लागू किया गया था, और पहली बार [[ लियोनार्ड सुस्किंड ]] द्वारा स्ट्रिंग सिद्धांत के संदर्भ में इसका उपयोग किया गया था।<ref>L. Smolin, "Did the universe evolve?", ''Classical and Quantum Gravity'' '''9''', 173–191 (1992). L. Smolin, ''[[The Life of the Cosmos]]'' (Oxford, 1997)</ref>
परिदृश्य शब्द [[विकासवादी जीव विज्ञान]] में [[फिटनेस परिदृश्य]] की धारणा से आया है।<ref>{{cite book |first=Jim |last=Baggott |year=2018 |title=क्वांटम स्पेस लूप क्वांटम ग्रेविटी एंड द सर्च फॉर द स्ट्रक्चर ऑफ स्पेस, टाइम एंड द यूनिवर्स|location= |publisher=Oxford University Press |isbn=978-0-19-253681-5 |page=288 |url=https://books.google.com/books?id=HwN6DwAAQBAJ&pg=PA288 }}</ref> यह प्रथम बार [[ली स्मोलिन]] द्वारा अपनी पुस्तक द लाइफ ऑफ द कॉसमॉस (1997) में ब्रह्माण्ड विज्ञान पर प्रारम्भ किया गया था, और प्रथम बार [[ लियोनार्ड सुस्किंड ]] द्वारा स्ट्रिंग सिद्धांत के संदर्भ में इसका उपयोग किया गया था।<ref>L. Smolin, "Did the universe evolve?", ''Classical and Quantum Gravity'' '''9''', 173–191 (1992). L. Smolin, ''[[The Life of the Cosmos]]'' (Oxford, 1997)</ref>




== सघन कैलाबी-याउ मैनिफोल्ड्स<!--'KKLT mechanism' redirects here-->==
== सघन कैलाबी-याउ मैनिफोल्ड्स==
{{main|Compactification (physics)}}
{{main|Compactification (physics)}}


Line 24: Line 24:
सैद्धांतिक रूप से अनुमत विन्यासों की संख्या ने सुझावों को प्रेरित किया है{{according to whom|date=May 2017}} कि ऐसा नहीं है, और यह कि कई अलग-अलग वैकुआ शारीरिक रूप से महसूस किए जाते हैं।<ref>L. Susskind, "The anthropic landscape of string theory", {{arxiv|hep-th/0302219}}.</ref> [[मानवशास्त्रीय सिद्धांत]] प्रस्तावित करता है कि मौलिक स्थिरांक के मान हो सकते हैं जो उनके पास हैं क्योंकि ऐसे मूल्य जीवन के लिए आवश्यक हैं (और इसलिए स्थिरांक को मापने के लिए बुद्धिमान पर्यवेक्षक)। मानव परिदृश्य इस प्रकार परिदृश्य के उन हिस्सों के संग्रह को संदर्भित करता है जो बुद्धिमान जीवन का समर्थन करने के लिए उपयुक्त हैं।
सैद्धांतिक रूप से अनुमत विन्यासों की संख्या ने सुझावों को प्रेरित किया है{{according to whom|date=May 2017}} कि ऐसा नहीं है, और यह कि कई अलग-अलग वैकुआ शारीरिक रूप से महसूस किए जाते हैं।<ref>L. Susskind, "The anthropic landscape of string theory", {{arxiv|hep-th/0302219}}.</ref> [[मानवशास्त्रीय सिद्धांत]] प्रस्तावित करता है कि मौलिक स्थिरांक के मान हो सकते हैं जो उनके पास हैं क्योंकि ऐसे मूल्य जीवन के लिए आवश्यक हैं (और इसलिए स्थिरांक को मापने के लिए बुद्धिमान पर्यवेक्षक)। मानव परिदृश्य इस प्रकार परिदृश्य के उन हिस्सों के संग्रह को संदर्भित करता है जो बुद्धिमान जीवन का समर्थन करने के लिए उपयुक्त हैं।


इस विचार को एक ठोस भौतिक सिद्धांत में लागू करने के लिए यह आवश्यक है{{why|date=May 2017}} एक [[मल्टीवर्स]] को पोस्ट करने के लिए जिसमें मौलिक भौतिक पैरामीटर अलग-अलग मान ले सकते हैं। यह [[शाश्वत मुद्रास्फीति]] के संदर्भ में महसूस किया गया है।
इस विचार को एक ठोस भौतिक सिद्धांत में प्रारम्भ करने के लिए यह आवश्यक है{{why|date=May 2017}} एक [[मल्टीवर्स]] को पोस्ट करने के लिए जिसमें मौलिक भौतिक पैरामीटर अलग-अलग मान ले सकते हैं। यह [[शाश्वत मुद्रास्फीति]] के संदर्भ में महसूस किया गया है।


=== वेनबर्ग मॉडल ===
=== वेनबर्ग मॉडल ===
Line 30: Line 30:


1987 में, [[स्टीवन वेनबर्ग]] ने प्रस्तावित किया कि ब्रह्माण्ड संबंधी स्थिरांक का प्रेक्षित मान इतना छोटा था क्योंकि ब्रह्मांड में बहुत बड़े ब्रह्माण्ड संबंधी स्थिरांक के साथ जीवन का होना असंभव है।<ref>S. Weinberg, "Anthropic bound on the cosmological constant", ''Phys. Rev. Lett.'' '''59''', 2607 (1987).</ref>
1987 में, [[स्टीवन वेनबर्ग]] ने प्रस्तावित किया कि ब्रह्माण्ड संबंधी स्थिरांक का प्रेक्षित मान इतना छोटा था क्योंकि ब्रह्मांड में बहुत बड़े ब्रह्माण्ड संबंधी स्थिरांक के साथ जीवन का होना असंभव है।<ref>S. Weinberg, "Anthropic bound on the cosmological constant", ''Phys. Rev. Lett.'' '''59''', 2607 (1987).</ref>
वेनबर्ग ने संभाव्य तर्कों के आधार पर ब्रह्माण्ड संबंधी स्थिरांक के परिमाण की भविष्यवाणी करने का प्रयास किया। अन्य प्रयास{{which|date=May 2017}} कण भौतिकी के मॉडल के समान तर्क को लागू करने के लिए बनाया गया है।<ref>S. M. Carroll, "Is our universe natural?" (2005) {{arxiv|hep-th/0512148}} reviews a number of proposals in preprints dated 2004/5.</ref>
वेनबर्ग ने संभाव्य तर्कों के आधार पर ब्रह्माण्ड संबंधी स्थिरांक के परिमाण की भविष्यवाणी करने का प्रयास किया। अन्य प्रयास{{which|date=May 2017}} कण भौतिकी के मॉडल के समान तर्क को प्रारम्भ करने के लिए बनाया गया है।<ref>S. M. Carroll, "Is our universe natural?" (2005) {{arxiv|hep-th/0512148}} reviews a number of proposals in preprints dated 2004/5.</ref>
इस तरह के प्रयास बायेसियन संभाव्यता के सामान्य विचारों पर आधारित होते हैं; संभाव्यता की व्याख्या एक ऐसे संदर्भ में करना जहां संभाव्यता वितरण से केवल एक नमूना आकार खींचना संभव है, लगातार संभावना में समस्याग्रस्त है, लेकिन [[बायेसियन संभावना]] में नहीं, जो कि बार-बार होने वाली घटनाओं की आवृत्ति के संदर्भ में परिभाषित नहीं है।
इस तरह के प्रयास बायेसियन संभाव्यता के सामान्य विचारों पर आधारित होते हैं; संभाव्यता की व्याख्या एक ऐसे संदर्भ में करना जहां संभाव्यता वितरण से केवल एक नमूना आकार खींचना संभव है, लगातार संभावना में समस्याग्रस्त है, लेकिन [[बायेसियन संभावना]] में नहीं, जो कि बार-बार होने वाली घटनाओं की आवृत्ति के संदर्भ में परिभाषित नहीं है।


Line 43: Line 43:


=== सरलीकृत दृष्टिकोण ===
=== सरलीकृत दृष्टिकोण ===
[[मैक्स टेगमार्क]] एट अल। हाल ही में इन आपत्तियों पर विचार किया है और [[ axion ]] [[ गहरे द्रव्य ]] के लिए एक सरल मानवशास्त्रीय परिदृश्य प्रस्तावित किया है जिसमें वे तर्क देते हैं कि इनमें से पहली दो समस्याएं लागू नहीं होती हैं।<ref>M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, "Dimensionless constants, cosmology and other dark matters", {{arxiv|astro-ph/0511774}}. F. Wilczek, "Enlightenment, knowledge, ignorance, temptation", {{arxiv|hep-ph/0512187}}. See also the discussion at [http://www.math.columbia.edu/~woit/wordpress/?p=310].</ref>
[[मैक्स टेगमार्क]] एट अल। हाल ही में इन आपत्तियों पर विचार किया है और [[ axion ]] [[ गहरे द्रव्य ]] के लिए एक सरल मानवशास्त्रीय परिदृश्य प्रस्तावित किया है जिसमें वे तर्क देते हैं कि इनमें से प्रथम दो समस्याएं प्रारम्भ नहीं होती हैं।<ref>M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, "Dimensionless constants, cosmology and other dark matters", {{arxiv|astro-ph/0511774}}. F. Wilczek, "Enlightenment, knowledge, ignorance, temptation", {{arxiv|hep-ph/0512187}}. See also the discussion at [http://www.math.columbia.edu/~woit/wordpress/?p=310].</ref>
विलेनकिन और सहयोगियों ने किसी दिए गए निर्वात की संभावनाओं को परिभाषित करने के लिए एक सुसंगत तरीका प्रस्तावित किया है।<ref>See, ''e.g.'' {{cite journal|year=2007|title=A measure of the multiverse|author1=Alexander Vilenkin|doi=10.1088/1751-8113/40/25/S22|journal=Journal of Physics A: Mathematical and Theoretical|volume=40|issue=25|pages=6777–6785|arxiv=hep-th/0609193|bibcode = 2007JPhA...40.6777V |s2cid=119390736}}</ref>
विलेनकिन और सहयोगियों ने किसी दिए गए निर्वात की संभावनाओं को परिभाषित करने के लिए एक सुसंगत तरीका प्रस्तावित किया है।<ref>See, ''e.g.'' {{cite journal|year=2007|title=A measure of the multiverse|author1=Alexander Vilenkin|doi=10.1088/1751-8113/40/25/S22|journal=Journal of Physics A: Mathematical and Theoretical|volume=40|issue=25|pages=6777–6785|arxiv=hep-th/0609193|bibcode = 2007JPhA...40.6777V |s2cid=119390736}}</ref>
कई सरलीकृत दृष्टिकोण वाले लोगों के साथ एक समस्या{{who|date=March 2016}} ने कोशिश की है कि वे एक ब्रह्माण्ड संबंधी स्थिरांक की भविष्यवाणी करते हैं जो परिमाण के 10–1000 क्रमों (किसी की मान्यताओं के आधार पर) के एक कारक द्वारा बहुत बड़ा है और इसलिए सुझाव देते हैं कि ब्रह्मांडीय त्वरण मनाया जाने की तुलना में बहुत अधिक तेज़ होना चाहिए।<ref>{{cite journal|title=ब्रह्माण्ड संबंधी स्थिरांक की मानव उत्पत्ति के लिए एक अवलोकन परीक्षण|author=Abraham Loeb|date=2006|journal=Journal of Cosmology and Astroparticle Physics|volume=0605|issue=5|pages=009 |bibcode=2006JCAP...05..009L|arxiv=astro-ph/0604242|doi=10.1088/1475-7516/2006/05/009|s2cid=39340203}}</ref><ref>{{cite journal|title=लैम्ब्डा और क्यू तबाही के लिए मानवशास्त्रीय भविष्यवाणी|author=Jaume Garriga|author2=Alexander Vilenkin|name-list-style=amp|date=2006|volume=163|pages=245–57|journal=Prog. Theor. Phys. Suppl.|doi=10.1143/PTPS.163.245 |arxiv = hep-th/0508005 |bibcode = 2006PThPS.163..245G |s2cid=118936307}}</ref><ref>{{cite journal|title=बूसो-पोल्किंस्की मल्टीवर्स में संभावनाएँ|author=Delia Schwartz-Perlov|author2=Alexander Vilenkin|name-list-style=amp|date=2006|journal=Journal of Cosmology and Astroparticle Physics|volume=0606|issue=6|pages=010 |bibcode=2006JCAP...06..010S|arxiv=hep-th/0601162|doi=10.1088/1475-7516/2006/06/010|s2cid=119337679}}</ref>
कई सरलीकृत दृष्टिकोण वाले लोगों के साथ एक समस्या{{who|date=March 2016}} ने कोशिश की है कि वे एक ब्रह्माण्ड संबंधी स्थिरांक की भविष्यवाणी करते हैं जो परिमाण के 10–1000 क्रमों (किसी की मान्यताओं के आधार पर) के एक कारक द्वारा बहुत बड़ा है और इसलिए सुझाव देते हैं कि ब्रह्मांडीय त्वरण मनाया जाने की तुलना में बहुत अधिक तेज़ होना चाहिए।<ref>{{cite journal|title=ब्रह्माण्ड संबंधी स्थिरांक की मानव उत्पत्ति के लिए एक अवलोकन परीक्षण|author=Abraham Loeb|date=2006|journal=Journal of Cosmology and Astroparticle Physics|volume=0605|issue=5|pages=009 |bibcode=2006JCAP...05..009L|arxiv=astro-ph/0604242|doi=10.1088/1475-7516/2006/05/009|s2cid=39340203}}</ref><ref>{{cite journal|title=लैम्ब्डा और क्यू तबाही के लिए मानवशास्त्रीय भविष्यवाणी|author=Jaume Garriga|author2=Alexander Vilenkin|name-list-style=amp|date=2006|volume=163|pages=245–57|journal=Prog. Theor. Phys. Suppl.|doi=10.1143/PTPS.163.245 |arxiv = hep-th/0508005 |bibcode = 2006PThPS.163..245G |s2cid=118936307}}</ref><ref>{{cite journal|title=बूसो-पोल्किंस्की मल्टीवर्स में संभावनाएँ|author=Delia Schwartz-Perlov|author2=Alexander Vilenkin|name-list-style=amp|date=2006|journal=Journal of Cosmology and Astroparticle Physics|volume=0606|issue=6|pages=010 |bibcode=2006JCAP...06..010S|arxiv=hep-th/0601162|doi=10.1088/1475-7516/2006/06/010|s2cid=119337679}}</ref>
Line 55: Line 55:


=== लैंडस्केप से कमजोर स्केल सुपरसिमेट्री ===
=== लैंडस्केप से कमजोर स्केल सुपरसिमेट्री ===
स्ट्रिंग परिदृश्य विचारों को कमजोर पैमाने के सुपरसिमेट्री और लिटिल पदानुक्रम समस्या की धारणा पर लागू किया जा सकता है।
स्ट्रिंग परिदृश्य विचारों को कमजोर पैमाने के सुपरसिमेट्री और लिटिल पदानुक्रम समस्या की धारणा पर प्रारम्भ किया जा सकता है।
स्ट्रिंग वैकुआ के लिए जिसमें निम्न ऊर्जा प्रभावी क्षेत्र सिद्धांत के रूप में MSSM (मिनिमल सुपरसिमेट्रिक स्टैंडर्ड मॉडल) शामिल है, SUSY ब्रेकिंग फ़ील्ड के सभी मान
स्ट्रिंग वैकुआ के लिए जिसमें निम्न ऊर्जा प्रभावी क्षेत्र सिद्धांत के रूप में MSSM (मिनिमल सुपरसिमेट्रिक स्टैंडर्ड मॉडल) सम्मिलित है, SUSY ब्रेकिंग फ़ील्ड के सभी मान
परिदृश्य पर समान रूप से होने की संभावना है। इसने डगलस का नेतृत्व किया<ref>M. R. Douglas, "Statistical analysis of the supersymmetry breaking scale", {{arxiv|hep-th/0405279}}.</ref> और दूसरों का प्रस्ताव है कि SUSY ब्रेकिंग स्केल को एक शक्ति के रूप में वितरित किया जाता है
परिदृश्य पर समान रूप से होने की संभावना है। इसने डगलस का नेतृत्व किया<ref>M. R. Douglas, "Statistical analysis of the supersymmetry breaking scale", {{arxiv|hep-th/0405279}}.</ref> और दूसरों का प्रस्ताव है कि SUSY ब्रेकिंग स्केल को एक शक्ति के रूप में वितरित किया जाता है
परिदृश्य में कानून <math>P_{prior}\sim m_{soft}^{2n_F+n_D-1} </math> कहाँ <math>n_F</math> F-ब्रेकिंग फ़ील्ड्स की संख्या है
परिदृश्य में कानून <math>P_{prior}\sim m_{soft}^{2n_F+n_D-1} </math> कहाँ <math>n_F</math> F-ब्रेकिंग फ़ील्ड्स की संख्या है
(जटिल संख्या के रूप में वितरित) और <math>n_D</math> डी-ब्रेकिंग फ़ील्ड की संख्या है (वास्तविक संख्या के रूप में वितरित)।
(जटिल संख्या के रूप में वितरित) और <math>n_D</math> डी-ब्रेकिंग फ़ील्ड की संख्या है (वास्तविक संख्या के रूप में वितरित)।
इसके बाद, कोई अग्रवाल, बर्र, डोनॉग्यू, सेकेल (एबीडीएस) मानवीय आवश्यकता को लागू कर सकता है<ref>V. Agrawal, S. M. Barr, J. F. Donoghue and  
इसके बाद, कोई अग्रवाल, बर्र, डोनॉग्यू, सेकेल (एबीडीएस) मानवीय आवश्यकता को प्रारम्भ कर सकता है<ref>V. Agrawal, S. M. Barr, J. F. Donoghue and  
D. Seckel, "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking",  
D. Seckel, "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking",  
''Phys. Rev. Lett.'' '''80''', 1822 (1998).{{arxiv|hep-ph/9801253}}</ref> व्युत्पन्न कमजोर पैमाना कुछ के कारक के भीतर होता है
''Phys. Rev. Lett.'' '''80''', 1822 (1998).{{arxiv|hep-ph/9801253}}</ref> व्युत्पन्न कमजोर पैमाना कुछ के कारक के भीतर होता है

Revision as of 10:54, 26 June 2023

स्ट्रिंग सिद्धांत में, स्ट्रिंग थ्योरी लैंडस्केप (या वैकुआ का लैंडस्केप) संभावित असत्यवादी वैक्यूम का संग्रह है,[1] एक साथ संघनन (भौतिकी) को नियंत्रित करने वाले मापदंडों के विकल्पों का सामूहिक परिदृश्य सम्मिलित है।

परिदृश्य शब्द विकासवादी जीव विज्ञान में फिटनेस परिदृश्य की धारणा से आया है।[2] यह प्रथम बार ली स्मोलिन द्वारा अपनी पुस्तक द लाइफ ऑफ द कॉसमॉस (1997) में ब्रह्माण्ड विज्ञान पर प्रारम्भ किया गया था, और प्रथम बार लियोनार्ड सुस्किंड द्वारा स्ट्रिंग सिद्धांत के संदर्भ में इसका उपयोग किया गया था।[3]


सघन कैलाबी-याउ मैनिफोल्ड्स

स्ट्रिंग थ्योरी में फ्लक्स वैक्यूआ की संख्या को आमतौर पर मोटे तौर पर माना जाता है ,[4] लेकिन हो सकता है [5] या उच्चतर। एफ सिद्धांत में पाए जाने वाले विभिन्न होमोलॉजी (गणित) चक्रों पर कैलाबी-यॉ मैनिफोल्ड्स और सामान्यीकृत चुंबकीय प्रवाह के विकल्पों से बड़ी संख्या में संभावनाएं उत्पन्न होती हैं।

यदि वैक्यूआ के स्थान में कोई संरचना नहीं है, तो पर्याप्त रूप से छोटे ब्रह्माण्ड संबंधी स्थिरांक वाले एक को खोजने की समस्या एनपी पूर्ण है।[6] यह सबसेट योग समस्या का एक संस्करण है।

स्ट्रिंग थ्योरी वैक्यूम स्थिरीकरण का एक संभावित तंत्र, जिसे अब KKLT तंत्र के रूप में जाना जाता है2003 में शमित काचरू, रेनाटा कलोश, एंड्री लिंडे और संदीप त्रिवेदी द्वारा प्रस्तावित किया गया था।[7]


मानवशास्त्रीय सिद्धांत द्वारा फाइन-ट्यूनिंग

फाइन-ट्यूनिंग (भौतिकी) | ब्रह्माण्ड संबंधी स्थिरांक या हिग्स बॉसन द्रव्यमान जैसे स्थिरांकों की फाइन-ट्यूनिंग आमतौर पर उनके विशेष मूल्यों को यादृच्छिक रूप से लेने के विपरीत सटीक भौतिक कारणों से होने के लिए माना जाता है। यही है, इन मूल्यों को विशिष्ट रूप से अंतर्निहित भौतिक कानूनों के अनुरूप होना चाहिए।

सैद्धांतिक रूप से अनुमत विन्यासों की संख्या ने सुझावों को प्रेरित किया है[according to whom?] कि ऐसा नहीं है, और यह कि कई अलग-अलग वैकुआ शारीरिक रूप से महसूस किए जाते हैं।[8] मानवशास्त्रीय सिद्धांत प्रस्तावित करता है कि मौलिक स्थिरांक के मान हो सकते हैं जो उनके पास हैं क्योंकि ऐसे मूल्य जीवन के लिए आवश्यक हैं (और इसलिए स्थिरांक को मापने के लिए बुद्धिमान पर्यवेक्षक)। मानव परिदृश्य इस प्रकार परिदृश्य के उन हिस्सों के संग्रह को संदर्भित करता है जो बुद्धिमान जीवन का समर्थन करने के लिए उपयुक्त हैं।

इस विचार को एक ठोस भौतिक सिद्धांत में प्रारम्भ करने के लिए यह आवश्यक है[why?] एक मल्टीवर्स को पोस्ट करने के लिए जिसमें मौलिक भौतिक पैरामीटर अलग-अलग मान ले सकते हैं। यह शाश्वत मुद्रास्फीति के संदर्भ में महसूस किया गया है।

वेनबर्ग मॉडल

1987 में, स्टीवन वेनबर्ग ने प्रस्तावित किया कि ब्रह्माण्ड संबंधी स्थिरांक का प्रेक्षित मान इतना छोटा था क्योंकि ब्रह्मांड में बहुत बड़े ब्रह्माण्ड संबंधी स्थिरांक के साथ जीवन का होना असंभव है।[9] वेनबर्ग ने संभाव्य तर्कों के आधार पर ब्रह्माण्ड संबंधी स्थिरांक के परिमाण की भविष्यवाणी करने का प्रयास किया। अन्य प्रयास[which?] कण भौतिकी के मॉडल के समान तर्क को प्रारम्भ करने के लिए बनाया गया है।[10] इस तरह के प्रयास बायेसियन संभाव्यता के सामान्य विचारों पर आधारित होते हैं; संभाव्यता की व्याख्या एक ऐसे संदर्भ में करना जहां संभाव्यता वितरण से केवल एक नमूना आकार खींचना संभव है, लगातार संभावना में समस्याग्रस्त है, लेकिन बायेसियन संभावना में नहीं, जो कि बार-बार होने वाली घटनाओं की आवृत्ति के संदर्भ में परिभाषित नहीं है।

ऐसे ढांचे में, संभावना कुछ मूलभूत मापदंडों का अवलोकन करना द्वारा दिया गया है,

कहाँ मौलिक सिद्धांत से, मापदंडों की पूर्व संभावना है और एंथ्रोपिक चयन फ़ंक्शन है, जो ब्रह्मांड में मापदंडों के साथ घटित होने वाले पर्यवेक्षकों की संख्या से निर्धारित होता है .[citation needed]

ये संभाव्य तर्क परिदृश्य का सबसे विवादास्पद पहलू हैं। इन प्रस्तावों की तकनीकी आलोचनाओं ने इंगित किया है कि:[citation needed]Template:Year needed

  • कार्यक्रम स्ट्रिंग थ्योरी में पूरी तरह से अज्ञात है और किसी भी समझदार संभाव्य तरीके से परिभाषित या व्याख्या करना असंभव हो सकता है।
  • कार्यक्रम पूरी तरह से अज्ञात है, क्योंकि जीवन की उत्पत्ति के बारे में बहुत कम जानकारी है। सरलीकृत मानदंड (जैसे कि आकाशगंगाओं की संख्या) का उपयोग पर्यवेक्षकों की संख्या के लिए प्रॉक्सी के रूप में किया जाना चाहिए। इसके अलावा, अवलोकन योग्य ब्रह्मांड के उन पैरामीटरों के लिए मौलिक रूप से भिन्न मापदंडों के लिए इसकी गणना करना संभव नहीं हो सकता है।

सरलीकृत दृष्टिकोण

मैक्स टेगमार्क एट अल। हाल ही में इन आपत्तियों पर विचार किया है और axion गहरे द्रव्य के लिए एक सरल मानवशास्त्रीय परिदृश्य प्रस्तावित किया है जिसमें वे तर्क देते हैं कि इनमें से प्रथम दो समस्याएं प्रारम्भ नहीं होती हैं।[11] विलेनकिन और सहयोगियों ने किसी दिए गए निर्वात की संभावनाओं को परिभाषित करने के लिए एक सुसंगत तरीका प्रस्तावित किया है।[12] कई सरलीकृत दृष्टिकोण वाले लोगों के साथ एक समस्या[who?] ने कोशिश की है कि वे एक ब्रह्माण्ड संबंधी स्थिरांक की भविष्यवाणी करते हैं जो परिमाण के 10–1000 क्रमों (किसी की मान्यताओं के आधार पर) के एक कारक द्वारा बहुत बड़ा है और इसलिए सुझाव देते हैं कि ब्रह्मांडीय त्वरण मनाया जाने की तुलना में बहुत अधिक तेज़ होना चाहिए।[13][14][15]


व्याख्या

कुछ मेटास्टेबल वैकुआ की बड़ी संख्या पर विवाद करते हैं।[citation needed] मानवशास्त्रीय परिदृश्य का अस्तित्व, अर्थ और वैज्ञानिक प्रासंगिकता, हालांकि, विवादास्पद बनी हुई है।[further explanation needed]

ब्रह्माण्ड संबंधी निरंतर समस्या

आंद्रेई लिंडे, सर मार्टिन रीस और लियोनार्ड सस्किंड ने ब्रह्माण्ड संबंधी निरंतर समस्या के समाधान के रूप में इसकी वकालत की।[citation needed]

लैंडस्केप से कमजोर स्केल सुपरसिमेट्री

स्ट्रिंग परिदृश्य विचारों को कमजोर पैमाने के सुपरसिमेट्री और लिटिल पदानुक्रम समस्या की धारणा पर प्रारम्भ किया जा सकता है। स्ट्रिंग वैकुआ के लिए जिसमें निम्न ऊर्जा प्रभावी क्षेत्र सिद्धांत के रूप में MSSM (मिनिमल सुपरसिमेट्रिक स्टैंडर्ड मॉडल) सम्मिलित है, SUSY ब्रेकिंग फ़ील्ड के सभी मान परिदृश्य पर समान रूप से होने की संभावना है। इसने डगलस का नेतृत्व किया[16] और दूसरों का प्रस्ताव है कि SUSY ब्रेकिंग स्केल को एक शक्ति के रूप में वितरित किया जाता है परिदृश्य में कानून कहाँ F-ब्रेकिंग फ़ील्ड्स की संख्या है (जटिल संख्या के रूप में वितरित) और डी-ब्रेकिंग फ़ील्ड की संख्या है (वास्तविक संख्या के रूप में वितरित)। इसके बाद, कोई अग्रवाल, बर्र, डोनॉग्यू, सेकेल (एबीडीएस) मानवीय आवश्यकता को प्रारम्भ कर सकता है[17] व्युत्पन्न कमजोर पैमाना कुछ के कारक के भीतर होता है हमारे मापा मूल्य (ऐसा न हो कि जीवन के लिए आवश्यक नाभिक जैसा कि हम जानते हैं कि यह अस्थिर हो जाता है (परमाणु सिद्धांत))। इन प्रभावों को हल्के पावर-लॉ ड्रा के साथ बड़े सॉफ्ट SUSY ब्रेकिंग टर्म्स में मिलाते हुए, परिदृश्य से अपेक्षित हिग्स बोसॉन और सुपरपार्टिकल द्रव्यमान की गणना की जा सकती है।[18] हिग्स मास प्रायिकता वितरण 125 GeV के आसपास होता है, जबकि स्पार्टिकल्स (लाइट हिगसिनो के अपवाद के साथ) की प्रवृत्ति होती है। वर्तमान एलएचसी खोज सीमाओं से काफी परे है। यह दृष्टिकोण कड़ी स्वाभाविकता के अनुप्रयोग का एक उदाहरण है।

वैज्ञानिक प्रासंगिकता

डेविड ग्रॉस सुझाव देते हैं[citation needed] कि यह विचार स्वाभाविक रूप से अवैज्ञानिक, अचूक या अपरिपक्व है। स्ट्रिंग थ्योरी के मानवशास्त्रीय परिदृश्य पर एक प्रसिद्ध बहस परिदृश्य की खूबियों पर स्मोलिन-सुस्किंड बहस है।

लोकप्रिय स्वागत

ब्रह्मांड विज्ञान में मानवशास्त्रीय सिद्धांत के बारे में कई लोकप्रिय पुस्तकें हैं।[19] दो भौतिकी ब्लॉग, लुबोस मोटल और पीटर वोइट के लेखक मानवशास्त्रीय सिद्धांत के इस प्रयोग के विरोध में हैं।[why?][20]


यह भी देखें

  • दलदल (भौतिकी)
  • स्ट्रिंग सिद्धांत # अतिरिक्त आयाम

संदर्भ

  1. The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10500. See M. Douglas, "The statistics of string / M theory vacua", JHEP 0305, 46 (2003). arXiv:hep-th/0303194; S. Ashok and M. Douglas, "Counting flux vacua", JHEP 0401, 060 (2004).
  2. Baggott, Jim (2018). क्वांटम स्पेस लूप क्वांटम ग्रेविटी एंड द सर्च फॉर द स्ट्रक्चर ऑफ स्पेस, टाइम एंड द यूनिवर्स. Oxford University Press. p. 288. ISBN 978-0-19-253681-5.
  3. L. Smolin, "Did the universe evolve?", Classical and Quantum Gravity 9, 173–191 (1992). L. Smolin, The Life of the Cosmos (Oxford, 1997)
  4. Read, James; Le Bihan, Baptiste (2021). "The landscape and the multiverse: What's the problem?". Synthese. 199 (3–4): 7749–7771. doi:10.1007/s11229-021-03137-0. S2CID 234815857.
  5. Taylor, Washington; Wang, Yi-Nan (2015). "अधिकांश फ्लक्स वैकुआ के साथ एफ-सिद्धांत ज्यामिति". Journal of High Energy Physics. 2015 (12): 164. arXiv:1511.03209. Bibcode:2015JHEP...12..164T. doi:10.1007/JHEP12(2015)164. S2CID 41149049.
  6. Frederik Denef; Douglas, Michael R. (2007). "परिदृश्य की कम्प्यूटेशनल जटिलता". Annals of Physics. 322 (5): 1096–1142. arXiv:hep-th/0602072. Bibcode:2007AnPhy.322.1096D. doi:10.1016/j.aop.2006.07.013. S2CID 281586.
  7. Kachru, Shamit; Kallosh, Renata; Linde, Andrei; Trivedi, Sandip P. (2003). "स्ट्रिंग थ्योरी में डी सिटर वेकुआ". Physical Review D. 68 (4): 046005. arXiv:hep-th/0301240. Bibcode:2003PhRvD..68d6005K. doi:10.1103/PhysRevD.68.046005. S2CID 119482182.
  8. L. Susskind, "The anthropic landscape of string theory", arXiv:hep-th/0302219.
  9. S. Weinberg, "Anthropic bound on the cosmological constant", Phys. Rev. Lett. 59, 2607 (1987).
  10. S. M. Carroll, "Is our universe natural?" (2005) arXiv:hep-th/0512148 reviews a number of proposals in preprints dated 2004/5.
  11. M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, "Dimensionless constants, cosmology and other dark matters", arXiv:astro-ph/0511774. F. Wilczek, "Enlightenment, knowledge, ignorance, temptation", arXiv:hep-ph/0512187. See also the discussion at [1].
  12. See, e.g. Alexander Vilenkin (2007). "A measure of the multiverse". Journal of Physics A: Mathematical and Theoretical. 40 (25): 6777–6785. arXiv:hep-th/0609193. Bibcode:2007JPhA...40.6777V. doi:10.1088/1751-8113/40/25/S22. S2CID 119390736.
  13. Abraham Loeb (2006). "ब्रह्माण्ड संबंधी स्थिरांक की मानव उत्पत्ति के लिए एक अवलोकन परीक्षण". Journal of Cosmology and Astroparticle Physics. 0605 (5): 009. arXiv:astro-ph/0604242. Bibcode:2006JCAP...05..009L. doi:10.1088/1475-7516/2006/05/009. S2CID 39340203.
  14. Jaume Garriga & Alexander Vilenkin (2006). "लैम्ब्डा और क्यू तबाही के लिए मानवशास्त्रीय भविष्यवाणी". Prog. Theor. Phys. Suppl. 163: 245–57. arXiv:hep-th/0508005. Bibcode:2006PThPS.163..245G. doi:10.1143/PTPS.163.245. S2CID 118936307.
  15. Delia Schwartz-Perlov & Alexander Vilenkin (2006). "बूसो-पोल्किंस्की मल्टीवर्स में संभावनाएँ". Journal of Cosmology and Astroparticle Physics. 0606 (6): 010. arXiv:hep-th/0601162. Bibcode:2006JCAP...06..010S. doi:10.1088/1475-7516/2006/06/010. S2CID 119337679.
  16. M. R. Douglas, "Statistical analysis of the supersymmetry breaking scale", arXiv:hep-th/0405279.
  17. V. Agrawal, S. M. Barr, J. F. Donoghue and D. Seckel, "Anthropic considerations in multiple domain theories and the scale of electroweak symmetry breaking", Phys. Rev. Lett. 80, 1822 (1998).arXiv:hep-ph/9801253
  18. H. Baer, V. Barger, H. Serce and K. Sinha, "Higgs and superparticle mass predictions from the landscape", JHEP 03, 002 (2018), arXiv:1712.01399 .
  19. L. Susskind, The cosmic landscape: string theory and the illusion of intelligent design (Little, Brown, 2005). M. J. Rees, Just six numbers: the deep forces that shape the universe (Basic Books, 2001). R. Bousso and J. Polchinski, "The string theory landscape", Sci. Am. 291, 60–69 (2004).
  20. Motl's blog criticized the anthropic principle and Woit's blog frequently attacks the anthropic string landscape.


बाहरी संबंध