आपतन बीजगणित (इन्सिडेन्स अलजेब्रा): Difference between revisions

From Vigyanwiki
Line 131: Line 131:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:36, 7 July 2023

क्रम सिद्धांत में, गणित का क्षेत्र, घटना बीजगणित सहयोगी बीजगणित है, जिसे प्रत्येक स्थानीय रूप से परिमित आंशिक रूप से क्रमित समुच्चय और एकता के साथ क्रमविनिमेय वलय के लिए परिभाषित किया गया है। अतः उप-बीजगणित जिसे समानीत घटना बीजगणित कहा जाता है, साहचर्य और संख्या सिद्धांत में उपयोग किए जाने वाले विभिन्न प्रकार के उत्पन्न करने वाले फलनों का प्राकृतिक संरचना देता है।

परिभाषा

इस प्रकार से स्थानीय रूप से परिमित स्थिति वह है जिसमें प्रत्येक आंशिक रूप से क्रमित समुच्चय संवृत अंतराल

[a, b] = {x : a ≤ x ≤ b}

परिमित होता है।

अतः घटना बीजगणित के सदस्य फलन (गणित) s f हैं जो प्रत्येक रिक्त समुच्चय अंतराल [a, b] को अदिश f(a, b) निर्दिष्ट करते हैं), जो अदिश के वलय (गणित) से लिया गया है, जो एकता के साथ क्रमविनिमेय वलय है। इस अंतर्निहित समुच्चय पर कोई योग और अदिश गुणन को बिंदुवार परिभाषित करता है, और घटना बीजगणित में गुणन

द्वारा परिभाषित संवलन है।

इस प्रकार से घटना बीजगणित परिमित-आयामी है यदि और मात्र यदि अंतर्निहित स्थिति परिमित है।

संबंधित अवधारणाएँ

अतः घटना बीजगणित समूह वलय के समान होता है; वस्तुतः, समूह बीजगणित और घटना बीजगणित दोनों श्रेणी बीजगणित की विशेष स्थिति हैं, जिन्हें समान रूप से परिभाषित किया गया है; समूह (गणित) और आंशिक रूप से क्रमबद्ध समुच्चय विशेष प्रकार की श्रेणी (गणित) है।

उच्च-त्रिकोणीय आव्यूह

इस प्रकार से किसी भी n-अवयव समुच्चय S पर आंशिक क्रम ≤ की स्थिति पर विचार करें। हम S की गणना s1, …, sn के रूप में करते हैं, और इस प्रकार से कि गणना S पर क्रम ≤ के साथ संगत है, अर्थात, sisj का तात्पर्य ij है, जो सदैव संभव है।

फिर, उपरोक्त फलन f, अंतराल से अदिश तक, को आव्यूह (गणित) Aij के रूप में सोचा जा सकता है, जहाँ Aij = f(si, sj) जब भी ij, और अन्यथा Aij = 0 होता है। चूँकि हमने S को आव्यूहों के सूचकांकों पर सामान्य क्रम के अनुरूप व्यवस्थित किया है, वे ≤ के अंतर्गत S में अतुलनीय अवयवों द्वारा निर्धारित निर्धारित शून्य-प्रतिरूप के साथ उच्च-त्रिकोणीय आव्यूह के रूप में दिखाई देंगे।

अतः ≤ की घटना बीजगणित तब इस निर्धारित शून्य-प्रतिरूप और यादृच्छिक (संभवतः शून्य सहित) अदिश प्रविष्टियों के साथ उच्च-त्रिकोणीय आव्यूह के बीजगणित के लिए समरूपी है, संचालन सामान्य आव्यूह योग, सोपानी और आव्यूह गुणन के साथ होता है।[1]

विशेष अवयव

इस प्रकार से घटना बीजगणित का गुणक तत्समक अवयव क्रोनकर डेल्टा है, जिसे

द्वारा परिभाषित किया गया है।

अतः घटना बीजगणित का जीटा फलन प्रत्येक गैर-रिक्त अंतराल [a, b] के लिए स्थिर फलन ζ(a, b) = 1 है। ζ से गुणा करना अभिन्न के समान है।

कोई यह दिखा सकता है कि घटना बीजगणित में (ऊपर परिभाषित संवलन के संबंध में) इकाई (वलय सिद्धांत) है। (सामान्यतः, घटना बीजगणित का सदस्य h व्युत्क्रमणीय होता है यदि और मात्र यदि h(x, x) प्रत्येक x के लिए व्युत्क्रमणीय हो।) अतः जीटा फलन का गुणात्मक व्युत्क्रम मोबियस फलन μ(a, b) है; μ(a, b) का प्रत्येक मान आधार वलय में 1 का अभिन्न गुणज है।

इस प्रकार से मोबियस फलन को निम्नलिखित संबंध द्वारा आगमनात्मक रूप से भी परिभाषित किया जा सकता है:

अतः μ से गुणा करना व्युत्पन्न के समान है, और इसे मोबियस व्युत्क्रम कहा जाता है।

इस प्रकार से जीटा फलन का वर्ग अंतराल में अवयवों की संख्या देता है:

उदाहरण

विभाज्यता द्वारा क्रमित धनात्मक पूर्णांक
अतः अंतराल [1, n] के लिए घटना बीजगणित से जुड़ा संवलन डिरिचलेट संवलन बन जाता है, इसलिए मोबियस फलन μ(a, b) = μ(b/a) है, जहां दूसरा μ उत्कृष्ट मोबियस फलन है जिसे 19वीं शताब्दी में संख्या सिद्धांत में प्रस्तुत किया गया था।
कुछ समुच्चय E के परिमित उपसमुच्चय, समाविष्ट द्वारा क्रमबद्ध
जब भी S और T, S ⊆ T के साथ E के परिमित उपसमुच्चय होते हैं, तो मोबियस फलन
होता है और मोबियस व्युत्क्रम को समाविष्ट-बहिष्करण का सिद्धांत कहा जाता है।
ज्यामितीय रूप से, यह अतिविम है:
प्राकृतिक संख्याएँ अपने सामान्य क्रम के साथ
इस प्रकार से मोबियस फलन
है और मोबियस व्युत्क्रम को (पीछे की ओर) अंतर संक्रियक कहा जाता है।
अतः ज्यामितीय रूप से, यह पृथक संख्या रेखा से मेल खाता है।
इस प्रकार से घटना बीजगणित में फलनों का संकेंद्रण औपचारिक घात श्रृंखला के गुणन से मेल खाता है: नीचे समानीत घटना बीजगणित की चर्चा देखें। अतः मोबियस फलन औपचारिक घात श्रृंखला 1 −t के गुणांकों के अनुक्रम (1, −1, 0, 0, 0, ...) से मेल खाता है, और जीटा फलन औपचारिक घात श्रृंखला के गुणांकों (1, 1, 1) के अनुक्रम से मेल खाता है, जो व्युत्क्रम है। इस घटना बीजगणित में डेल्टा फलन समान रूप से औपचारिक घात श्रृंखला 1 से मेल खाता है।
कुछ बहुसमुच्चय E के परिमित उप-बहुसमुच्चय, समाविष्ट द्वारा क्रमबद्ध
इस प्रकार से उपरोक्त तीन उदाहरणों को E के बहुसमुच्चय E और परिमित उप-बहुसमुच्चय S और T पर विचार करके एकीकृत और सामान्यीकृत किया जा सकता है। अतः मोबियस फलन
है।
यह बहुलता के साथ अभाज्य संख्या विभाजक के बहुसमुच्चय के अनुरूप धनात्मक पूर्णांक द्वारा विभाज्यता द्वारा क्रमित धनात्मक पूर्णांकों को सामान्यीकृत करता है, इस प्रकार से उदाहरण के लिए, 12 बहुसमुच्चय से मेल खाता है।
अतः यह प्राकृतिक संख्याओं को उनके सामान्य क्रम के साथ अंतर्निहित अवयव के बहुसमुच्चय और उस संख्या के बराबर गणनांक के अनुरूप प्राकृतिक संख्या द्वारा सामान्यीकृत करता है, इस प्रकार से उदाहरण के लिए, 3 बहुसमुच्चय से मेल खाता है।
परिमित p-समूह जी के उपसमूह, समाविष्ट द्वारा क्रमबद्ध
यदि और का सामान्य उपसमूह है तो मोबियस फलन
है और अन्यथा यह 0 है।
एक समुच्चय का विभाजन
अतः किसी परिमित समुच्चय के सभी विभाजनों के समुच्चय को σ ≤ τ कहकर आंशिक रूप से क्रमबद्ध करें यदि σ, τ से अधिक स्पष्ट विभाजन है। विशेष रूप से, मान लीजिए कि τ में t कक्ष हैं जो क्रमशः σ के s1, ..., st स्पष्ट कक्ष में विभाजित होते हैं, जिसमें कुल s = s है1 +···· + St कक्ष होते हैं। इस प्रकार से तब मोबियस फलन है:

यूलर विशेषता

अतः एक क्रमित समुच्चय परिबद्ध होता है यदि इसमें सबसे छोटे और सबसे बड़े अवयव हों, जिन्हें हम क्रमशः 0 और 1 कहते हैं (अदिश वलय के 0 और 1 के साथ भ्रमित न हों)। इस प्रकार से परिबद्ध परिमित स्थिति की 'यूलर विशेषता' μ(0,1) है। इस शब्दावली का कारण निम्नलिखित है: यदि P में 0 और 1 है, तो μ(0,1) सरल मिश्रित के समानीत यूलर विशेषता है, जिसके शीर्ष P \ {0, 1} में श्रृंखलाएं हैं। अतः इसे फिलिप हॉल के प्रमेय का उपयोग करके दिखाया जा सकता है, जो μ(0,1) के मान को लंबाई i की श्रृंखलाओं की संख्या से संबंधित करता है।

समानीत घटना बीजगणित

इस प्रकार से समानीत घटना बीजगणित में ऐसे फलन सम्मिलित होते हैं जो किन्हीं दो अंतरालों के लिए समान मान निर्दिष्ट करते हैं जो उचित अर्थ में समतुल्य होते हैं, सामान्यतः क्रमित समुच्चय के रूप में क्रम समरूपता का अर्थ होता है। अतः यह घटना बीजगणित का उपबीजगणित है, और इसमें स्पष्ट रूप से घटना बीजगणित के तत्समक अवयव और जीटा फलन सम्मिलित हैं। इस प्रकार से समानीत घटना बीजगणित का कोई भी अवयव जो बड़े घटना बीजगणित में व्युत्क्रम होता है, समानीत घटना बीजगणित में उसका व्युत्क्रम होता है। इस प्रकार मोबियस फलन भी समानीत घटना बीजगणित में है।

अतः जनक फलन के विभिन्न वलयों का प्राकृतिक संरचना देने के लिए डौबिललेट, रोटा और स्टेनली द्वारा समानीत घटना वाले बीजगणित का प्रारंभ किया गया था।[2]

प्राकृतिक संख्याएँ और सामान्य जनक फलन

इस प्रकार से क्रमित समुच्चय के लिए समानीत घटना बीजगणित में अनुवाद के अंतर्गत अपरिवर्तनीय फलन सम्मिलित हैं, सभी के लिए, ताकि समरूपी अंतराल [a+k, b+k] और [a, b] पर समान मान हो। मान लीजिए t फलन को t(a, a+1) = 1 और t(a, b) = 0 से निरूपित करता है अन्यथा, अंतराल के समरूपता वर्गों पर प्रकार का अपरिवर्तनीय डेल्टा फलन है। अतः घटना बीजगणित में इसकी घातें अन्य अपरिवर्तनीय डेल्टा फलन Tn(a, a+n) = 1 और tn(x, y) = 0 हैं अन्यथा। ये समानीत घटना बीजगणित के लिए आधार (रैखिक बीजगणित) बनाते हैं, और हम किसी भी अपरिवर्तनीय फलन को के रूप में लिख सकते हैं। यह अंकन समानीत घटना बीजगणित और अदिश R पर औपचारिक घात श्रृंखला के वलय के बीच समरूपता को स्पष्ट करता है, जिसे सामान्य जनक फलनों के वलय के रूप में भी जाना जाता है। इस प्रकार से हम जीटा फलन को के रूप में लिख सकते हैं, जो मोबियस फलन का व्युत्क्रम है।

उपसमुच्चय क्रमित समुच्चय और घातीय जनक फलन

अतः समाविष्ट द्वारा क्रमित समुच्चय परिमित उपसमुच्चय के बूलियन क्रमित समुच्चय के लिए, समानीत घटना बीजगणित में अपरिवर्तनीय फलन सम्मिलित होते हैं, जो |T\S| = |T ′\S′| के साथ समरूपी अंतराल [S,T] और [S′,T ′] पर समान मान के लिए परिभाषित होते हैं। फिर, मान लीजिए t |T\S| के लिए अपरिवर्तनीय डेल्टा फलन को t(S,T) = 1 से दर्शाता है और = 1 और t(S,T) = 0 अन्यथा। इसकी घातें हैं:

जहां योग सभी श्रृंखलाओं पर होता है, और के साथ संतृप्त श्रृंखलाओं के लिए मात्र गैर-शून्य पद होते हैं; चूँकि ये n के क्रमपरिवर्तन के अनुरूप हैं, हमें अद्वितीय गैर-शून्य मान n! मिलता है। इस प्रकार, अपरिवर्तनीय डेल्टा फलन विभाजित घातें हैं, और हम किसी भी अपरिवर्तनीय फलन को के रूप में लिख सकते हैं, जहां [n] = {1, . . ., n} है। यह समानीत घटना बीजगणित और घातीय उत्पन्न करने वाले फलनों के वलय के बीच प्राकृतिक समरूपता देता है। जीटा फलन है, इस प्रकार से मोबियस फलन के साथ:
वस्तुतः, औपचारिक घात श्रृंखला के साथ यह गणना यह सिद्ध करती है कि उपसमुच्चय या लेबल वाली वस्तुओं को सम्मिलित करने वाले इस प्रकार से कई संयुक्त गणना अनुक्रमों की व्याख्या समानीत घटना बीजगणित और घातीय उत्पन्न करने वाले फलनों का उपयोग करके घातीय सूत्र के संदर्भ में की जा सकती है।

विभाजक क्रमित समुच्चय और डिरिचलेट श्रृंखला

अतः विभाज्यता द्वारा क्रमित धनात्मक पूर्णांकों के क्रमित समुच्चय D पर विचार करें, जिसे द्वारा दर्शाया गया है। समानीत घटना बीजगणित में फलन सम्मिलित होते हैं जो गुणन के अंतर्गत अपरिवर्तनीय हैं: के लिए । (अंतराल की यह गुणात्मक तुल्यता क्रमित समुच्चय समरूपता की तुलना में बहुत दृढ संबंध है; उदाहरण के लिए, अभाज्य संख्या p के लिए, दो-अवयव अंतराल [1,p] सभी असमान हैं।) इस प्रकार से अपरिवर्तनीय फलन के लिए, f(a,b) मात्र b/a पर निर्भर करता है, इसलिए प्राकृतिक आधार में द्वारा परिभाषित अपरिवर्तनीय डेल्टा फलन सम्मिलित होते हैं यदि b/a = n और 0 अन्यथा; तो किसी भी अपरिवर्तनीय फलन को लिखा जा सकता है।

अतः दो अपरिवर्तनीय डेल्टा फलन का गुणन है:

चूँकि एकमात्र गैर-शून्य पद c = na और b = mc = nma से आता है। इस प्रकार, हम को भेजकर समानीत घटना बीजगणित से औपचारिक डिरिचलेट श्रृंखला के वलय तक समरूपता प्राप्त करते हैं ताकि f से मेल खाता हो।

इस प्रकार से घटना बीजगणित जीटा फलन ζD(a,b) = 1 उत्कृष्ट रीमैन जीटा फलन से मेल खाता है, जिसमें पारस्परिक है, जहां संख्या सिद्धांत का उत्कृष्ट मोबियस फलन है। कई अन्य अंकगणितीय फलन समानीत घटना बीजगणित के भीतर स्वाभाविक रूप से उत्पन्न होते हैं, और समकक्ष रूप से डिरिचलेट श्रृंखला के संदर्भ में। उदाहरण के लिए, विभाजक फलन जीटा फलन का वर्ग है, उपरोक्त परिणाम का विशेष स्थिति कि अंतराल [x,y] में अवयवों की संख्या देता है; समतुल्यता,

विभाजक क्रमित समुच्चय की गुणन संरचना इसके मोबियस फलन की गणना की सुविधा प्रदान करती है। अतः अभाज्य संख्याओं में अद्वितीय गुणनखंडन से पता चलता है कि D एक अनंत कार्तीय गुणनफल के लिए समरूपी है, निर्देशांकवार तुलना द्वारा दिए गए क्रम के साथ: , जहाँ kवां अभाज्य है, इसके घातांक के अनुक्रम से मेल खाता है। अब D का मोबियस फलन कारक क्रमित समुच्चय के लिए मोबियस फलन का गुणन है, जिसकी गणना ऊपर दी गई है, जो उत्कृष्ट सूत्र देता है:

इस प्रकार से गुणन संरचना जीटा फलन के लिए उत्कृष्ट यूलर गुणन की भी व्याख्या करती है। D का जीटा फलन कारकों के जीटा फलन के कार्तीय गुणन से मेल खाता है, जिसकी गणना ऊपर के रूप में की गई है, ताकि जहां दाहिनी ओर कार्तीय गुणन है। अतः समरूपता को लागू करने से जो t को kवें कारक में भेजता है, हम सामान्य यूलर गुणन प्राप्त करते हैं।

यह भी देखे

साहित्य

1964 में प्रारंभ होने वाले जियान-कार्लो रोटा के कई लेखों में और बाद के कई संयोजनवादी द्वारा स्थानीय रूप से परिमित क्रमित समुच्चय के घटना बीजगणित का इलाज किया गया था। रोटा का 1964 का लेख था:

  • Rota, Gian-Carlo (1964), "On the Foundations of Combinatorial Theory I: Theory of Möbius Functions", Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2 (4): 340–368, doi:10.1007/BF00531932, S2CID 121334025
  • नाथन जैकबसन|n. जैकबसन, मूल बीजगणित। आई, डब्ल्यू. एच. फ्रीमैन एंड कंपनी, 1974। क्रमित समुच्चय्स पर मोबियस फलन के उपचार के लिए अनुभाग 8.6 देखें
  1. Kolegov, N. A.; Markova, O. V. (August 2019). "परिमित क्षेत्रों पर मैट्रिक्स घटना बीजगणित के जेनरेटर की प्रणाली". Journal of Mathematical Sciences (in English). 240 (6): 783–798. doi:10.1007/s10958-019-04396-6. ISSN 1072-3374. S2CID 198443199.
  2. Peter Doubilet, Gian-Carlo Rota and Richard Stanley: On the Foundations of Combinatorics (VI): The Idea of Generating Function, Berkeley Symposium on Math. Statist. and Prob., Proc. Sixth Berkeley Symposium on Math. Statist. and Prob., Vol. 2 (Univ. of Calif. Press, 1972), 267-318, available online in open access

अग्रिम पठन