कम्प्यूटेशनल आँकड़े: Difference between revisions
(Created page with "{{for|the journal|Computational Statistics (journal)}} {{Short description|Interface between statistics and computer science}} File:London School of Economics Statistics Mac...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{for|the journal|Computational Statistics (journal)}} | {{for|the journal|Computational Statistics (journal)}} | ||
{{Short description|Interface between statistics and computer science}} | {{Short description|Interface between statistics and computer science}} | ||
[[File:London School of Economics Statistics Machine Room 1964.jpg|thumb|right|1964 में [[लंदन स्कूल ऑफ इकोनॉमिक्स]] की सांख्यिकी [[कंप्यूटर लैब]] में काम करने वाले छात्र]] | [[File:London School of Economics Statistics Machine Room 1964.jpg|thumb|right|1964 में [[लंदन स्कूल ऑफ इकोनॉमिक्स]] की सांख्यिकी [[कंप्यूटर लैब]] में काम करने वाले छात्र]] | ||
शब्द 'कम्प्यूटेशनल स्टैटिस्टिक्स' और 'स्टैटिस्टिकल कंप्यूटिंग' का प्रयोग अक्सर एक दूसरे के स्थान पर किया जाता है, हालांकि कार्लो लॉरो ( | |||
कम्प्यूटेशनल सांख्यिकी, या [[सांख्यिकीय आंकड़ा प्रकार|सांख्यिकीय]] कंप्यूटिंग, सांख्यिकी और [[कंप्यूटर]] विज्ञान के बीच का बंधन है। इसका अर्थ यह है कि सांख्यिकीय विधियाँ जो कम्प्यूटेशनल विधियों का उपयोग करके सक्षम की जाती हैं। यह सांख्यिकी के गणितीय विज्ञान के लिए विशिष्ट [[कम्प्यूटेशनल विज्ञान]] (या वैज्ञानिक कंप्यूटिंग) का क्षेत्र है। यह क्षेत्र भी तेजी से विकसित हो रहा है, जिसके कारण यह मांग उठने लगी है कि कंप्यूटिंग की व्यापक अवधारणा को सामान्य सांख्यिकीय शिक्षा के हिस्से के रूप में पढ़ाया जाना चाहिए।<ref>[[Deborah A. Nolan|Nolan, D.]] & Temple Lang, D. (2010). "Computing in the Statistics Curricula", ''[[The American Statistician]]'' '''64''' (2), pp.97-107.</ref> | |||
मौलिक सांख्यिकी की तरह लक्ष्य को असंसाधित्र आँकड़ा (रॉ डाटा) को ज्ञान में बदलना है,<ref name=":0">[[Edward Wegman|Wegman, Edward]] J. “[https://www.jstor.org/stable/24536995 Computational Statistics: A New Agenda for Statistical Theory and Practice.]” ''[http://www.washacadsci.org/journal/ Journal of the Washington Academy of Sciences]'', vol. 78, no. 4, 1988, pp. 310–322. ''JSTOR''</ref> परन्तु यहाँ ध्यान कंप्यूटर-गहन सांख्यिकीय तरीकों पर है, जैसे कि बहुत बड़े प्रतिदर्श आमाप (सैंपल साइज) और गैर-सजातीय [[डेटा सेट]] वाले मामले में हैं।<ref name=":0" /> | |||
शब्द 'कम्प्यूटेशनल स्टैटिस्टिक्स' और 'स्टैटिस्टिकल कंप्यूटिंग' का प्रयोग अक्सर एक दूसरे के स्थान पर किया जाता है, हालांकि कार्लो लॉरो (सांख्यिकीय कंप्यूटिंग के लिए इंटरनेशनल एसोसिएशन के एक पूर्व अध्यक्ष) ने सांख्यिकी के लिए कंप्यूटर विज्ञान के अनुप्रयोग के रूप में 'सांख्यिकीय कंप्यूटिंग' को परिभाषित करते हुए एक अंतर बनाने का प्रस्ताव दिया था। | |||
और 'कम्प्यूटेशनल सांख्यिकी' को लागू करने के लिए एल्गोरिथम के डिजाइन के लक्ष्य के रूप में | और 'कम्प्यूटेशनल सांख्यिकी' को लागू करने के लिए एल्गोरिथम के डिजाइन के लक्ष्य के रूप में | ||
कंप्यूटर पर सांख्यिकीय तरीके, कंप्यूटर से पहले अकल्पनीय सहित | कंप्यूटर पर सांख्यिकीय तरीके, कंप्यूटर से पहले अकल्पनीय सहित | ||
उम्र (जैसे [[बूटस्ट्रैपिंग (सांख्यिकी)]], | उम्र (जैसे [[बूटस्ट्रैपिंग (सांख्यिकी)]], मोंटे कार्लो सिमुलेशन), साथ ही साथ विश्लेषणात्मक रूप से जटिल समस्याओं से निपटने के लिए [[[sic]]]।<ref name=":1">{{Citation| first=Carlo|last=Lauro| title=Computational statistics or statistical computing, is that the question?| journal= Computational Statistics & Data Analysis| volume=23| issue=1| year=1996| pages=191–193| doi=10.1016/0167-9473(96)88920-1}}</ref> | ||
शब्द 'कम्प्यूटेशनल | |||
'कम्प्यूटेशनल सांख्यिकी' और 'सांख्यिकीय कंप्यूटिंग' शब्द अक्सर एक दूसरे के स्थान पर उपयोग किए जाते हैं, हालांकि कार्लो लॉरो (इंटरनेशनल एसोसिएशन फॉर स्टैटिस्टिकल कंप्यूटिंग के पूर्व अध्यक्ष) ने 'सांख्यिकीय कंप्यूटिंग' को "सांख्यिकी के लिए कंप्यूटर विज्ञान के अनुप्रयोग" के रूप में परिभाषित करते हुए एक अंतर बनाने का प्रस्ताव दिया। ", और 'कम्प्यूटेशनल आँकड़े' का उद्देश्य "कंप्यूटर पर सांख्यिकीय तरीकों को लागू करने के लिए एक एल्गोरिदम के डिजाइन का लक्ष्य रखना है, जिसमें कंप्यूटर युग से पहले अकल्पनीय (जैसे [[बूटस्ट्रैपिंग (सांख्यिकी)]], सिमुलेशन) शामिल हैं, साथ ही विश्लेषणात्मक रूप से कठिन समस्याओं से निपटना भी शामिल है" [[[sic]]]।<ref name=":1" /> | |||
'कम्प्यूटेशनल सांख्यिकी' शब्द का उपयोग कम्प्यूटेशनल रूप से गहन सांख्यिकीय तरीकों को संदर्भित करने के लिए भी किया जा सकता है, जिसमें पुनः प्रतिचयन विधियां, [[मार्कोव चेन मोंटे कार्लो]], स्थानीय प्रतिगमन, [[कर्नेल घनत्व अनुमान]], कृत्रिम तंत्रिका नेटवर्क और सामान्यीकृत योजक मॉडल शामिल हैं। | |||
== इतिहास == | == इतिहास == | ||
हालाँकि कम्प्यूटेशनल आँकड़ों का आज व्यापक रूप से उपयोग किया जाता है, लेकिन वास्तव में सांख्यिकी समुदाय में इसकी स्वीकृति का इतिहास अपेक्षाकृत छोटा है। अधिकांश भाग के लिए, सांख्यिकी के क्षेत्र के संस्थापक कम्प्यूटेशनल सांख्यिकीय पद्धति के विकास में गणित और स्पर्शोन्मुख अनुमानों पर निर्भर थे।<ref>{{Cite journal|last=Watnik|first=Mitchell|date=2011|title=प्रारंभिक कम्प्यूटेशनल सांख्यिकी|url=http://www.tandfonline.com/doi/abs/10.1198/jcgs.2011.204b|journal=Journal of Computational and Graphical Statistics|language=en|volume=20|issue=4|pages=811–817|doi=10.1198/jcgs.2011.204b|s2cid=120111510 |issn=1061-8600}}</ref> | |||
सांख्यिकीय क्षेत्र में, "कंप्यूटर" शब्द का पहला उपयोग 1891 में रॉबर्ट पी. पोर्टर द्वारा जर्नल ऑफ़ द अमेरिकन स्टैटिस्टिकल एसोसिएशन आर्काइव्स के एक लेख में मिलता है। लेख में 11वीं जनगणना में हरमन होलेरिथ की मशीन के उपयोग पर चर्चा की गई है।हरमन होलेरिथ की मशीन, जिसे टेबुलेटिंग मशीन भी कहा जाता है, एक इलेक्ट्रोमैकेनिकल मशीन थी जिसे छिद्रित कार्डों पर संग्रहीत जानकारी को संक्षेप में प्रस्तुत करने में सहायता के लिए डिज़ाइन किया गया था। इसका आविष्कार एक अमेरिकी व्यवसायी, आविष्कारक और सांख्यिकीविद् हरमन होलेरिथ (29 फरवरी, 1860 - 17 नवंबर, 1929) द्वारा किया गया था। पंच कार्ड टेबुलेटिंग मशीन के उनके आविष्कार का 1884 में पेटेंट कराया गया था, और बाद में संयुक्त राज्य अमेरिका की 1890 की जनगणना में इसका इस्तेमाल किया गया था। प्रौद्योगिकी के लाभ तुरंत स्पष्ट हो गए। 1880 की जनगणना, लगभग 50 मिलियन लोगों के साथ, और इसे सारणीबद्ध करने में 7 साल से अधिक का समय लगा। जबकि 1890 की जनगणना में 62 मिलियन से अधिक लोगों को शामिल करने में एक वर्ष से भी कम समय लगा। यह मशीनीकृत कम्प्यूटेशनल सांख्यिकी और अर्धस्वचालित डेटा प्रोसेसिंग सिस्टम के युग की शुरुआत का प्रतीक है। | |||
1908 में, विलियम सीली गॉसेट ने अपनी अब तक की प्रसिद्ध मोंटे कार्लो पद्धति का अनुकरण किया, जिसके परिणामस्वरूप छात्र के टी-वितरण की खोज हुई।<ref>{{Cite journal|last="Student" <nowiki>[</nowiki>[[William Sealy Gosset]]<nowiki>]</nowiki>|date=1908|title=माध्य की संभावित त्रुटि|url=http://www.york.ac.uk/depts/maths/histstat/student.pdf|journal=[[Biometrika]]|volume=6|issue=1|pages=1–25|doi=10.1093/biomet/6.1.1|jstor=2331554|hdl=10338.dmlcz/143545}}</ref> कम्प्यूटेशनल तरीकों की मदद से, उनके पास संबंधित सैद्धांतिक वितरणों पर आच्छादित अनुभवजन्य वितरणों के प्लॉट भी हैं। कंप्यूटर ने सिमुलेशन में क्रांति ला दी है और गॉसेट के प्रयोग की प्रतिकृति को एक अभ्यास से थोड़ा अधिक बना दिया है।<ref>{{Cite journal|last=Trahan|first=Travis John|date=2019-10-03|title=लॉस एलामोस नेशनल लेबोरेटरी में मोंटे कार्लो मेथड्स में हालिया एडवांस|doi=10.2172/1569710 |osti=1569710 |url=http://dx.doi.org/10.2172/1569710}}</ref><ref>{{Cite journal|last1=Metropolis|first1=Nicholas|last2=Ulam|first2=S.|date=1949|title=मोंटे कार्लो विधि|url=http://dx.doi.org/10.1080/01621459.1949.10483310|journal=Journal of the American Statistical Association|volume=44|issue=247|pages=335–341|doi=10.1080/01621459.1949.10483310|pmid=18139350 |issn=0162-1459}}</ref> | |||
बाद में, वैज्ञानिकों ने छद्म-यादृच्छिक विचलन उत्पन्न करने के कम्प्यूटेशनल तरीकों को सामने रखा, व्युत्क्रम संचयी वितरण फ़ंक्शन या स्वीकृति-अस्वीकृति विधियों का उपयोग करके समान विचलन को अन्य वितरण रूपों में परिवर्तित करने के तरीकों का प्रदर्शन किया, और मार्कोव श्रृंखला मोंटे कार्लो के लिए स्थिति-अंतरिक्ष पद्धति विकसित की थी।<ref>{{Cite journal|last1=Robert|first1=Christian|last2=Casella|first2=George|date=2011-02-01|title=A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data|journal=Statistical Science|volume=26|issue=1|doi=10.1214/10-sts351|s2cid=2806098 |issn=0883-4237|doi-access=free}}</ref> पूरी तरह से स्वचालित तरीके से यादृच्छिक अंक उत्पन्न करने के पहले प्रयासों में से एक 1947 में रैंड कॉपोरेशन (RAND Corporation) द्वारा किया गया था। उत्पादित तालिकाओं को 1955 में एक पुस्तक के रूप में और पंच कार्ड की एक श्रृंखला के रूप में भी प्रकाशित किया गया था। | |||
वर्ष 1950 के दशक के मध्य तक, यादृच्छिक संख्या जनरेटर के लिए उपकरणों के लिए कई लेख और पेटेंट प्रस्तावित किए गए थे।।<ref>{{cite journal|author=Pierre L'Ecuyer |title=समान यादृच्छिक संख्या पीढ़ी का इतिहास|journal=2017 Winter Simulation Conference (WSC) |year=2017 |pages=202–230 |doi=10.1109/WSC.2017.8247790|isbn=978-1-5386-3428-8 |s2cid=4567651 |url=https://hal.inria.fr/hal-01561551/file/wsc17rng-history-report.pdf }}</ref> इन उपकरणों का विकास सांख्यिकीय विश्लेषण में सिमुलेशन और अन्य मूलभूत घटकों को करने के लिए यादृच्छिकता का उपयोग करने की आवश्यकता से प्रेरित था। इस तरह के उपकरणों में सबसे प्रसिद्ध में से एक ERNIE है, जो यादृच्छिक संख्या उत्पन्न करता है जो [[ प्रीमियम बांड | प्रीमियम बांड]] के विजेताओं को निर्धारित करता है, यूनाइटेड किंगडम में जारी एक लॉटरी बांड। 1958 में, [[ जॉन टुकी | जॉन टुकी]] की कटहल विकसित की गई थी। यह गैर-मानक स्थितियों के तहत नमूनों में पैरामीटर अनुमानों के पूर्वाग्रह को कम करने की एक विधि के रूप में है।<ref>{{Cite journal|last=QUENOUILLE|first=M. H.|title=अनुमान में पूर्वाग्रह पर नोट्स|date=1956|url=http://dx.doi.org/10.1093/biomet/43.3-4.353|journal=Biometrika|volume=43|issue=3–4|pages=353–360|doi=10.1093/biomet/43.3-4.353|issn=0006-3444}}</ref> इसके लिए व्यावहारिक कार्यान्वयन के लिए कंप्यूटर की आवश्यकता होती है। अब तक, कंप्यूटर ने कई थकाऊ सांख्यिकीय अध्ययनों को संभव बनाया है।<ref>{{Cite journal|last=Teichroew|first=Daniel|date=1965|title=कंप्यूटर के युग से पहले वितरण नमूनाकरण का इतिहास और सिमुलेशन के लिए इसकी प्रासंगिकता|url=http://dx.doi.org/10.1080/01621459.1965.10480773|journal=Journal of the American Statistical Association|volume=60|issue=309|pages=27–49|doi=10.1080/01621459.1965.10480773|issn=0162-1459}}</ref> | |||
Revision as of 21:30, 27 June 2023
कम्प्यूटेशनल सांख्यिकी, या सांख्यिकीय कंप्यूटिंग, सांख्यिकी और कंप्यूटर विज्ञान के बीच का बंधन है। इसका अर्थ यह है कि सांख्यिकीय विधियाँ जो कम्प्यूटेशनल विधियों का उपयोग करके सक्षम की जाती हैं। यह सांख्यिकी के गणितीय विज्ञान के लिए विशिष्ट कम्प्यूटेशनल विज्ञान (या वैज्ञानिक कंप्यूटिंग) का क्षेत्र है। यह क्षेत्र भी तेजी से विकसित हो रहा है, जिसके कारण यह मांग उठने लगी है कि कंप्यूटिंग की व्यापक अवधारणा को सामान्य सांख्यिकीय शिक्षा के हिस्से के रूप में पढ़ाया जाना चाहिए।[1]
मौलिक सांख्यिकी की तरह लक्ष्य को असंसाधित्र आँकड़ा (रॉ डाटा) को ज्ञान में बदलना है,[2] परन्तु यहाँ ध्यान कंप्यूटर-गहन सांख्यिकीय तरीकों पर है, जैसे कि बहुत बड़े प्रतिदर्श आमाप (सैंपल साइज) और गैर-सजातीय डेटा सेट वाले मामले में हैं।[2]
शब्द 'कम्प्यूटेशनल स्टैटिस्टिक्स' और 'स्टैटिस्टिकल कंप्यूटिंग' का प्रयोग अक्सर एक दूसरे के स्थान पर किया जाता है, हालांकि कार्लो लॉरो (सांख्यिकीय कंप्यूटिंग के लिए इंटरनेशनल एसोसिएशन के एक पूर्व अध्यक्ष) ने सांख्यिकी के लिए कंप्यूटर विज्ञान के अनुप्रयोग के रूप में 'सांख्यिकीय कंप्यूटिंग' को परिभाषित करते हुए एक अंतर बनाने का प्रस्ताव दिया था। और 'कम्प्यूटेशनल सांख्यिकी' को लागू करने के लिए एल्गोरिथम के डिजाइन के लक्ष्य के रूप में कंप्यूटर पर सांख्यिकीय तरीके, कंप्यूटर से पहले अकल्पनीय सहित उम्र (जैसे बूटस्ट्रैपिंग (सांख्यिकी), मोंटे कार्लो सिमुलेशन), साथ ही साथ विश्लेषणात्मक रूप से जटिल समस्याओं से निपटने के लिए [[[sic]]]।[3]
'कम्प्यूटेशनल सांख्यिकी' और 'सांख्यिकीय कंप्यूटिंग' शब्द अक्सर एक दूसरे के स्थान पर उपयोग किए जाते हैं, हालांकि कार्लो लॉरो (इंटरनेशनल एसोसिएशन फॉर स्टैटिस्टिकल कंप्यूटिंग के पूर्व अध्यक्ष) ने 'सांख्यिकीय कंप्यूटिंग' को "सांख्यिकी के लिए कंप्यूटर विज्ञान के अनुप्रयोग" के रूप में परिभाषित करते हुए एक अंतर बनाने का प्रस्ताव दिया। ", और 'कम्प्यूटेशनल आँकड़े' का उद्देश्य "कंप्यूटर पर सांख्यिकीय तरीकों को लागू करने के लिए एक एल्गोरिदम के डिजाइन का लक्ष्य रखना है, जिसमें कंप्यूटर युग से पहले अकल्पनीय (जैसे बूटस्ट्रैपिंग (सांख्यिकी), सिमुलेशन) शामिल हैं, साथ ही विश्लेषणात्मक रूप से कठिन समस्याओं से निपटना भी शामिल है" [[[sic]]]।[3]
'कम्प्यूटेशनल सांख्यिकी' शब्द का उपयोग कम्प्यूटेशनल रूप से गहन सांख्यिकीय तरीकों को संदर्भित करने के लिए भी किया जा सकता है, जिसमें पुनः प्रतिचयन विधियां, मार्कोव चेन मोंटे कार्लो, स्थानीय प्रतिगमन, कर्नेल घनत्व अनुमान, कृत्रिम तंत्रिका नेटवर्क और सामान्यीकृत योजक मॉडल शामिल हैं।
इतिहास
हालाँकि कम्प्यूटेशनल आँकड़ों का आज व्यापक रूप से उपयोग किया जाता है, लेकिन वास्तव में सांख्यिकी समुदाय में इसकी स्वीकृति का इतिहास अपेक्षाकृत छोटा है। अधिकांश भाग के लिए, सांख्यिकी के क्षेत्र के संस्थापक कम्प्यूटेशनल सांख्यिकीय पद्धति के विकास में गणित और स्पर्शोन्मुख अनुमानों पर निर्भर थे।[4]
सांख्यिकीय क्षेत्र में, "कंप्यूटर" शब्द का पहला उपयोग 1891 में रॉबर्ट पी. पोर्टर द्वारा जर्नल ऑफ़ द अमेरिकन स्टैटिस्टिकल एसोसिएशन आर्काइव्स के एक लेख में मिलता है। लेख में 11वीं जनगणना में हरमन होलेरिथ की मशीन के उपयोग पर चर्चा की गई है।हरमन होलेरिथ की मशीन, जिसे टेबुलेटिंग मशीन भी कहा जाता है, एक इलेक्ट्रोमैकेनिकल मशीन थी जिसे छिद्रित कार्डों पर संग्रहीत जानकारी को संक्षेप में प्रस्तुत करने में सहायता के लिए डिज़ाइन किया गया था। इसका आविष्कार एक अमेरिकी व्यवसायी, आविष्कारक और सांख्यिकीविद् हरमन होलेरिथ (29 फरवरी, 1860 - 17 नवंबर, 1929) द्वारा किया गया था। पंच कार्ड टेबुलेटिंग मशीन के उनके आविष्कार का 1884 में पेटेंट कराया गया था, और बाद में संयुक्त राज्य अमेरिका की 1890 की जनगणना में इसका इस्तेमाल किया गया था। प्रौद्योगिकी के लाभ तुरंत स्पष्ट हो गए। 1880 की जनगणना, लगभग 50 मिलियन लोगों के साथ, और इसे सारणीबद्ध करने में 7 साल से अधिक का समय लगा। जबकि 1890 की जनगणना में 62 मिलियन से अधिक लोगों को शामिल करने में एक वर्ष से भी कम समय लगा। यह मशीनीकृत कम्प्यूटेशनल सांख्यिकी और अर्धस्वचालित डेटा प्रोसेसिंग सिस्टम के युग की शुरुआत का प्रतीक है।
1908 में, विलियम सीली गॉसेट ने अपनी अब तक की प्रसिद्ध मोंटे कार्लो पद्धति का अनुकरण किया, जिसके परिणामस्वरूप छात्र के टी-वितरण की खोज हुई।[5] कम्प्यूटेशनल तरीकों की मदद से, उनके पास संबंधित सैद्धांतिक वितरणों पर आच्छादित अनुभवजन्य वितरणों के प्लॉट भी हैं। कंप्यूटर ने सिमुलेशन में क्रांति ला दी है और गॉसेट के प्रयोग की प्रतिकृति को एक अभ्यास से थोड़ा अधिक बना दिया है।[6][7]
बाद में, वैज्ञानिकों ने छद्म-यादृच्छिक विचलन उत्पन्न करने के कम्प्यूटेशनल तरीकों को सामने रखा, व्युत्क्रम संचयी वितरण फ़ंक्शन या स्वीकृति-अस्वीकृति विधियों का उपयोग करके समान विचलन को अन्य वितरण रूपों में परिवर्तित करने के तरीकों का प्रदर्शन किया, और मार्कोव श्रृंखला मोंटे कार्लो के लिए स्थिति-अंतरिक्ष पद्धति विकसित की थी।[8] पूरी तरह से स्वचालित तरीके से यादृच्छिक अंक उत्पन्न करने के पहले प्रयासों में से एक 1947 में रैंड कॉपोरेशन (RAND Corporation) द्वारा किया गया था। उत्पादित तालिकाओं को 1955 में एक पुस्तक के रूप में और पंच कार्ड की एक श्रृंखला के रूप में भी प्रकाशित किया गया था।
वर्ष 1950 के दशक के मध्य तक, यादृच्छिक संख्या जनरेटर के लिए उपकरणों के लिए कई लेख और पेटेंट प्रस्तावित किए गए थे।।[9] इन उपकरणों का विकास सांख्यिकीय विश्लेषण में सिमुलेशन और अन्य मूलभूत घटकों को करने के लिए यादृच्छिकता का उपयोग करने की आवश्यकता से प्रेरित था। इस तरह के उपकरणों में सबसे प्रसिद्ध में से एक ERNIE है, जो यादृच्छिक संख्या उत्पन्न करता है जो प्रीमियम बांड के विजेताओं को निर्धारित करता है, यूनाइटेड किंगडम में जारी एक लॉटरी बांड। 1958 में, जॉन टुकी की कटहल विकसित की गई थी। यह गैर-मानक स्थितियों के तहत नमूनों में पैरामीटर अनुमानों के पूर्वाग्रह को कम करने की एक विधि के रूप में है।[10] इसके लिए व्यावहारिक कार्यान्वयन के लिए कंप्यूटर की आवश्यकता होती है। अब तक, कंप्यूटर ने कई थकाऊ सांख्यिकीय अध्ययनों को संभव बनाया है।[11]
तरीके
अधिकतम संभावना अनुमान
अधिकतम संभावना अनुमान का उपयोग अनुमानित संभावना वितरण के सांख्यिकीय पैरामीटर अनुमान सिद्धांत के लिए किया जाता है, कुछ देखे गए डेटा दिए गए हैं। यह गणितीय अनुकूलन द्वारा एक संभावना कार्य द्वारा प्राप्त किया जाता है ताकि ग्रहण किए गए सांख्यिकीय मॉडल के तहत प्राप्ति (संभाव्यता) सबसे अधिक संभावित हो।
मोंटे कार्लो विधि
मोंटे कार्लो एक सांख्यिकीय पद्धति संख्यात्मक परिणाम प्राप्त करने के लिए बार-बार यादृच्छिक नमूने पर निर्भर करती है। अवधारणा उन समस्याओं को हल करने के लिए यादृच्छिकता का उपयोग करना है जो सिद्धांत रूप में निर्धारक प्रणाली हो सकती हैं। वे अक्सर भौतिकी और गणित की समस्याओं में उपयोग किए जाते हैं और सबसे उपयोगी होते हैं जब अन्य तरीकों का उपयोग करना मुश्किल होता है। मोंटे कार्लो विधियों का मुख्य रूप से तीन समस्या वर्गों में उपयोग किया जाता है: अनुकूलन, संख्यात्मक एकीकरण, और संभाव्यता वितरण से ड्रॉ बनाना।
मार्कोव चेन मोंटे कार्लो
मार्कोव श्रृंखला मोंटे कार्लो विधि एक निरंतर यादृच्छिक चर से नमूने बनाती है, जिसमें प्रायिकता घनत्व एक ज्ञात फ़ंक्शन के समानुपाती होता है। इन नमूनों का उपयोग उस चर पर एक अभिन्न का मूल्यांकन करने के लिए किया जा सकता है, जैसा कि इसके अपेक्षित मूल्य या विचरण के रूप में होता है। जितने अधिक चरण शामिल हैं, नमूने का वितरण उतना ही अधिक निकटता से वास्तविक वांछित वितरण से मेल खाता है।
अनुप्रयोग
- कम्प्यूटेशनल बायोलॉजी
- अभिकलनात्मक भाषाविज्ञान
- कम्प्यूटेशनल भौतिकी
- कम्प्यूटेशनल गणित
- कम्प्यूटेशनल सामग्री विज्ञान
कम्प्यूटेशनल सांख्यिकी जर्नल
- सांख्यिकी में संचार|सांख्यिकी में संचार - अनुकरण और संगणना
- कम्प्यूटेशनल सांख्यिकी
- कम्प्यूटेशनल सांख्यिकी और डेटा विश्लेषण
- कम्प्यूटेशनल और ग्राफिकल सांख्यिकी का जर्नल
- जर्नल ऑफ स्टैटिस्टिकल कंप्यूटेशन एंड सिमुलेशन
- जर्नल ऑफ स्टैटिस्टिकल सॉफ्टवेयर
- द आर जर्नल
- सांख्यिकी और कम्प्यूटिंग
- विले अंतःविषय समीक्षा कम्प्यूटेशनल सांख्यिकी
एसोसिएशन
- सांख्यिकीय कंप्यूटिंग के लिए अंतर्राष्ट्रीय संघ
यह भी देखें
- सांख्यिकीय वर्गीकरण के लिए एल्गोरिदम
- डेटा विज्ञान
- आर्टिफिशियल इंटेलिजेंस#सांख्यिकीय
- मुफ्त सांख्यिकीय सॉफ्टवेयर
- एल्गोरिदम की सूची#सांख्यिकी
- सांख्यिकीय पैकेजों की सूची
- यंत्र अधिगम
संदर्भ
- ↑ Nolan, D. & Temple Lang, D. (2010). "Computing in the Statistics Curricula", The American Statistician 64 (2), pp.97-107.
- ↑ 2.0 2.1 Wegman, Edward J. “Computational Statistics: A New Agenda for Statistical Theory and Practice.” Journal of the Washington Academy of Sciences, vol. 78, no. 4, 1988, pp. 310–322. JSTOR
- ↑ 3.0 3.1 Lauro, Carlo (1996), "Computational statistics or statistical computing, is that the question?", Computational Statistics & Data Analysis, 23 (1): 191–193, doi:10.1016/0167-9473(96)88920-1
- ↑ Watnik, Mitchell (2011). "प्रारंभिक कम्प्यूटेशनल सांख्यिकी". Journal of Computational and Graphical Statistics (in English). 20 (4): 811–817. doi:10.1198/jcgs.2011.204b. ISSN 1061-8600. S2CID 120111510.
- ↑ "Student" [William Sealy Gosset] (1908). "माध्य की संभावित त्रुटि" (PDF). Biometrika. 6 (1): 1–25. doi:10.1093/biomet/6.1.1. hdl:10338.dmlcz/143545. JSTOR 2331554.
- ↑ Trahan, Travis John (2019-10-03). "लॉस एलामोस नेशनल लेबोरेटरी में मोंटे कार्लो मेथड्स में हालिया एडवांस". doi:10.2172/1569710. OSTI 1569710.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Metropolis, Nicholas; Ulam, S. (1949). "मोंटे कार्लो विधि". Journal of the American Statistical Association. 44 (247): 335–341. doi:10.1080/01621459.1949.10483310. ISSN 0162-1459. PMID 18139350.
- ↑ Robert, Christian; Casella, George (2011-02-01). "A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data". Statistical Science. 26 (1). doi:10.1214/10-sts351. ISSN 0883-4237. S2CID 2806098.
- ↑ Pierre L'Ecuyer (2017). "समान यादृच्छिक संख्या पीढ़ी का इतिहास" (PDF). 2017 Winter Simulation Conference (WSC): 202–230. doi:10.1109/WSC.2017.8247790. ISBN 978-1-5386-3428-8. S2CID 4567651.
- ↑ QUENOUILLE, M. H. (1956). "अनुमान में पूर्वाग्रह पर नोट्स". Biometrika. 43 (3–4): 353–360. doi:10.1093/biomet/43.3-4.353. ISSN 0006-3444.
- ↑ Teichroew, Daniel (1965). "कंप्यूटर के युग से पहले वितरण नमूनाकरण का इतिहास और सिमुलेशन के लिए इसकी प्रासंगिकता". Journal of the American Statistical Association. 60 (309): 27–49. doi:10.1080/01621459.1965.10480773. ISSN 0162-1459.
अग्रिम पठन
लेख
- Albert, J.H.; Gentle, J.E. (2004), Albert, James H; Gentle, James E (eds.), "Special Section: Teaching Computational Statistics", The American Statistician, 58: 1, doi:10.1198/0003130042872, S2CID 219596225
- Wilkinson, Leland (2008), "The Future of Statistical Computing (with discussion)", Technometrics, 50 (4): 418–435, doi:10.1198/004017008000000460, S2CID 3521989
पुस्तकें
- Drew, John H.; Evans, Diane L.; Glen, Andrew G.; Lemis, Lawrence M. (2007), Computational Probability: Algorithms and Applications in the Mathematical Sciences, Springer International Series in Operations Research & Management Science, Springer, ISBN 978-0-387-74675-3
- Gentle, James E. (2002), Elements of Computational Statistics, Springer, ISBN 0-387-95489-9
- Gentle, James E.; Härdle, Wolfgang; Mori, Yuichi, eds. (2004), Handbook of Computational Statistics: Concepts and Methods, Springer, ISBN 3-540-40464-3
- Givens, Geof H.; Hoeting, Jennifer A. (2005), Computational Statistics, Wiley Series in Probability and Statistics, Wiley-Interscience, ISBN 978-0-471-46124-1
- Klemens, Ben (2008), Modeling with Data: Tools and Techniques for Statistical Computing, Princeton University Press, ISBN 978-0-691-13314-0
- Monahan, John (2001), Numerical Methods of Statistics, Cambridge University Press, ISBN 978-0-521-79168-7
- Rose, Colin; Smith, Murray D. (2002), Mathematical Statistics with Mathematica, Springer Texts in Statistics, Springer, ISBN 0-387-95234-9
- Thisted, Ronald Aaron (1988), Elements of Statistical Computing: Numerical Computation, CRC Press, ISBN 0-412-01371-1
- Gharieb, Reda. R. (2017), Data Science: Scientific and Statistical Computing, Noor Publishing, ISBN 978-3-330-97256-8
बाहरी संबंध
एसोसिएशन
- इंटरनेशनल एसोसिएशन फॉर स्टैटिस्टिकल कंप्यूटिंग
- अमेरिकन स्टैटिस्टिकल एसोसिएशन का स्टैटिस्टिकल कंप्यूटिंग सेक्शन