स्कैटरिंग-मैट्रिक्स विधि: Difference between revisions
No edit summary |
m (Neeraja moved page बिखरने-मैट्रिक्स विधि to स्कैटरिंग-मैट्रिक्स विधि without leaving a redirect) |
(No difference)
|
Revision as of 20:34, 30 June 2023
कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स में, स्कैटरिंग-मैट्रिक्स विधि (एसएमएम) संख्यात्मक विधि है जिसका उपयोग ट्रांसफर-मैट्रिक्स विधि से संबंधित मैक्सवेल के समीकरणों को हल करने के लिए किया जाता है,[1]।
सिद्धांत
एसएमएम, उदाहरण के लिए, डोमेन में मैनिफोल्ड/धातु वस्तुओं को मॉडल करने के लिए सिलेंडर का उपयोग कर सकता है।[2] कुल क्षेत्र/प्रकिर्णित-क्षेत्र (टीएफ/एसएफ) औपचारिकता जहाँ कुल क्षेत्र को घटना के योग के रूप में लिखा जाता है और डोमेन में प्रत्येक बिंदु पर प्रकिर्णित हुआ होता है:
कुल क्षेत्र के लिए श्रृंखला समाधान मानकर, एसएमएम विधि डोमेन को बेलनाकार समस्या में बदल देती है। इस प्रकार इस डोमेन में कुल क्षेत्र को बेसेल फलन और हैंकेल फ़ंक्शन के संदर्भ में बेलनाकार हेल्महोल्त्ज़ समीकरण के हल के रूप में लिखा गया है। एसएमएम विधि सूत्रीकरण, अंत में सिलेंडर के अन्दर और उसके बाहर बेलनाकार हार्मोनिक कार्यों के इन गुणांकों की गणना करने में सहायता करता है, साथ ही साथ ईएम सीमा की स्थिति को संतुष्ट करता है।
अंत में, प्रकिर्णित हुए क्षेत्रों को मॉडल करने के लिए उपयोग किए जाने वाले बेलनाकार हार्मोनिक शब्दों को जोड़कर (हटाकर) एसएमएम स्पष्टता को बढ़ाया जा सकता है।
एसएमएम, अंततः मैट्रिक्स औपचारिकता की ओर जाता है, और गुणांक की गणना मैट्रिक्स व्युत्क्रम के माध्यम से की जाती है। इस प्रकार एन-सिलेंडरों के लिए, प्रत्येक प्रकिर्णित हुए क्षेत्र को 2M + 1 हार्मोनिक शब्दों का उपयोग करके बनाया गया है, एसएमएम को समीकरणों की N (2M + 1) प्रणाली को हल करने की आवश्यकता है।
लाभ
एसएमएम, पहले सिद्धांतों से निकलने वाली कठोर और स्पष्ट विधि है। इसलिए, यह मॉडल की सीमाओं के अन्दर स्पष्ट होने की गारंटी है, और परिमित-अंतर समय-डोमेन विधि (एफडीटीडी) विधि जैसी अन्य तकनीकों में उत्पन्न होने वाले संख्यात्मक प्रसार के कृतिम प्रभाव नहीं दिखाता है।
यह भी देखें
- ईजेनमोड विस्तार
- परिमित-अंतर समय-डोमेन विधि
- सीमित तत्व विधि
- मैक्सवेल के समीकरण
- पंक्तियों का विधि
संदर्भ
- ↑ C. Altman and K. Suchy (1991). Reciprocity, spatial mapping and time reversal in electromagnetics. Springer. p. 39. ISBN 978-0-7923-1339-7.
- ↑ Kiyotoshi Yasumoto (2006). Electromagnetic theory and applications for photonic crystals. CRC Press. p. 3. ISBN 978-0-8493-3677-5.