एक्स-रे टेलीस्कोप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Telescope designed to observe remote objects by detecting X-rays}}
{{Short description|Telescope designed to observe remote objects by detecting X-rays}}
[[File:IXOFlyby1Large.jpg|thumb|[[अंतर्राष्ट्रीय एक्स-रे वेधशाला]] अवधारणा]]एक [[एक्स-रे]] टेलीस्कोप (एक्सआरटी) टेलीस्कोप है जिसे एक्स-रे स्पेक्ट्रम में दूरस्थ वस्तुओं का निरीक्षण करने के लिए डिज़ाइन किया गया है। पृथ्वी के वायुमंडल से ऊपर जाने के लिए, जो एक्स-रे के लिए अपारदर्शी है, एक्स-रे टेलीस्कोप को उच्च ऊंचाई वाले रॉकेट, [[ उच्च ऊंचाई वाला गुब्बारा |उच्च ऊंचाई वाला गुब्बारा]] या [[ अंतरिक्ष [[दूरबीन]] ]] पर लगाया जाना चाहिए।
[[File:IXOFlyby1Large.jpg|thumb|[[अंतर्राष्ट्रीय एक्स-रे वेधशाला]] अवधारणा]]


टेलीस्कोप के मूल तत्व [[ प्रकाशिकी |प्रकाशिकी]] (फोकसिंग या [[संधानिक]]) हैं, जो टेलीस्कोप में प्रवेश करने वाले [[विकिरण]] को इकट्ठा करते हैं, और [[एक्स-रे डिटेक्टर]], जिस पर विकिरण एकत्र और मापा जाता है। इन तत्वों के लिए विभिन्न प्रकार के विभिन्न डिजाइनों और तकनीकों का उपयोग किया गया है।


उपग्रहों पर मौजूद कई टेलीस्कोप डिटेक्टर-टेलीस्कोप सिस्टम की कई प्रतियों या विविधताओं से जुड़े होते हैं, जिनकी क्षमताएं दूसरे को जोड़ती हैं या पूरक होती हैं और अतिरिक्त निश्चित या हटाने योग्य तत्व<ref>{{Cite web|title = Chandra :: About Chandra :: Science Instruments|url = http://chandra.si.edu/about/science_instruments.html|website = chandra.si.edu|access-date = 2016-02-19}}</ref><ref>{{Cite web|title = उपकरण|url = http://sci.esa.int/xmm-newton/31281-instruments/|website = sci.esa.int|access-date = 2016-02-19}}</ref> (फ़िल्टर, स्पेक्ट्रोमीटर) जो उपकरण में कार्यक्षमता जोड़ता है।
एक्स-रे टेलीस्कोप (एक्सआरटी) एक टेलीस्कोप है जिसे एक्स-रे स्पेक्ट्रम में दूरस्थ वस्तुओं का निरीक्षण करने के लिए डिज़ाइन किया गया है। पृथ्वी के वायुमंडल से ऊपर जाने के लिए, जो एक्स-रे के लिए अपारदर्शी है, एक्स-रे दूरबीनों को उच्च ऊंचाई वाले रॉकेट, गुब्बारों या कृत्रिम उपग्रहों पर स्थापित किया जाना चाहिए।
 
टेलीस्कोप के मूल तत्व [[ प्रकाशिकी |प्रकाशिकी]] (फोकसिंग या [[संधानिक]]) हैं, जो टेलीस्कोप में प्रवेश करने वाले [[विकिरण]] को संग्रह करते हैं, और [[एक्स-रे डिटेक्टर|एक्स-रे सूचक]], जिस पर विकिरण एकत्र और मापा जाता है। इन तत्वों के लिए विभिन्न प्रकार के विभिन्न डिजाइनों और तकनीकों का उपयोग किया गया है।
 
उपग्रहों पर उपस्थित  कई टेलीस्कोप सूचक -टेलीस्कोप प्रणाली की कई प्रतियों या विविधताओं से जुड़े होते हैं, जिनकी क्षमताएं दूसरे को जोड़ती हैं या पूरक होती हैं और अतिरिक्त निश्चित या हटाने योग्य तत्व<ref>{{Cite web|title = Chandra :: About Chandra :: Science Instruments|url = http://chandra.si.edu/about/science_instruments.html|website = chandra.si.edu|access-date = 2016-02-19}}</ref><ref>{{Cite web|title = उपकरण|url = http://sci.esa.int/xmm-newton/31281-instruments/|website = sci.esa.int|access-date = 2016-02-19}}</ref> (फ़िल्टर, स्पेक्ट्रोमीटर) जो उपकरण में कार्यक्षमता जोड़ता है।


== प्रकाशिकी ==
== प्रकाशिकी ==
{{main|X-ray optics}}
{{main|एक्स-रे प्रकाशिकी}}
एक्स-रे प्रकाशिकी में उपयोग की जाने वाली सबसे आम विधियाँ [[वोल्टर टेलीस्कोप]] और [[समांतरित्र]] हैं।
 
एक्स-रे प्रकाशिकी में उपयोग की जाने वाली सबसे समान्य विधियाँ [[वोल्टर टेलीस्कोप]] और [[समांतरित्र]] हैं।


=== फ़ोकसिंग दर्पण ===
=== फ़ोकसिंग दर्पण ===
[[File:Pointing X-ray Eyes at our Resident Supermassive Black Hole.jpg|thumb|NuSTAR, ने उच्च-ऊर्जा एक्स-रे प्रकाश में हमारी आकाशगंगा के केंद्र में सुपरमैसिव ब्लैक होल के इन पहले, केंद्रित दृश्यों को कैप्चर किया है।]]एक्स-रे दर्पणों का उपयोग संसूचक तल पर आपतित विकिरण को केंद्रित करने की अनुमति देता है। अलग-अलग ज्यामिति (जैसे किर्कपार्टिक-बैज़ या लॉबस्टर-आई) का सुझाव दिया गया है या नियोजित किया गया है, लेकिन मौजूदा टेलीस्कोपों ​​​​की लगभग समग्रता वोल्टर टेलीस्कोप की कुछ भिन्नताओं को नियोजित करती है। इस प्रकार के [[एक्स-रे प्रकाशिकी]] की सीमाओं के परिणामस्वरूप दृश्य या यूवी दूरबीनों की तुलना में दृश्य के बहुत संकीर्ण क्षेत्र (आमतौर पर <1 डिग्री) होते हैं।
[[File:Pointing X-ray Eyes at our Resident Supermassive Black Hole.jpg|thumb|NuSTAR, ने उच्च-ऊर्जा एक्स-रे प्रकाश में हमारी आकाशगंगा के केंद्र में सुपरमैसिव ब्लैक होल के इन पहले, केंद्रित दृश्यों को कैप्चर किया है।]]एक्स-रे दर्पणों का उपयोग संसूचक तल पर आपतित विकिरण को केंद्रित करने की अनुमति देता है। अलग-अलग ज्यामिति (जैसे किर्कपार्टिक-बैज़ या लॉबस्टर-आई) का सुझाव दिया गया है या नियोजित किया गया है, किंतु उपस्थित टेलीस्कोपों ​​​​की लगभग समग्रता वोल्टर टेलीस्कोप की कुछ भिन्नताओं को नियोजित करती है। इस प्रकार के [[एक्स-रे प्रकाशिकी]] की सीमाओं के परिणामस्वरूप दृश्य या यूवी दूरबीनों की तुलना में दृश्य के बहुत संकीर्ण क्षेत्र (सामान्यतः <1 डिग्री) होते हैं।


संपार्श्विक प्रकाशिकी के संबंध में, ध्यान केंद्रित करने वाले प्रकाशिकी अनुमति देते हैं:
संपार्श्विक प्रकाशिकी के संबंध में ध्यान केंद्रित करने वाले प्रकाशिकी अनुमति देते हैं:
* एक उच्च संकल्प इमेजिंग
* एक उच्च रिज़ॉल्यूशन इमेजिंग
* एक उच्च दूरबीन संवेदनशीलता: चूंकि विकिरण छोटे से क्षेत्र पर केंद्रित है, इस तरह के उपकरणों के लिए सिग्नल-टू-शोर अनुपात बहुत अधिक है।
* एक उच्च दूरबीन संवेदनशीलता: चूंकि विकिरण छोटे से क्षेत्र पर केंद्रित है इस तरह के उपकरणों के लिए संकेत-से-ध्वनि अनुपात बहुत अधिक है।


[[File:xray_telescope_lens.svg|thumb|चमकदार प्रतिबिंब के साथ फोकसिंग एक्स-रे]]दर्पण सिरेमिक या [[धातु की पन्नी]] से बने हो सकते हैं<ref name="xraysMirror">{{cite web |title=दर्पण प्रयोगशाला|url=http://astrophysics.gsfc.nasa.gov/xrays/MirrorLab/xoptics.html }}</ref> परावर्तक सामग्री (आमतौर पर [[सोना]] या [[इरिडियम]]) की पतली परत के साथ लेपित। इस पर आधारित दर्पणों का निर्माण चराई की घटनाओं पर प्रकाश के पूर्ण परावर्तन के आधार पर होता है।
[[File:xray_telescope_lens.svg|thumb|चमकदार प्रतिबिंब के साथ फोकसिंग एक्स-रे]]दर्पण सिरेमिक या [[धातु की पन्नी]] से बने हो सकते हैं<ref name="xraysMirror">{{cite web |title=दर्पण प्रयोगशाला|url=http://astrophysics.gsfc.nasa.gov/xrays/MirrorLab/xoptics.html }}</ref> परावर्तक सामग्री (सामान्यतः [[सोना]] या [[इरिडियम]]) की पतली परत के साथ लेपित होते हैं। इस पर आधारित दर्पणों का निर्माण चराई की घटनाओं पर प्रकाश के पूर्ण परावर्तन के आधार पर होता है।


यह तकनीक [[कुल प्रतिबिंब]] और विकिरण ऊर्जा के लिए महत्वपूर्ण कोण के बीच व्युत्क्रम संबंध द्वारा ऊर्जा सीमा में सीमित है। 2000 के दशक की शुरुआत में चंद्रा एक्स-रे वेधशाला और [[ XMM- न्यूटन |XMM- न्यूटन]] एक्स-रे [[अंतरिक्ष वेधशाला]] के साथ सीमा लगभग 15 किलो-[[ इलेक्ट्रॉन वोल्ट | इलेक्ट्रॉन वोल्ट]] (केवी) प्रकाश थी।<ref name="nustar1">[http://www.nustar.caltech.edu/about-nustar/instrumentation/optics NuStar: Instrumentation: Optics] {{webarchive |url=https://web.archive.org/web/20101101113623/http://www.nustar.caltech.edu/about-nustar/instrumentation/optics |date=November 1, 2010 }}</ref> नए बहु-स्तरित लेपित दर्पणों का उपयोग करते हुए, [[NuSTAR]] टेलीस्कोप के लिए एक्स-रे दर्पण ने इसे 79 keV प्रकाश तक धकेल दिया।<ref name="nustar1" />इस स्तर पर प्रतिबिंबित करने के लिए, कांच की परतों को [[टंगस्टन]] (W)/[[सिलिकॉन]] (Si) या [[प्लैटिनम]] (Pt)/[[ सिलिकन कार्बाइड | सिलिकन कार्बाइड]] (SiC) के साथ बहु-लेपित किया गया था।<ref name="nustar1" />
यह तकनीक [[कुल प्रतिबिंब]] और विकिरण ऊर्जा के लिए महत्वपूर्ण कोण के बीच व्युत्क्रम संबंध द्वारा ऊर्जा सीमा में सीमित है। 2000 के दशक की प्रारंभिक में चंद्रा एक्स-रे वेधशाला और [[ XMM- न्यूटन |एक्सएमएम- न्यूटन]] एक्स-रे [[अंतरिक्ष वेधशाला|अंतरिक्ष वेधशालाओं]] के साथ सीमा लगभग 15 किलो-[[ इलेक्ट्रॉन वोल्ट | इलेक्ट्रॉन वोल्ट]] (केवी) प्रकाश थी।<ref name="nustar1">[http://www.nustar.caltech.edu/about-nustar/instrumentation/optics NuStar: Instrumentation: Optics] {{webarchive |url=https://web.archive.org/web/20101101113623/http://www.nustar.caltech.edu/about-nustar/instrumentation/optics |date=November 1, 2010 }}</ref> नए बहु-स्तरित लेपित दर्पणों का उपयोग करते हुए, [[NuSTAR|नुस्टार]] टेलीस्कोप के लिए एक्स-रे दर्पण ने इसे 79 केवी प्रकाश तक बढ़ा दिया।<ref name="nustar1" />इस स्तर पर प्रतिबिंबित करने के लिए, कांच की परतों को [[टंगस्टन]] (डब्ल्यू)/[[सिलिकॉन]] (सी) या [[प्लैटिनम]] (पीटी)/[[ सिलिकन कार्बाइड | सिलिकन कार्बाइड]] (सीआईसी) के साथ बहु-लेपित किया गया था।<ref name="nustar1" />
=== कोलिमेटिंग ऑप्टिक्स ===
{{main |कोडित एपर्चर}}


जबकि पहले एक्स-रे टेलिस्कोप सरल कोलिमेटिंग तकनीकों का उपयोग कर रहे थे (जैसे घूर्णित कॉलिमेटर्स, वायर कॉलिमेटर्स),<ref>{{Cite book|title = Exploring the X-ray Universe – Cambridge Books Online – Cambridge University Press|doi = 10.1017/cbo9780511781513|first = Frederick D.|last = Seward|first2 = Philip A.|last2 = Charles|year = 2010|isbn = 9780511781513}}</ref> वर्तमान में सबसे अधिक उपयोग की जाने वाली तकनीक कोडेड एपर्चर मास्क का उपयोग करती है। यह तकनीक सूचक  के सामने फ्लैट एपर्चर पैटर्न वाली ग्रिल का उपयोग करती है। यह डिज़ाइन प्रकाशिकी और इमेजिंग गुणवत्ता पर ध्यान केंद्रित करने की तुलना में कम संवेदनशील है और स्रोत की स्थिति की पहचान बहुत खराब है, चूँकि यह देखने का बड़ा क्षेत्र प्रदान करता है और उच्च ऊर्जा पर नियोजित किया जा सकता है, जहां चराई घटना प्रकाशिकी अप्रभावी हो जाती है। इसके अतिरिक्त इमेजिंग प्रत्यक्ष नहीं है, किंतु सिग्नल के पोस्ट-प्रोसेसिंग द्वारा छवि को पुनर्निर्माण किया गया है।


=== कोलिमेटिंग ऑप्टिक्स ===
== सूचक ==
{{main | coded aperture}}
'''<nowiki>{{main|X-ray astronomy detector}</nowiki>'''
जबकि पहले एक्स-रे टेलिस्कोप सरल कोलिमेटिंग तकनीकों का उपयोग कर रहे थे (जैसे रोटेटिंग कॉलिमेटर्स, वायर कॉलिमेटर्स),<ref>{{Cite book|title = Exploring the X-ray Universe – Cambridge Books Online – Cambridge University Press|doi = 10.1017/cbo9780511781513|first = Frederick D.|last = Seward|first2 = Philip A.|last2 = Charles|year = 2010|isbn = 9780511781513}}</ref> वर्तमान में सबसे अधिक उपयोग की जाने वाली तकनीक कोडेड एपर्चर मास्क का उपयोग करती है। यह तकनीक डिटेक्टर के सामने फ्लैट एपर्चर पैटर्न वाली ग्रिल का उपयोग करती है। यह डिज़ाइन प्रकाशिकी और इमेजिंग गुणवत्ता पर ध्यान केंद्रित करने की तुलना में कम संवेदनशील है और स्रोत की स्थिति की पहचान बहुत खराब है, हालांकि यह देखने का बड़ा क्षेत्र प्रदान करता है और उच्च ऊर्जा पर नियोजित किया जा सकता है, जहां चराई घटना प्रकाशिकी अप्रभावी हो जाती है। इसके अलावा इमेजिंग प्रत्यक्ष नहीं है, बल्कि सिग्नल के पोस्ट-प्रोसेसिंग द्वारा छवि को फिर से बनाया गया है।


== डिटेक्टर ==
एक्स-रे टेलीस्कोप के लिए सूचक पर कई तकनीकों को नियोजित किया गया है, जिसमें आयनीकरण कक्ष, [[जाइगर काउंटर|गीगर काउंटर]] या [[सिंटिलेटर]] जैसे काउंटर से लेकर चार्ज-युग्मित उपकरण या [[सीएमओएस सेंसर]] सेंसर जैसे इमेजिंग सूचक  सम्मिलित हैं। माइक्रो-कैलोरीमीटर का उपयोग, जो विकिरण की ऊर्जा को बड़ी स्पष्टता  के साथ मापने की अतिरिक्त क्षमता प्रदान करता है, भविष्य के मिशनों के लिए योजना बनाई गई है।
<nowiki>{{main|X-ray astronomy detector}एक्स-रे टेलीस्कोप के लिए डिटेक्टरों पर कई तकनीकों को नियोजित किया गया है, जिसमें आयनीकरण कक्ष, </nowiki>[[जाइगर काउंटर]] या [[सिंटिलेटर]] जैसे काउंटर से लेकर चार्ज-युग्मित डिवाइस या [[सीएमओएस सेंसर]] सेंसर जैसे इमेजिंग डिटेक्टर शामिल हैं। माइक्रो-कैलोरीमीटर का उपयोग, जो विकिरण की ऊर्जा को बड़ी सटीकता के साथ मापने की अतिरिक्त क्षमता प्रदान करता है, भविष्य के मिशनों के लिए योजना बनाई गई है।


== एक्स-रे दूरबीनों को नियोजित करने वाले मिशन ==
== एक्स-रे दूरबीनों को नियोजित करने वाले मिशन ==
{{main|List of X-ray space telescopes}}
{{main|एक्स-रे अंतरिक्ष दूरबीनों की सूची}}


==एक्स-रे दूरबीनों का इतिहास==
==एक्स-रे दूरबीनों का इतिहास==
{{See also|History of X-ray astronomy}}
{{See also|एक्स-रे खगोल विज्ञान का इतिहास}}
पहला एक्स-रे टेलीस्कोप वोल्टर टाइप I ग्राज़िंग-इंसिडेंस ऑप्टिक्स का उपयोग करते हुए 15 अक्टूबर, 1963 को व्हाइट सैंड्स न्यू मैक्सिको में रॉकेट-जनित प्रयोग में इस्तेमाल किया गया था, जो बॉल ब्रदर्स कॉर्पोरेशन का उपयोग करके एरोबी 150 रॉकेट पर नियंत्रण प्राप्त करने के लिए इस्तेमाल किया गया था। 8-20 एंग्स्ट्रॉम क्षेत्र में सूर्य की एक्स-रे छवियां। दूसरी उड़ान 1965 में उसी प्रक्षेपण स्थल पर थी (आर. गियाकोनी एट अल।, एपीजे 142, 1274 (1965))।
 
पहला एक्स-रे टेलीस्कोप वोल्टर टाइप या ग्राज़िंग-इंसिडेंस ऑप्टिक्स का उपयोग करते हुए 15 अक्टूबर, 1963 को व्हाइट सैंड्स न्यू मैक्सिको में रॉकेट-जनित प्रयोग में उपयोग किया गया था, जो बॉल ब्रदर्स कॉर्पोरेशन का उपयोग करके एरोबी 150 रॉकेट पर नियंत्रण प्राप्त करने के लिए उपयोग किया गया था। 8-20 एंग्स्ट्रॉम क्षेत्र में सूर्य की एक्स-रे छवियां है । जो दूसरी उड़ान 1965 में उसी प्रक्षेपण स्थल पर थी (आर. गियाकोनी एट अल, एपीजे 142, 1274 (1965))।


[[ आइंस्टीन वेधशाला | आइंस्टीन वेधशाला]] (1978-1981), जिसे HEAO-2 के रूप में भी जाना जाता है, वोल्टर टाइप I टेलीस्कोप (R. Giaconi et al., ApJ 230,540 (1979)) के साथ पहली परिक्रमा करने वाली एक्स-रे वेधशाला थी। इसने सभी प्रकार के सितारों, सुपरनोवा अवशेष, आकाशगंगाओं और आकाशगंगाओं के समूहों के 0.1 से 4 केवी तक की ऊर्जा सीमा में उच्च-रिज़ॉल्यूशन एक्स-रे छवियां प्राप्त कीं। [[HEAO-1]] (1977-1979) और
[[ आइंस्टीन वेधशाला | आइंस्टीन वेधशाला]] (1978-1981), जिसे हेओ-2 के रूप में भी जाना जाता है, वोल्टर टाइप या टेलीस्कोप (आर. जियाकोनी एट अल., एपीजे230,540 (1979)) के साथ पहली परिक्रमा करने वाली एक्स-रे वेधशाला थी। इसने सभी प्रकार के सितारों, सुपरनोवा अवशेष, आकाशगंगाओं और आकाशगंगाओं के समूहों के 0.1 से 4 केवी तक की ऊर्जा सीमा में उच्च-रिज़ॉल्यूशन एक्स-रे छवियां प्राप्त कीं। [[HEAO-1|हेओ-1]] (1977-1979) और [[HEAO-3|हेओ-3]] (1979-1981) उस श्रृंखला में अन्य थे। अन्य बड़ी परियोजना [[ROSAT|रोसैट]] (1990 से 1999 तक सक्रिय) थी, जो एक्स-रे प्रकाशिकी पर ध्यान केंद्रित करने वाली भारी एक्स-रे अंतरिक्ष वेधशाला थी।
[[HEAO-3]] (1979-1981) उस श्रृंखला में अन्य थे। अन्य बड़ी परियोजना [[ROSAT]] (1990 से 1999 तक सक्रिय) थी, जो एक्स-रे प्रकाशिकी पर ध्यान केंद्रित करने वाली भारी एक्स-रे अंतरिक्ष वेधशाला थी।


चंद्रा एक्स-रे वेधशाला नासा द्वारा और यूरोप, जापान और रूस की अंतरिक्ष एजेंसियों द्वारा हाल ही में शुरू की गई उपग्रह वेधशालाओं में से है। चंद्रा ने उच्च अण्डाकार कक्षा में 10 से अधिक वर्षों के लिए संचालन किया है, हजारों 0.5 आर्क-सेकंड छवियों और 0.5 से 8.0 केवी की ऊर्जा सीमा में सभी प्रकार की खगोलीय वस्तुओं के उच्च-रिज़ॉल्यूशन स्पेक्ट्रा लौटाते हैं। चंद्रा के कई शानदार चित्र नासा/गोडार्ड वेबसाइट पर देखे जा सकते हैं।
चंद्रा एक्स-रे वेधशाला नासा द्वारा और यूरोप जापान और रूस की अंतरिक्ष एजेंसियों द्वारा वर्तमान में प्रारंभ की गई उपग्रह वेधशालाओं में से है। चंद्रा ने उच्च अण्डाकार कक्षा में 10 से अधिक वर्षों के लिए संचालन किया है, हजारों 0.5 आर्क-सेकंड छवियों और 0.5 से 8.0 केवी की ऊर्जा सीमा में सभी प्रकार की खगोलीय वस्तुओं के उच्च-रिज़ॉल्यूशन स्पेक्ट्रा लौटाते हैं। चंद्रा के कई शानदार चित्र नासा/गोडार्ड वेबसाइट पर देखे जा सकते हैं।


[[NuStar]] नवीनतम एक्स-रे स्पेस टेलीस्कोप में से है, जिसे जून 2012 में लॉन्च किया गया था। टेलीस्कोप उच्च-ऊर्जा रेंज (3–79 keV) और उच्च रिज़ॉल्यूशन में विकिरण का अवलोकन करता है। NuStar के क्षय से 68 और 78 keV संकेतों के प्रति संवेदनशील है <sup>44</sup>तिवारी सुपरनोवा में।
न्यूस्टार नवीनतम एक्स-रे अंतरिक्ष दूरबीनों में से एक है, जिसे जून 2012 में लॉन्च किया गया था। दूरबीन उच्च-ऊर्जा सीमा (3-79 केवी) और उच्च रिज़ॉल्यूशन में विकिरण का निरीक्षण करता है। नुस्टार सुपरनोवा में  <sup>44</sup>Ti के क्षय से 68 और 78 केवी संकेतों के प्रति संवेदनशील है।


[[ गुरुत्वाकर्षण और चरम चुंबकत्व | गुरुत्वाकर्षण और चरम चुंबकत्व]] (जीईएमएस) ने एक्स-रे ध्रुवीकरण को मापा होगा लेकिन 2012 में इसे रद्द कर दिया गया था।
[[ गुरुत्वाकर्षण और चरम चुंबकत्व | गुरुत्वाकर्षण और चरम चुंबकत्व]] (जीईएमएस) ने एक्स-रे ध्रुवीकरण को मापा होगा किंतु 2012 में इसे समाप्त कर दिया गया था।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 09:51, 27 June 2023


एक्स-रे टेलीस्कोप (एक्सआरटी) एक टेलीस्कोप है जिसे एक्स-रे स्पेक्ट्रम में दूरस्थ वस्तुओं का निरीक्षण करने के लिए डिज़ाइन किया गया है। पृथ्वी के वायुमंडल से ऊपर जाने के लिए, जो एक्स-रे के लिए अपारदर्शी है, एक्स-रे दूरबीनों को उच्च ऊंचाई वाले रॉकेट, गुब्बारों या कृत्रिम उपग्रहों पर स्थापित किया जाना चाहिए।

टेलीस्कोप के मूल तत्व प्रकाशिकी (फोकसिंग या संधानिक) हैं, जो टेलीस्कोप में प्रवेश करने वाले विकिरण को संग्रह करते हैं, और एक्स-रे सूचक, जिस पर विकिरण एकत्र और मापा जाता है। इन तत्वों के लिए विभिन्न प्रकार के विभिन्न डिजाइनों और तकनीकों का उपयोग किया गया है।

उपग्रहों पर उपस्थित कई टेलीस्कोप सूचक -टेलीस्कोप प्रणाली की कई प्रतियों या विविधताओं से जुड़े होते हैं, जिनकी क्षमताएं दूसरे को जोड़ती हैं या पूरक होती हैं और अतिरिक्त निश्चित या हटाने योग्य तत्व[1][2] (फ़िल्टर, स्पेक्ट्रोमीटर) जो उपकरण में कार्यक्षमता जोड़ता है।

प्रकाशिकी

एक्स-रे प्रकाशिकी में उपयोग की जाने वाली सबसे समान्य विधियाँ वोल्टर टेलीस्कोप और समांतरित्र हैं।

फ़ोकसिंग दर्पण

NuSTAR, ने उच्च-ऊर्जा एक्स-रे प्रकाश में हमारी आकाशगंगा के केंद्र में सुपरमैसिव ब्लैक होल के इन पहले, केंद्रित दृश्यों को कैप्चर किया है।

एक्स-रे दर्पणों का उपयोग संसूचक तल पर आपतित विकिरण को केंद्रित करने की अनुमति देता है। अलग-अलग ज्यामिति (जैसे किर्कपार्टिक-बैज़ या लॉबस्टर-आई) का सुझाव दिया गया है या नियोजित किया गया है, किंतु उपस्थित टेलीस्कोपों ​​​​की लगभग समग्रता वोल्टर टेलीस्कोप की कुछ भिन्नताओं को नियोजित करती है। इस प्रकार के एक्स-रे प्रकाशिकी की सीमाओं के परिणामस्वरूप दृश्य या यूवी दूरबीनों की तुलना में दृश्य के बहुत संकीर्ण क्षेत्र (सामान्यतः <1 डिग्री) होते हैं।

संपार्श्विक प्रकाशिकी के संबंध में ध्यान केंद्रित करने वाले प्रकाशिकी अनुमति देते हैं:

  • एक उच्च रिज़ॉल्यूशन इमेजिंग
  • एक उच्च दूरबीन संवेदनशीलता: चूंकि विकिरण छोटे से क्षेत्र पर केंद्रित है इस तरह के उपकरणों के लिए संकेत-से-ध्वनि अनुपात बहुत अधिक है।
चमकदार प्रतिबिंब के साथ फोकसिंग एक्स-रे

दर्पण सिरेमिक या धातु की पन्नी से बने हो सकते हैं[3] परावर्तक सामग्री (सामान्यतः सोना या इरिडियम) की पतली परत के साथ लेपित होते हैं। इस पर आधारित दर्पणों का निर्माण चराई की घटनाओं पर प्रकाश के पूर्ण परावर्तन के आधार पर होता है।

यह तकनीक कुल प्रतिबिंब और विकिरण ऊर्जा के लिए महत्वपूर्ण कोण के बीच व्युत्क्रम संबंध द्वारा ऊर्जा सीमा में सीमित है। 2000 के दशक की प्रारंभिक में चंद्रा एक्स-रे वेधशाला और एक्सएमएम- न्यूटन एक्स-रे अंतरिक्ष वेधशालाओं के साथ सीमा लगभग 15 किलो- इलेक्ट्रॉन वोल्ट (केवी) प्रकाश थी।[4] नए बहु-स्तरित लेपित दर्पणों का उपयोग करते हुए, नुस्टार टेलीस्कोप के लिए एक्स-रे दर्पण ने इसे 79 केवी प्रकाश तक बढ़ा दिया।[4]इस स्तर पर प्रतिबिंबित करने के लिए, कांच की परतों को टंगस्टन (डब्ल्यू)/सिलिकॉन (सी) या प्लैटिनम (पीटी)/ सिलिकन कार्बाइड (सीआईसी) के साथ बहु-लेपित किया गया था।[4]

कोलिमेटिंग ऑप्टिक्स

जबकि पहले एक्स-रे टेलिस्कोप सरल कोलिमेटिंग तकनीकों का उपयोग कर रहे थे (जैसे घूर्णित कॉलिमेटर्स, वायर कॉलिमेटर्स),[5] वर्तमान में सबसे अधिक उपयोग की जाने वाली तकनीक कोडेड एपर्चर मास्क का उपयोग करती है। यह तकनीक सूचक के सामने फ्लैट एपर्चर पैटर्न वाली ग्रिल का उपयोग करती है। यह डिज़ाइन प्रकाशिकी और इमेजिंग गुणवत्ता पर ध्यान केंद्रित करने की तुलना में कम संवेदनशील है और स्रोत की स्थिति की पहचान बहुत खराब है, चूँकि यह देखने का बड़ा क्षेत्र प्रदान करता है और उच्च ऊर्जा पर नियोजित किया जा सकता है, जहां चराई घटना प्रकाशिकी अप्रभावी हो जाती है। इसके अतिरिक्त इमेजिंग प्रत्यक्ष नहीं है, किंतु सिग्नल के पोस्ट-प्रोसेसिंग द्वारा छवि को पुनर्निर्माण किया गया है।

सूचक

{{main|X-ray astronomy detector}

एक्स-रे टेलीस्कोप के लिए सूचक पर कई तकनीकों को नियोजित किया गया है, जिसमें आयनीकरण कक्ष, गीगर काउंटर या सिंटिलेटर जैसे काउंटर से लेकर चार्ज-युग्मित उपकरण या सीएमओएस सेंसर सेंसर जैसे इमेजिंग सूचक सम्मिलित हैं। माइक्रो-कैलोरीमीटर का उपयोग, जो विकिरण की ऊर्जा को बड़ी स्पष्टता के साथ मापने की अतिरिक्त क्षमता प्रदान करता है, भविष्य के मिशनों के लिए योजना बनाई गई है।

एक्स-रे दूरबीनों को नियोजित करने वाले मिशन

एक्स-रे दूरबीनों का इतिहास

पहला एक्स-रे टेलीस्कोप वोल्टर टाइप या ग्राज़िंग-इंसिडेंस ऑप्टिक्स का उपयोग करते हुए 15 अक्टूबर, 1963 को व्हाइट सैंड्स न्यू मैक्सिको में रॉकेट-जनित प्रयोग में उपयोग किया गया था, जो बॉल ब्रदर्स कॉर्पोरेशन का उपयोग करके एरोबी 150 रॉकेट पर नियंत्रण प्राप्त करने के लिए उपयोग किया गया था। 8-20 एंग्स्ट्रॉम क्षेत्र में सूर्य की एक्स-रे छवियां है । जो दूसरी उड़ान 1965 में उसी प्रक्षेपण स्थल पर थी (आर. गियाकोनी एट अल, एपीजे 142, 1274 (1965))।

आइंस्टीन वेधशाला (1978-1981), जिसे हेओ-2 के रूप में भी जाना जाता है, वोल्टर टाइप या टेलीस्कोप (आर. जियाकोनी एट अल., एपीजे230,540 (1979)) के साथ पहली परिक्रमा करने वाली एक्स-रे वेधशाला थी। इसने सभी प्रकार के सितारों, सुपरनोवा अवशेष, आकाशगंगाओं और आकाशगंगाओं के समूहों के 0.1 से 4 केवी तक की ऊर्जा सीमा में उच्च-रिज़ॉल्यूशन एक्स-रे छवियां प्राप्त कीं। हेओ-1 (1977-1979) और हेओ-3 (1979-1981) उस श्रृंखला में अन्य थे। अन्य बड़ी परियोजना रोसैट (1990 से 1999 तक सक्रिय) थी, जो एक्स-रे प्रकाशिकी पर ध्यान केंद्रित करने वाली भारी एक्स-रे अंतरिक्ष वेधशाला थी।

चंद्रा एक्स-रे वेधशाला नासा द्वारा और यूरोप जापान और रूस की अंतरिक्ष एजेंसियों द्वारा वर्तमान में प्रारंभ की गई उपग्रह वेधशालाओं में से है। चंद्रा ने उच्च अण्डाकार कक्षा में 10 से अधिक वर्षों के लिए संचालन किया है, हजारों 0.5 आर्क-सेकंड छवियों और 0.5 से 8.0 केवी की ऊर्जा सीमा में सभी प्रकार की खगोलीय वस्तुओं के उच्च-रिज़ॉल्यूशन स्पेक्ट्रा लौटाते हैं। चंद्रा के कई शानदार चित्र नासा/गोडार्ड वेबसाइट पर देखे जा सकते हैं।

न्यूस्टार नवीनतम एक्स-रे अंतरिक्ष दूरबीनों में से एक है, जिसे जून 2012 में लॉन्च किया गया था। दूरबीन उच्च-ऊर्जा सीमा (3-79 केवी) और उच्च रिज़ॉल्यूशन में विकिरण का निरीक्षण करता है। नुस्टार सुपरनोवा में 44Ti के क्षय से 68 और 78 केवी संकेतों के प्रति संवेदनशील है।

गुरुत्वाकर्षण और चरम चुंबकत्व (जीईएमएस) ने एक्स-रे ध्रुवीकरण को मापा होगा किंतु 2012 में इसे समाप्त कर दिया गया था।

यह भी देखें

संदर्भ

  1. "Chandra :: About Chandra :: Science Instruments". chandra.si.edu. Retrieved 2016-02-19.
  2. "उपकरण". sci.esa.int. Retrieved 2016-02-19.
  3. "दर्पण प्रयोगशाला".
  4. 4.0 4.1 4.2 NuStar: Instrumentation: Optics Archived November 1, 2010, at the Wayback Machine
  5. Seward, Frederick D.; Charles, Philip A. (2010). Exploring the X-ray Universe – Cambridge Books Online – Cambridge University Press. doi:10.1017/cbo9780511781513. ISBN 9780511781513.


बाहरी संबंध