अपारदर्शिता का गणितीय विवरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
जब [[विद्युत चुम्बकीय तरंग]] ऐसे माध्यम से स्थानांतरण करती है जिसमें यह क्षीण हो जाती है (इसे अपारदर्शिता (ऑप्टिक्स) या क्षीणन स्थिर माध्यम कहा जाता है), यह बीयर-लैंबर्ट द्वारा वर्णित [[घातीय क्षय]] से निकलती
जब [[विद्युत चुम्बकीय तरंग]] ऐसे माध्यम से स्थानांतरण करती है जिसमें यह क्षीण हो जाती है (इसे अपारदर्शिता (ऑप्टिक्स) या क्षीणन स्थिर माध्यम कहा जाता है), यह बीयर-लैंबर्ट द्वारा वर्णित [[घातीय क्षय]] से निकलती


है। चूँकि, तरंग को चिह्नित करने के कई संभावित विधि हैं और यह कितनी जल्दी क्षीण हो जाता है। इस प्रकार यह आलेख निम्नलिखित के बीच गणितीय संबंधों का वर्णन करता है:
है। चूँकि, तरंग को चिह्नित करने के कई संभावित विधि हैं और यह कितनी जल्दी क्षीण हो जाता है। इस प्रकार यह आलेख निम्नलिखित के बीच गणितीय संबंधों का वर्णन करता है:
Line 10: Line 10:
ध्यान दें कि इनमें से कई स्थितियों में सामान्य उपयोग में कई, परस्पर विरोधी परिभाषाएं और परंपराएं हैं। यह लेख आवश्यक रूप से व्यापक या सार्वभौमिक नहीं है।
ध्यान दें कि इनमें से कई स्थितियों में सामान्य उपयोग में कई, परस्पर विरोधी परिभाषाएं और परंपराएं हैं। यह लेख आवश्यक रूप से व्यापक या सार्वभौमिक नहीं है।


== पृष्ठभूमि: अप्रभावित तरंग ==
== पृष्ठभूमि: अप्रभावित तरंग                                                                                                                                                                                           ==
{{Main|विद्युत चुम्बकीय तरंग समीकरण}}
{{Main|विद्युत चुम्बकीय तरंग समीकरण}}


Line 36: Line 36:
ध्यान दें कि यह तीव्रता स्थिति z से स्वतंत्र है, यह संकेत है कि यह तरंग दूरी के साथ क्षीण नहीं हो रही है। हम I<sub>0</sub> को परिभाषित करते हैं इस निरंतर तीव्रता के समान करने के लिए:
ध्यान दें कि यह तीव्रता स्थिति z से स्वतंत्र है, यह संकेत है कि यह तरंग दूरी के साथ क्षीण नहीं हो रही है। हम I<sub>0</sub> को परिभाषित करते हैं इस निरंतर तीव्रता के समान करने के लिए:
<math display="block">I(z) = I_0 \propto |\mathbf{E}_0|^2.</math>
<math display="block">I(z) = I_0 \propto |\mathbf{E}_0|^2.</math>
=== जटिल संयुग्म अस्पष्टता ===
=== जटिल संयुग्म अस्पष्टता ===


Line 59: Line 57:
* मोलर अवशोषण गुणांक या मोलर विलुप्त होने का गुणांक, जिसे मोलर अवशोषण भी कहा जाता है, वह क्षीणन गुणांक है जिसे मोलरिटी से विभाजित किया जाता है (और सामान्यतः ln (10) से गुणा किया जाता है, अर्थात, डेकाडिक); विवरण के लिए [[बीयर-लैंबर्ट कानून]] और मोलर अवशोषकता देखें;
* मोलर अवशोषण गुणांक या मोलर विलुप्त होने का गुणांक, जिसे मोलर अवशोषण भी कहा जाता है, वह क्षीणन गुणांक है जिसे मोलरिटी से विभाजित किया जाता है (और सामान्यतः ln (10) से गुणा किया जाता है, अर्थात, डेकाडिक); विवरण के लिए [[बीयर-लैंबर्ट कानून]] और मोलर अवशोषकता देखें;
* [[द्रव्यमान क्षीणन गुणांक]], जिसे द्रव्यमान विलुप्त होने का गुणांक भी कहा जाता है, घनत्व द्वारा विभाजित क्षीणन गुणांक है; विवरण के लिए द्रव्यमान क्षीणन गुणांक देखें;
* [[द्रव्यमान क्षीणन गुणांक]], जिसे द्रव्यमान विलुप्त होने का गुणांक भी कहा जाता है, घनत्व द्वारा विभाजित क्षीणन गुणांक है; विवरण के लिए द्रव्यमान क्षीणन गुणांक देखें;
* [[अवशोषण क्रॉस सेक्शन]] और [[ बिखरने वाला क्रॉस सेक्शन ]] दोनों मात्रात्मक रूप से क्षीणन गुणांक से संबंधित हैं; विवरण के लिए अवशोषण क्रॉस सेक्शन और स्कैटरिंग क्रॉस सेक्शन देखें;
* [[अवशोषण क्रॉस सेक्शन]] और [[ बिखरने वाला क्रॉस सेक्शन |बिखरने वाला क्रॉस सेक्शन]] दोनों मात्रात्मक रूप से क्षीणन गुणांक से संबंधित हैं; विवरण के लिए अवशोषण क्रॉस सेक्शन और स्कैटरिंग क्रॉस सेक्शन देखें;
* क्षीणन गुणांक को कभी-कभी अपारदर्शिता भी कहा जाता है; अस्पष्टता (प्रकाशिकी) देखें।
* क्षीणन गुणांक को कभी-कभी अपारदर्शिता भी कहा जाता है; अस्पष्टता (प्रकाशिकी) देखें।


Line 87: Line 85:
अवशोषण गुणांक प्रवेश की डेप्थ और स्किन की डेप्थ से संबंधित है
अवशोषण गुणांक प्रवेश की डेप्थ और स्किन की डेप्थ से संबंधित है
<math display="block">\alpha = 1/\delta_\mathrm{pen} = 2/\delta_\mathrm{skin}.</math>
<math display="block">\alpha = 1/\delta_\mathrm{pen} = 2/\delta_\mathrm{skin}.</math>
 
== जटिल कोणीय तरंग संख्या और प्रसार स्थिरांक                                                                                           ==
 
== जटिल कोणीय तरंग संख्या और प्रसार स्थिरांक ==
{{Main|प्रसार स्थिरांक}}
{{Main|प्रसार स्थिरांक}}


Line 112: Line 108:
\operatorname{Im}(\underline{k}) &= -\alpha/2.
\operatorname{Im}(\underline{k}) &= -\alpha/2.
\end{align}</math>
\end{align}</math>
=== प्रसार स्थिरांक ===
=== प्रसार स्थिरांक ===


Line 132: Line 126:
<math display="block">\operatorname{Im}(\gamma) = \operatorname{Re}(\underline{k}) = k.</math>
<math display="block">\operatorname{Im}(\gamma) = \operatorname{Re}(\underline{k}) = k.</math>
इस मात्रा को [[चरण स्थिर|चरण स्थिरांक]] भी कहा जाता है, जिसे कभी-कभी ''β'' के रूप में निरूपित किया जाता है।<ref name=Sivanagaraju132>{{cite book|url=https://books.google.com/books?id=KpY1hpKKwdQC&pg=PA132 |page=132|title=इलेक्ट्रिक पावर ट्रांसमिशन और वितरण|isbn=9788131707913|date=2008-09-01|author=S. Sivanagaraju}}</ref> इस प्रकार संकेतन सदैव सुसंगत नहीं होता है। उदाहरण के लिए, <math>\underline{k}</math> कभी-कभी γ के बजाय प्रसार स्थिरांक कहा जाता है, जो वास्तविक और काल्पनिक भागों की अदला-बदली करता है।<ref>See, for example, [http://www.rp-photonics.com/propagation_constant.html Encyclopedia of laser physics and technology]</ref>
इस मात्रा को [[चरण स्थिर|चरण स्थिरांक]] भी कहा जाता है, जिसे कभी-कभी ''β'' के रूप में निरूपित किया जाता है।<ref name=Sivanagaraju132>{{cite book|url=https://books.google.com/books?id=KpY1hpKKwdQC&pg=PA132 |page=132|title=इलेक्ट्रिक पावर ट्रांसमिशन और वितरण|isbn=9788131707913|date=2008-09-01|author=S. Sivanagaraju}}</ref> इस प्रकार संकेतन सदैव सुसंगत नहीं होता है। उदाहरण के लिए, <math>\underline{k}</math> कभी-कभी γ के बजाय प्रसार स्थिरांक कहा जाता है, जो वास्तविक और काल्पनिक भागों की अदला-बदली करता है।<ref>See, for example, [http://www.rp-photonics.com/propagation_constant.html Encyclopedia of laser physics and technology]</ref>
 
== जटिल अपवर्तक सूचकांक                                                                                                                                                               ==
 
== जटिल अपवर्तक सूचकांक ==
{{Main|अपवर्तक सूचकांक}}
{{Main|अपवर्तक सूचकांक}}
याद रखें कि गैर क्षीण माध्यम में, अपवर्तक सूचकांक और कोणीय तरंग संख्या निम्न से संबंधित हैं:
याद रखें कि गैर क्षीण माध्यम में, अपवर्तक सूचकांक और कोणीय तरंग संख्या निम्न से संबंधित हैं:
Line 160: Line 152:


#जटिल संयुग्म अस्पष्टता के अनुसार, कुछ लेखक जटिल संयुग्म परिभाषा का उपयोग करते हैं, जहां (अभी भी सकारात्मक) विलुप्त होने का गुणांक 'ऋण' का काल्पनिक <math>\underline{n}</math> भाग है .<ref name=refractiveindexconjugate /><ref>Pankove, pp. 87–89</ref>
#जटिल संयुग्म अस्पष्टता के अनुसार, कुछ लेखक जटिल संयुग्म परिभाषा का उपयोग करते हैं, जहां (अभी भी सकारात्मक) विलुप्त होने का गुणांक 'ऋण' का काल्पनिक <math>\underline{n}</math> भाग है .<ref name=refractiveindexconjugate /><ref>Pankove, pp. 87–89</ref>
 
== जटिल विद्युत पारगम्यता                                                                                                                                                                                 ==
 
== जटिल विद्युत पारगम्यता ==
{{Main|जटिल पारगम्यता}}
{{Main|जटिल पारगम्यता}}


Line 183: Line 173:
\operatorname{Im}(\underline{\varepsilon}) &= \frac{\mathrm{c}^2}{\omega^2 \mu}k\alpha\quad \text{(cgs)}.
\operatorname{Im}(\underline{\varepsilon}) &= \frac{\mathrm{c}^2}{\omega^2 \mu}k\alpha\quad \text{(cgs)}.
\end{align}</math>
\end{align}</math>
 
== एसी चालकता                                                                                                                                                                                     ==
 
== एसी चालकता ==
{{Main|विद्युत् चालकता}}
{{Main|विद्युत् चालकता}}


Line 207: Line 195:
पिछले खंड की तुलना में, एसी चालकता संतुष्ट करती है
पिछले खंड की तुलना में, एसी चालकता संतुष्ट करती है
<math display="block">\sigma = \frac{k\alpha}{\omega \mu}\quad \text{(SI)},\qquad \sigma = \frac{k\alpha \mathrm{c}^2}{4\pi \omega \mu}\quad \text{(cgs)}.</math>
<math display="block">\sigma = \frac{k\alpha}{\omega \mu}\quad \text{(SI)},\qquad \sigma = \frac{k\alpha \mathrm{c}^2}{4\pi \omega \mu}\quad \text{(cgs)}.</math>
== टिप्पणियाँ ==
== टिप्पणियाँ ==
{{reflist}}
{{reflist}}


 
संदर्भ
== संदर्भ ==
* {{cite book | author=Jackson, John David | authorlink = John David Jackson (physicist) | title=Classical Electrodynamics | edition=3rd | location=New York | publisher=Wiley | year=1999 | isbn=0-471-30932-X}}
* {{cite book | author=Jackson, John David | authorlink = John David Jackson (physicist) | title=Classical Electrodynamics | edition=3rd | location=New York | publisher=Wiley | year=1999 | isbn=0-471-30932-X}}
* {{cite book | author=Griffiths, David J. | authorlink=David Griffiths (physicist) | title=Introduction to Electrodynamics (3rd ed.) | publisher=Prentice Hall | year=1998 | isbn=0-13-805326-X | url-access=registration | url=https://archive.org/details/introductiontoel00grif_0 }}
* {{cite book | author=Griffiths, David J. | authorlink=David Griffiths (physicist) | title=Introduction to Electrodynamics (3rd ed.) | publisher=Prentice Hall | year=1998 | isbn=0-13-805326-X | url-access=registration | url=https://archive.org/details/introductiontoel00grif_0 }}

Revision as of 10:47, 24 June 2023

जब विद्युत चुम्बकीय तरंग ऐसे माध्यम से स्थानांतरण करती है जिसमें यह क्षीण हो जाती है (इसे अपारदर्शिता (ऑप्टिक्स) या क्षीणन स्थिर माध्यम कहा जाता है), यह बीयर-लैंबर्ट द्वारा वर्णित घातीय क्षय से निकलती

है। चूँकि, तरंग को चिह्नित करने के कई संभावित विधि हैं और यह कितनी जल्दी क्षीण हो जाता है। इस प्रकार यह आलेख निम्नलिखित के बीच गणितीय संबंधों का वर्णन करता है:

ध्यान दें कि इनमें से कई स्थितियों में सामान्य उपयोग में कई, परस्पर विरोधी परिभाषाएं और परंपराएं हैं। यह लेख आवश्यक रूप से व्यापक या सार्वभौमिक नहीं है।

पृष्ठभूमि: अप्रभावित तरंग

विवरण

+z-दिशा में प्रसार करने वाली विद्युत चुम्बकीय तरंग पारंपरिक रूप से समीकरण द्वारा वर्णित है:

जहाँ

तरंग दैर्ध्य , परिभाषा के अनुसार,

किसी दी गई आवृत्ति के लिए, विद्युत चुम्बकीय तरंग की तरंग दैर्ध्य उस पदार्थ से प्रभावित होती है जिसमें यह प्रचार कर रही है। निर्वात तरंगदैर्घ्य (वेवलेंथ जो इस आवृत्ति की तरंग होगी यदि यह निर्वात में प्रचार कर रही हो) है
जहाँ c निर्वात में प्रकाश की गति है।

क्षीणन की अनुपस्थिति में, अपवर्तन सूचकांक (जिसे अपवर्तक सूचकांक भी कहा जाता है) इन दो तरंग दैर्ध्य का अनुपात है, अर्थात,

तरंग की तीव्रता (भौतिकी) तरंग के कई दोलनों पर समय-औसत, आयाम के वर्ग के समानुपाती होती है, जिसकी मात्रा:
ध्यान दें कि यह तीव्रता स्थिति z से स्वतंत्र है, यह संकेत है कि यह तरंग दूरी के साथ क्षीण नहीं हो रही है। हम I0 को परिभाषित करते हैं इस निरंतर तीव्रता के समान करने के लिए:

जटिल संयुग्म अस्पष्टता

क्योंकि

किसी भी अभिव्यक्ति का परस्पर उपयोग किया जा सकता है।[1] सामान्यतः, भौतिक विज्ञानी और रसायनज्ञ बाईं ओर के सम्मेलन का उपयोग करते हैं (ई−iωt), जबकि इलेक्ट्रिकल इंजीनियर दाईं ओर कन्वेंशन का उपयोग करते हैं (e+iωt, उदाहरण के लिए विद्युत प्रतिबाधा देखें)। अप्रशिक्षित तरंग के लिए भेद अप्रासंगिक है, किन्तु नीचे कुछ स्थितियों में प्रासंगिक हो जाता है। उदाहरण के लिए, अपवर्तक सूचकांक की दो परिभाषाएँ हैं, सकारात्मक काल्पनिक भाग के साथ और नकारात्मक काल्पनिक भाग के साथ, जो दो अलग-अलग सम्मेलनों से प्राप्त हुआ है।[2] दो परिभाषाएँ दूसरे की जटिल संयुग्म हैं।

क्षीणन गुणांक

तरंग के गणितीय विवरण में क्षीणन को सम्मिलित करने का विधि क्षीणन गुणांक के माध्यम से होता है:[3]

जहां α क्षीणन गुणांक है।

तब तरंग की तीव्रता संतुष्ट करती है:

अर्थात।
क्षीणन गुणांक, कई अन्य मात्राओं से संबंधित है:

  • अवशोषण गुणांक अनिवार्य रूप से (किन्तु सदैव नहीं) क्षीणन गुणांक का पर्याय है; विवरण के लिए क्षीणन गुणांक देखें;
  • मोलर अवशोषण गुणांक या मोलर विलुप्त होने का गुणांक, जिसे मोलर अवशोषण भी कहा जाता है, वह क्षीणन गुणांक है जिसे मोलरिटी से विभाजित किया जाता है (और सामान्यतः ln (10) से गुणा किया जाता है, अर्थात, डेकाडिक); विवरण के लिए बीयर-लैंबर्ट कानून और मोलर अवशोषकता देखें;
  • द्रव्यमान क्षीणन गुणांक, जिसे द्रव्यमान विलुप्त होने का गुणांक भी कहा जाता है, घनत्व द्वारा विभाजित क्षीणन गुणांक है; विवरण के लिए द्रव्यमान क्षीणन गुणांक देखें;
  • अवशोषण क्रॉस सेक्शन और बिखरने वाला क्रॉस सेक्शन दोनों मात्रात्मक रूप से क्षीणन गुणांक से संबंधित हैं; विवरण के लिए अवशोषण क्रॉस सेक्शन और स्कैटरिंग क्रॉस सेक्शन देखें;
  • क्षीणन गुणांक को कभी-कभी अपारदर्शिता भी कहा जाता है; अस्पष्टता (प्रकाशिकी) देखें।

प्रवेश डेप्थ और स्किन की डेप्थ

प्रवेश डेप्थ

एक समान दृष्टिकोण प्रवेश डेप्थ का उपयोग करता है:[4]

जहां δpen प्रवेश की डेप्थ है।

स्किन की डेप्थ

स्किन की डेप्थ को परिभाषित किया गया है जिससे तरंग संतुष्ट हो जाती है:[5][6]

जहां δskin स्किन की डेप्थ है।

भौतिक रूप से, वेधन की डेप्थ वह दूरी है जो तरंग अपनी तीव्रता के कारक से कम होने से पहले स्थानांतरण कर सकती है 1/e ≈ 0.37. स्किन की डेप्थ वह दूरी है जो तरंग स्थानांतरण कर सकती है इससे पहले कि उसका आयाम उसी कारक से कम हो जाती है।

अवशोषण गुणांक प्रवेश की डेप्थ और स्किन की डेप्थ से संबंधित है

जटिल कोणीय तरंग संख्या और प्रसार स्थिरांक

जटिल कोणीय तरंग संख्या

क्षीणन को सम्मिलित करने का दूसरा विधि वेवनंबर का उपयोग करना है:[5][7]

जहाँ k जटिल कोणीय तरंग संख्या है।

तब तरंग की तीव्रता संतुष्ट करती है:

अर्थात।
इसलिए, इसकी तुलना अवशोषण गुणांक दृष्टिकोण से करते हुए,[3]
जटिल संयुग्म अस्पष्टता के अनुसार, कुछ लेखक जटिल संयुग्म परिभाषा का उपयोग करते हैं:[8]

प्रसार स्थिरांक

एक निकट से संबंधित दृष्टिकोण, विशेष रूप से संचरण रेखा के सिद्धांत में समान है, इस प्रकार प्रसार स्थिरांक का उपयोग करता है:[9][10]

जहां γ प्रसार स्थिरांक है।

तब तरंग की तीव्रता संतुष्ट करती है:

अर्थात।
दो समीकरणों की तुलना में, प्रसार स्थिरांक और जटिल कोणीय वेवंबर निम्न द्वारा संबंधित हैं:
जहाँ * जटिल संयुग्मन को दर्शाता है।
इस मात्रा को क्षीणन स्थिरांक भी कहा जाता है,[8][11] कभी-कभी निरूपित α होता है।
इस मात्रा को चरण स्थिरांक भी कहा जाता है, जिसे कभी-कभी β के रूप में निरूपित किया जाता है।[11] इस प्रकार संकेतन सदैव सुसंगत नहीं होता है। उदाहरण के लिए, कभी-कभी γ के बजाय प्रसार स्थिरांक कहा जाता है, जो वास्तविक और काल्पनिक भागों की अदला-बदली करता है।[12]

जटिल अपवर्तक सूचकांक

याद रखें कि गैर क्षीण माध्यम में, अपवर्तक सूचकांक और कोणीय तरंग संख्या निम्न से संबंधित हैं:

जहाँ

  • n माध्यम का अपवर्तनांक है;
  • c निर्वात में प्रकाश की गति है;
  • v माध्यम में प्रकाश की गति है।

एक 'जटिल अपवर्तक सूचकांक' इसलिए ऊपर परिभाषित जटिल कोणीय तरंग संख्या के संदर्भ में परिभाषित किया जा सकता है:

जहाँ n माध्यम का अपवर्तनांक है।

दूसरे शब्दों में, संतुष्ट करने के लिए तरंग की आवश्यकता होती है

तब तरंग की तीव्रता संतुष्ट करती है:
अर्थात।
पिछले अनुभाग की तुलना में, हमारे पास है
यह मात्रा अधिकांशतः (संदिग्ध रूप से) केवल अपवर्तक सूचकांक कहलाती है।
इस मात्रा को ऑप्टिकल विलोपन गुणांक कहा जाता है और इसे κ से निरूपित किया जाता है।

  1. जटिल संयुग्म अस्पष्टता के अनुसार, कुछ लेखक जटिल संयुग्म परिभाषा का उपयोग करते हैं, जहां (अभी भी सकारात्मक) विलुप्त होने का गुणांक 'ऋण' का काल्पनिक भाग है .[2][13]

जटिल विद्युत पारगम्यता

गैर-क्षीण मीडिया में, विद्युत पारगम्यता और अपवर्तक सूचकांक निम्न से संबंधित हैं:

जहाँ

  • μ माध्यम की चुंबकीय पारगम्यता है;
  • ε माध्यम की विद्युत पारगम्यता है।
  • एसआई एसआई इकाइयों को संदर्भित करता है, जबकि सीजीएस गॉसियन इकाइयों को संदर्भित करता है,

क्षीण मीडिया में, ही संबंध का उपयोग किया जाता है, किन्तु पारगम्यता को जटिल संख्या होने की अनुमति दी जाती है, जिसे 'जटिल पारगम्यता' कहा जाता है:[3]

जहां ε माध्यम की जटिल विद्युत पारगम्यता है।

दोनों पक्षों का वर्ग करना और पिछले अनुभाग के परिणामों का उपयोग करना है:[7]

एसी चालकता

विद्युत चालकता के माध्यम से क्षीणन को सम्मिलित करने का अन्य विधि निम्नानुसार है।[14] विद्युत चुम्बकीय तरंग प्रसार को नियंत्रित करने वाले समीकरणों में से है एम्पीयर का नियम या मैक्सवेल-एम्पीयर का नियम है:

जहाँ विद्युत विस्थापन क्षेत्र है।

ओम के नियम में प्लगिंग और (वास्तविक) पारगम्यता की परिभाषा उपयोग किया जाता है

जहां σ (वास्तविक, किन्तु आवृत्ति-निर्भर) विद्युत चालकता है, जिसे 'वैकल्पिक वर्तमान विद्युत चालकता' कहा जाता है।

साइनसोइडल समय के साथ सभी मात्राओं पर निर्भरता है, अर्थात।

परिणाम है
यदि वर्तमान स्पष्ट रूप से (ओम के नियम के माध्यम से) सम्मिलित नहीं थे, किन्तु केवल निहित रूप से (एक जटिल पारगम्यता के माध्यम से), कोष्ठक में मात्रा केवल जटिल विद्युत पारगम्यता होती है। इसलिए,
पिछले खंड की तुलना में, एसी चालकता संतुष्ट करती है

टिप्पणियाँ

  1. MIT OpenCourseWare 6.007 Supplemental Notes: Sign Conventions in Electromagnetic (EM) Waves
  2. 2.0 2.1 For the definition of complex refractive index with a positive imaginary part, see Optical Properties of Solids, by Mark Fox, p. 6. For the definition of complex refractive index with a negative imaginary part, see Handbook of infrared optical materials, by Paul Klocek, p. 588.
  3. 3.0 3.1 3.2 Griffiths, section 9.4.3.
  4. IUPAC Compendium of Chemical Terminology
  5. 5.0 5.1 Griffiths, section 9.4.1.
  6. Jackson, Section 5.18A
  7. 7.0 7.1 Jackson, Section 7.5.B
  8. 8.0 8.1 Lifante, Ginés (2003). एकीकृत फोटोनिक्स. p. 35. ISBN 978-0-470-84868-5.
  9. "Propagation constant", in ATIS Telecom Glossary 2007
  10. P. W. Hawkes; B. Kazan (1995-03-27). सलाह इमेजिंग और इलेक्ट्रॉन भौतिकी. Vol. 92. p. 93. ISBN 978-0-08-057758-6.
  11. 11.0 11.1 S. Sivanagaraju (2008-09-01). इलेक्ट्रिक पावर ट्रांसमिशन और वितरण. p. 132. ISBN 9788131707913.
  12. See, for example, Encyclopedia of laser physics and technology
  13. Pankove, pp. 87–89
  14. Jackson, section 7.5C

संदर्भ