क्लिफोर्ड विश्लेषण: Difference between revisions
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
3 और 4 विमाओं में क्लिफोर्ड विश्लेषण को कभी-कभी चतुर्धातुक विश्लेषण के रूप में जाना जाता है। जब {{nowrap|1=''n'' = 4}}, डिरैक संक्रियक को कभी-कभी कॉची-रीमैन-फ्यूटर संक्रियक के रूप में जाना जाता है। इसके अतिरिक्त क्लिफोर्ड विश्लेषण के कुछ गुणों को अतिमिश्र विश्लेषण कहा जाता है। | 3 और 4 विमाओं में क्लिफोर्ड विश्लेषण को कभी-कभी चतुर्धातुक विश्लेषण के रूप में जाना जाता है। जब {{nowrap|1=''n'' = 4}}, डिरैक संक्रियक को कभी-कभी कॉची-रीमैन-फ्यूटर संक्रियक के रूप में जाना जाता है। इसके अतिरिक्त क्लिफोर्ड विश्लेषण के कुछ गुणों को अतिमिश्र विश्लेषण कहा जाता है। | ||
क्लिफोर्ड विश्लेषण में [[ कॉची परिवर्तन |कॉची परिवर्तन]] , [[बर्गमैन कर्नेल]], स्ज़ेगो कर्नेल, [[प्लेमेलज ऑपरेटर|प्लेमेलज संक्रियक]], [[ हार्डी रिक्त स्थान |हार्डी रिक्त समष्टि]] , केर्जमैन-स्टीन सूत्र और Π, या बेर्लिंग-अहलफोर्स | क्लिफोर्ड विश्लेषण में [[ कॉची परिवर्तन |कॉची परिवर्तन]] , [[बर्गमैन कर्नेल]], स्ज़ेगो कर्नेल, [[प्लेमेलज ऑपरेटर|प्लेमेलज संक्रियक]], [[ हार्डी रिक्त स्थान |हार्डी रिक्त समष्टि]] , केर्जमैन-स्टीन सूत्र और Π, या बेर्लिंग-अहलफोर्स परिवर्तन, परिवर्तन के एनालॉग हैं। इन सभी में [[सीमा मूल्य समस्या|सीमा मान समस्याओं]] को हल करने में अनुप्रयोग पाए गए हैं, जिनमें चलती सीमा मान समस्याएं, एकल समाकलन और [[क्लासिक हार्मोनिक विश्लेषण|उत्कृष्ट संनादी विश्लेषण]] सम्मिलित हैं। विशेष रूप से क्लिफोर्ड विश्लेषण का उपयोग कुछ [[सोबोलेव स्थान|सोबोलेव समष्टि]] में, 3डी में पूर्ण जल तरंग समस्या को हल करने के लिए किया गया है। यह विधि 2 से बड़े सभी विमाओं में कार्य करती है। | ||
यदि हम जटिल क्लिफोर्ड बीजगणित को वास्तविक क्लिफोर्ड बीजगणित, Cl<sub>''n''</sub> से प्रतिस्थापित करते हैं तो अधिकांश क्लिफोर्ड विश्लेषण | यदि हम जटिल क्लिफोर्ड बीजगणित को वास्तविक क्लिफोर्ड बीजगणित, Cl<sub>''n''</sub> से प्रतिस्थापित करते हैं तो अधिकांश क्लिफोर्ड विश्लेषण करता है। यद्यपि यह स्थिति नहीं है जब हमें डिरैक संक्रियक और [[फूरियर रूपांतरण|फूरियर परिवर्तन]] के बीच परस्पर क्रिया से निपटने की आवश्यकता होती है। | ||
==फूरियर परिवर्तन== | ==फूरियर परिवर्तन== | ||
जब हम | जब हम सीमा 'R<sup>n−1</sup> के साथ ऊपरी आधे स्थान R<sup>n+</sup> पर विचार करते हैं, तो फूरियर रूपांतरण के अंतर्गत ''e''<sub>1</sub>, ..., ''e<sub>n</sub>''<sub>−1</sub>, का विस्तार, डिरैक संक्रियक | ||
:<math>D_{n-1} = \sum_{j=1}^{n-1} \frac \partial {\partial x_j}</math> | :<math>D_{n-1} = \sum_{j=1}^{n-1} \frac \partial {\partial x_j}</math> | ||
का प्रतीक iζ है जहां | |||
:<math>\zeta=\zeta_1 e_1 +\cdots+ \zeta_{n-1}e_{n-1} | :<math>\zeta=\zeta_1 e_1 +\cdots+ \zeta_{n-1}e_{n-1}</math> है। | ||
इस सेटिंग में सोखोटस्की-प्लेमेलज प्रमेय | इस सेटिंग में सोखोटस्की-प्लेमेलज प्रमेय | ||
:<math>\pm\tfrac{1}{2}+G(x-y)|_{\mathbf{R}^{n-1}}</math> और इन संक्रियकों के | :<math>\pm\tfrac{1}{2}+G(x-y)|_{\mathbf{R}^{n-1}}</math> और इन संक्रियकों के प्रतीक , एक चिह्न तक, | ||
:<math>\frac{1}{2} \left (1\pm i\frac{\zeta}{\|\zeta\|} \right ) | :<math>\frac{1}{2} \left (1\pm i\frac{\zeta}{\|\zeta\|} \right )</math> हैं। | ||
ये | ये R<sup>n−1</sup> पर Cl<sub>''n''</sub>('''C''') मानित वर्ग पूर्णांक फलन के स्थान पर प्रक्षेपण संचालक हैं, जिन्हें अन्यथा पारस्परिक रूप से विनाशकारी निष्क्रियता के रूप में जाना जाता है। | ||
ध्यान दें कि | ध्यान दें कि | ||
:<math>G|_{\mathbf{R}^n}=\sum_{j=1}^{n-1} e_j R_j</math> | :<math>G|_{\mathbf{R}^n}=\sum_{j=1}^{n-1} e_j R_j</math> | ||
जहां | जहां R<sub>j</sub> J-वें रिज़्ज़ क्षमता है, | ||
:<math>\frac{x_j}{\|x\|^n}.</math> | :<math>\frac{x_j}{\|x\|^n}.</math> | ||
चूंकि <math>G|_{\mathbf{R}^{n}}</math> का प्रतीक | |||
:<math>\frac{i\zeta}{\|\zeta\|}</math> | :<math>\frac{i\zeta}{\|\zeta\|}</math> | ||
है, इसलिए क्लिफोर्ड गुणन से यह सरलता से निर्धारित होता है कि | |||
:<math>\sum_{j=1}^{n-1} R_j^2=1.</math> | :<math>\sum_{j=1}^{n-1} R_j^2=1.</math> | ||
तो [[कनवल्शन ऑपरेटर| | तो [[कनवल्शन ऑपरेटर|संवलन संक्रियक]] <math>G|_{\mathbf{R}^{n}}</math> [[हिल्बर्ट परिवर्तन]] के यूक्लिडियन समष्टि का प्राकृतिक सामान्यीकरण है। | ||
मान लीजिए U | मान लीजिए U' R<sup>n−1</sup> में एक प्रांत है और g(x) एक Cl<sub>''n''</sub>('''C''') मान वाला [[वास्तविक विश्लेषणात्मक कार्य|वास्तविक विश्लेषणात्मक फलन]] है। फिर ''g के निकट R<sup>n</sup>'' में ''U''′ के कुछ निकटवर्ती पर डिरैक समीकरण का कॉची-कोवालेवस्की विस्तार है। विस्तार स्पष्ट रूप से | ||
:<math>\sum_{j=0}^\infty \left (x_n e_n^{-1}D_{n-1} \right )^j g(x) | :<math>\sum_{j=0}^\infty \left (x_n e_n^{-1}D_{n-1} \right )^j g(x)</math> द्वारा दिया गया है। | ||
जब यह एक्सटेंशन | जब यह एक्सटेंशन | ||
:<math>e^{-i\langle x,\zeta\rangle} \left (\tfrac{1}{2} \left (1\pm i\frac{\zeta}{\|\zeta\|} \right ) \right )</math> | :<math>e^{-i\langle x,\zeta\rangle} \left (\tfrac{1}{2} \left (1\pm i\frac{\zeta}{\|\zeta\|} \right ) \right )</math> | ||
हमें | में परिवर्ती x पर लागू होता है तो हमें पता चलता है कि | ||
:<math>e^{-i\langle x,\zeta\rangle}</math> | :<math>e^{-i\langle x,\zeta\rangle}</math> | ||
''E''<sub>+</sub> + ''E''<sub>−</sub> के '''R'''<sup>''n''−1</sup> का प्रतिबंध है, जहां ''E''<sub>+</sub> ऊपरी अर्ध समष्टि में एक एकजीनी फलन है और E<sub>−</sub> निम्न अर्ध समष्टि में एकजीनी फलन है। | |||
क्लिफोर्ड विश्लेषण में एन-यूक्लिडियन समष्टि में पैली-वीनर प्रमेय भी सामने आया है। | क्लिफोर्ड विश्लेषण में एन-यूक्लिडियन समष्टि में पैली-वीनर प्रमेय भी सामने आया है। | ||
==अनुरूप संरचना== | ==अनुरूप संरचना== | ||
कई डिरैक प्रकार के संक्रियकों के | कई डिरैक प्रकार के संक्रियकों के निकट मापीय में अनुरूप परिवर्तन के अंतर्गत सहप्रसरण होता है। यह यूक्लिडियन समष्टि में डिरैक संक्रियक और मोबियस परिवर्तनों के अंतर्गत क्षेत्र पर डिरैक संक्रियक के लिए सत्य है। फलस्वरूप, यह डिरैक संक्रियकों के लिए अनुरूप रूप से [[अनुरूप कई गुना]] और अनुरूप कई गुना पर सत्य है जो साथ चक्रण कई गुना हैं। | ||
=== केली परिवर्तन ( | === केली परिवर्तन (त्रिविम प्रक्षेपण) === | ||
'''R'''<sup>''n''</sup> से इकाई क्षेत्र S<sup>n</sup> केली परिवर्तन या [[त्रिविम प्रक्षेपण]] यूक्लिडियन डिरैक संक्रियक को गोलाकार डिरैक संक्रियक ''D<sub>S</sub>'' में बदल देता है। स्पष्ट रूप से | |||
:<math>D_S=x \left(\Gamma_n + \frac n 2 \right)</math> | :<math>D_S=x \left(\Gamma_n + \frac n 2 \right)</math> | ||
जहां Γ<sub>''n''</sub> गोलाकार | जहां Γ<sub>''n''</sub> गोलाकार बेल्ट्रामी-डिरैक संक्रियक | ||
:<math>\sum\nolimits_{1\leq i<j\leq n+1}e_{i}e_{j} \left (x_{i}\frac{\partial}{\partial x_{j}}-x_{j}\frac{\partial}{\partial x_{i}} \right )</math> | :<math>\sum\nolimits_{1\leq i<j\leq n+1}e_{i}e_{j} \left (x_{i}\frac{\partial}{\partial x_{j}}-x_{j}\frac{\partial}{\partial x_{i}} \right )</math> | ||
और | और ''S<sup>n</sup>'' में x है। | ||
एन-समष्टि पर केली परिवर्तन | एन-समष्टि पर केली परिवर्तन | ||
:<math>y=C(x)=(e_{n+1}x+1)(x+e_{n+1})^{-1}, \qquad x \in \mathbf{R}^n | :<math>y=C(x)=(e_{n+1}x+1)(x+e_{n+1})^{-1}, \qquad x \in \mathbf{R}^n</math> है। | ||
इसका | इसका व्युत्क्रम | ||
:<math>x=(-e_{n+1}+1)(y-e_{n+1})^{-1} | :<math>x=(-e_{n+1}+1)(y-e_{n+1})^{-1}</math> है। | ||
एन-यूक्लिडियन समष्टि में | एन-यूक्लिडियन समष्टि में प्रांत ''U'' पर परिभाषित फलन ''f''(''x'') और डिरैक समीकरण के हल के लिए, | ||
:<math>J(C^{-1},y) f(C^{-1}(y))</math> | :<math>J(C^{-1},y) f(C^{-1}(y))</math> | ||
को ''C''(''U'') पर ''D<sub>S</sub>'' द्वारा नष्ट कर दिया गया है जहां | |||
:<math>J(C^{-1},y)=\frac{y-e_{n+1}}{\|y-e_{n+1}\|^n} | :<math>J(C^{-1},y)=\frac{y-e_{n+1}}{\|y-e_{n+1}\|^n}</math> | ||
इसके अतिरिक्त | |||
:<math>D_S(D_S-x)=\triangle_S,</math> | :<math>D_S(D_S-x)=\triangle_S,</math> | ||
''S<sup>n</sup>'' पर कंफर्मल लाप्लासियन या यामाबे संक्रियक। | |||
स्पष्ट रूप से | |||
:<math>\triangle_S = -\triangle_{LB}+\tfrac 1 4 n(n-2)</math> | :<math>\triangle_S = -\triangle_{LB}+\tfrac 1 4 n(n-2)</math> | ||
जहां <math>\triangle_{LB}</math> | जहां <math>\triangle_{LB}</math> ''S<sup>n</sup>'' पर लाप्लास-बेल्ट्रामी संक्रियक है। परिचालक <math>\triangle_S</math> केली परिवर्तन के माध्यम से, यूक्लिडियन लाप्लासियन के अनुरूप है। इसके अतिरिक्त | ||
:<math>D_s(D_S-x)(D_S-x)(D_S-2x)</math> | :<math>D_s(D_S-x)(D_S-x)(D_S-2x)</math> | ||
पैनिट्ज़ संक्रियक | n-क्षेत्र पैनिट्ज़ संक्रियक, | ||
:<math>-\triangle_S(\triangle_S+2) | :<math>-\triangle_S(\triangle_S+2)</math> | ||
है। केली परिवर्तन के माध्यम से यह संक्रियक द्वि-लाप्लासियन, <math>\triangle_n^2</math> के अनुरूप है। ये सभी डिरैक प्रकार के संक्रियकों के उदाहरण हैं। | |||
=== मोबियस परिवर्तन === | === मोबियस परिवर्तन === | ||
Line 114: | Line 115: | ||
:<math>\frac{ax+b}{cx+d},</math> जहां ए, बी, सी और डी ∈ सीएल<sub>''n''</sub> और कुछ बाधाओं को पूरा करें। जुड़े {{nowrap|2 × 2}} मैट्रिक्स को Ahlfors-Vahlen मैट्रिक्स कहा जाता है। अगर | :<math>\frac{ax+b}{cx+d},</math> जहां ए, बी, सी और डी ∈ सीएल<sub>''n''</sub> और कुछ बाधाओं को पूरा करें। जुड़े {{nowrap|2 × 2}} मैट्रिक्स को Ahlfors-Vahlen मैट्रिक्स कहा जाता है। अगर | ||
:<math>y=M(x)+\frac{ax+b}{cx+d}</math> और तब Df(y) = 0 <math>J(M,x)f(M(x))</math> डिरैक समीकरण का हल है जहां | :<math>y=M(x)+\frac{ax+b}{cx+d}</math> और तब Df(y) = 0 <math>J(M,x)f(M(x))</math> डिरैक समीकरण का हल है जहां | ||
:<math>J(M,x)=\frac{\widetilde{cx+d}}{\|cx+d\|^{n}}</math> और ~ क्लिफोर्ड बीजगणित पर कार्य करने वाला मूलभूत [[एंटीऑटोमोर्फिज्म]] है। संचालक डी<sup>क</sup>, या Δ<sub>''n''</sub><sup>k/2</sup> जब k सम है, तो केली | :<math>J(M,x)=\frac{\widetilde{cx+d}}{\|cx+d\|^{n}}</math> और ~ क्लिफोर्ड बीजगणित पर कार्य करने वाला मूलभूत [[एंटीऑटोमोर्फिज्म]] है। संचालक डी<sup>क</sup>, या Δ<sub>''n''</sub><sup>k/2</sup> जब k सम है, तो केली परिवर्तन सहित मोबियस परिवर्तन के अंतर्गत समान सहप्रसरण प्रदर्शित करता है। | ||
जब ax+b और cx+d गैर-शून्य होते हैं तो वे दोनों [[क्लिफोर्ड समूह]] के सदस्य होते हैं। | जब ax+b और cx+d गैर-शून्य होते हैं तो वे दोनों [[क्लिफोर्ड समूह]] के सदस्य होते हैं। | ||
जैसा | जैसा | ||
:<math>\frac{ax+b}{cx+d}=\frac{-ax-b}{-cx-d}</math> तब हमारे | :<math>\frac{ax+b}{cx+d}=\frac{-ax-b}{-cx-d}</math> तब हमारे निकट J(M, x) को परिभाषित करने में साइन इन करने का विकल्प होता है। इसका मतलब यह है कि अनुरूप रूप से सपाट कई गुना एम के लिए हमें [[स्पिनर बंडल|स्पाइनर बंडल]] को परिभाषित करने के लिए एम पर [[स्पिन संरचना|चक्रण संरचना]] की आवश्यकता होती है, जिसके अनुभागों पर हम डिरैक संक्रियक को कार्य करने की अनुमति दे सकते हैं। स्पष्ट सरल उदाहरणों में एन-सिलेंडर, एन-यूक्लिडियन समष्टि से मूल को छोड़कर प्राप्त [[हॉपफ मैनिफोल्ड|हॉपफ कई गुना]], और ऊपरी आधे समष्टि पर पूरी तरह से कार्य करने वाले सामान्यीकृत मॉड्यूलर समूहों के फलनों द्वारा इसे फैक्टरिंग करके ऊपरी आधे समष्टि से प्राप्त के-हैंडल टोरस के सामान्यीकरण सम्मिलित हैं। लगातार. इन संदर्भों में डिरैक संक्रियक को पेश किया जा सकता है। ये डिरैक संक्रियक अतियाह-सिंगर-डिरैक संक्रियकों के विशेष उदाहरण हैं। | ||
==अतियाह-गायक-डिरैक संक्रियक== | ==अतियाह-गायक-डिरैक संक्रियक== | ||
Line 125: | Line 126: | ||
:<math>Ds(x)=\sum_{j=1}^{n}e_{j}(x)\tilde{\Gamma}_{e_{j}(x)}s(x) ,</math> जहां <math>\widetilde{\Gamma}</math> [[स्पिन कनेक्शन|चक्रण कनेक्शन]] है, एम पर [[लेवी-सिविटा कनेक्शन]] के एस को उठाना। जब एम एन-यूक्लिडियन समष्टि है तो हम यूक्लिडियन डिरैक संक्रियक पर लौटते हैं। | :<math>Ds(x)=\sum_{j=1}^{n}e_{j}(x)\tilde{\Gamma}_{e_{j}(x)}s(x) ,</math> जहां <math>\widetilde{\Gamma}</math> [[स्पिन कनेक्शन|चक्रण कनेक्शन]] है, एम पर [[लेवी-सिविटा कनेक्शन]] के एस को उठाना। जब एम एन-यूक्लिडियन समष्टि है तो हम यूक्लिडियन डिरैक संक्रियक पर लौटते हैं। | ||
अतियाह-सिंगर-डिरैक संक्रियक डी से हमारे | अतियाह-सिंगर-डिरैक संक्रियक डी से हमारे निकट [[लिचनेरोविक्ज़ सूत्र]] है | ||
:<math>D^{2}=\Gamma^{*}\Gamma+\tfrac{\tau}{4} ,</math> जहां τ [[ कई गुना |कई गुना]] पर [[अदिश वक्रता]] है, और Γ है<sup>∗</sup> Γ का जोड़ है। संचालक डी<sup>2</sup>स्पिनोरियल लाप्लासियन के नाम से जाना जाता है। | :<math>D^{2}=\Gamma^{*}\Gamma+\tfrac{\tau}{4} ,</math> जहां τ [[ कई गुना |कई गुना]] पर [[अदिश वक्रता]] है, और Γ है<sup>∗</sup> Γ का जोड़ है। संचालक डी<sup>2</sup>स्पिनोरियल लाप्लासियन के नाम से जाना जाता है। | ||
यदि M सघन है और {{math|''τ'' ≥ 0}} और {{math|''τ'' > 0}} कहीं न कहीं कई गुना पर कोई गैर-तुच्छ संनादी स्पाइनर नहीं हैं। यह लिचनेरोविक्ज़ प्रमेय है। यह | यदि M सघन है और {{math|''τ'' ≥ 0}} और {{math|''τ'' > 0}} कहीं न कहीं कई गुना पर कोई गैर-तुच्छ संनादी स्पाइनर नहीं हैं। यह लिचनेरोविक्ज़ प्रमेय है। यह सरलता से देखा जा सकता है कि लिचनेरोविक्ज़ प्रमेय चर जटिल विश्लेषण से लिउविले के प्रमेय (जटिल विश्लेषण) का सामान्यीकरण है। यह हमें यह ध्यान देने की अनुमति देता है कि चिकने स्पाइनर अनुभागों के समष्टि पर संक्रियक डी इस तरह के कई गुना उलटा है। | ||
ऐसे मामलों में जहां अतियाह-सिंगर-डिरैक संक्रियक कॉम्पैक्ट समर्थन के साथ चिकनी स्पाइनर अनुभागों के समष्टि पर उलटा है, कोई भी परिचय दे सकता है | ऐसे मामलों में जहां अतियाह-सिंगर-डिरैक संक्रियक कॉम्पैक्ट समर्थन के साथ चिकनी स्पाइनर अनुभागों के समष्टि पर उलटा है, कोई भी परिचय दे सकता है | ||
:<math>C(x,y):=D^{-1}*\delta_{y}, \qquad x \neq y \in M,</math> जहां δ<sub>''y''</sub> [[डिराक डेल्टा फ़ंक्शन|डिरैक डेल्टा फलन]] का मानांकन y पर किया गया है। यह कॉची कर्नेल को जन्म देता है, जो इस डिरैक संक्रियक का मौलिक हल है। इससे संनादी स्पाइनरों के लिए कॉची समाकलन सूत्र प्राप्त किया जा सकता है। इस कर्नेल के साथ इस प्रविष्टि के पहले खंड में वर्णित अधिकांश चीजें उल्टे अतियाह-सिंगर-डिरैक संक्रियकों के लिए होती हैं। | :<math>C(x,y):=D^{-1}*\delta_{y}, \qquad x \neq y \in M,</math> जहां δ<sub>''y''</sub> [[डिराक डेल्टा फ़ंक्शन|डिरैक डेल्टा फलन]] का मानांकन y पर किया गया है। यह कॉची कर्नेल को जन्म देता है, जो इस डिरैक संक्रियक का मौलिक हल है। इससे संनादी स्पाइनरों के लिए कॉची समाकलन सूत्र प्राप्त किया जा सकता है। इस कर्नेल के साथ इस प्रविष्टि के पहले खंड में वर्णित अधिकांश चीजें उल्टे अतियाह-सिंगर-डिरैक संक्रियकों के लिए होती हैं। | ||
स्टोक्स के प्रमेय का उपयोग करके, या अन्यथा, कोई यह निर्धारित कर सकता है कि | स्टोक्स के प्रमेय का उपयोग करके, या अन्यथा, कोई यह निर्धारित कर सकता है कि मापीय के अनुरूप परिवर्तन के अंतर्गत प्रत्येक मापीय से जुड़े डिरैक संक्रियक दूसरे के लिए आनुपातिक हैं, और परिणामस्वरूप उनके व्युत्क्रम भी हैं, यदि वे मौजूद हैं। | ||
यह सब अतियाह-सिंगर इंडेक्स सिद्धांत और डिरैक प्रकार के संक्रियकों से जुड़े ज्यामितीय विश्लेषण के अन्य पहलुओं के लिए संभावित लिंक प्रदान करता है। | यह सब अतियाह-सिंगर इंडेक्स सिद्धांत और डिरैक प्रकार के संक्रियकों से जुड़े ज्यामितीय विश्लेषण के अन्य पहलुओं के लिए संभावित लिंक प्रदान करता है। | ||
==अतिपरवलीय डिरैक प्रकार संक्रियक== | ==अतिपरवलीय डिरैक प्रकार संक्रियक== | ||
क्लिफ़ोर्ड विश्लेषण में अतिपरवलीय या पोंकारे | क्लिफ़ोर्ड विश्लेषण में अतिपरवलीय या पोंकारे मापीय के संबंध में ऊपरी आधे समष्टि, डिस्क, या हाइपरबोला पर अंतर संक्रियकों पर भी विचार किया जाता है। | ||
ऊपरी आधे समष्टि के लिए क्लिफोर्ड बीजगणित, सीएल को विभाजित किया जाता है<sub>''n''</sub> सीएल में<sub>''n''−1</sub> + सीएल<sub>''n''−1</sub>e<sub>n</sub>. तो सीएल में ए के लिए<sub>''n''</sub> कोई a को b + CE के रूप में व्यक्त कर सकता है<sub>n</sub>सीएल में ए, बी के साथ<sub>''n''−1</sub>. इसके बाद प्रक्षेपण संक्रियकों पी और क्यू को इस प्रकार परिभाषित किया गया है: पी(ए) = बी और क्यू(ए) = सी। ऊपरी आधे समष्टि में अतिपरवलीय | ऊपरी आधे समष्टि के लिए क्लिफोर्ड बीजगणित, सीएल को विभाजित किया जाता है<sub>''n''</sub> सीएल में<sub>''n''−1</sub> + सीएल<sub>''n''−1</sub>e<sub>n</sub>. तो सीएल में ए के लिए<sub>''n''</sub> कोई a को b + CE के रूप में व्यक्त कर सकता है<sub>n</sub>सीएल में ए, बी के साथ<sub>''n''−1</sub>. इसके बाद प्रक्षेपण संक्रियकों पी और क्यू को इस प्रकार परिभाषित किया गया है: पी(ए) = बी और क्यू(ए) = सी। ऊपरी आधे समष्टि में अतिपरवलीय मापीय के संबंध में फलन f पर कार्य करने वाले हॉज-डिरैक संक्रियक को अब परिभाषित किया गया है | ||
:<math>Mf=Df+\frac{n-2}{x_{n}}Q(f)</math>. | :<math>Mf=Df+\frac{n-2}{x_{n}}Q(f)</math>. | ||
इस मामले में | इस मामले में | ||
:<math>M^{2}f=-\triangle_{n}P(f)+\frac{n-2}{x_{n}}\frac{\partial P(f)}{\partial x_{n}}- \left (\triangle_{n}Q(f)-\frac{n-2}{x_{n}}\frac{\partial Q(f)}{\partial x_{n}}+ \frac{n-2}{x_{n}^{2}}Q(f) \right )e_{n}</math>. | :<math>M^{2}f=-\triangle_{n}P(f)+\frac{n-2}{x_{n}}\frac{\partial P(f)}{\partial x_{n}}- \left (\triangle_{n}Q(f)-\frac{n-2}{x_{n}}\frac{\partial Q(f)}{\partial x_{n}}+ \frac{n-2}{x_{n}^{2}}Q(f) \right )e_{n}</math>. | ||
परिचालक | परिचालक | ||
:<math>\triangle_{n}-\frac{n-2}{x_{n}}\frac{\partial}{\partial x_{n}}</math> पोंकारे | :<math>\triangle_{n}-\frac{n-2}{x_{n}}\frac{\partial}{\partial x_{n}}</math> पोंकारे मापीय के संबंध में लाप्लासियन है जबकि दूसरा संक्रियक वेनस्टीन संक्रियक का उदाहरण है। | ||
[[अतिशयोक्तिपूर्ण लाप्लासियन|अतिपरवलीय लाप्लासियन]] अनुरूप समूह की क्रियाओं के | [[अतिशयोक्तिपूर्ण लाप्लासियन|अतिपरवलीय लाप्लासियन]] अनुरूप समूह की क्रियाओं के अंतर्गत अपरिवर्तनीय है, जबकि अतिपरवलीय डिरैक संक्रियक ऐसी क्रियाओं के अंतर्गत सहसंयोजक है। | ||
==रारिता-श्विंगर/स्टीन-वीस संक्रियक== | ==रारिता-श्विंगर/स्टीन-वीस संक्रियक== | ||
रारिटा-श्विंगर समीकरण|रारिटा-श्विंगर संक्रियक, जिन्हें स्टीन-वीस संक्रियक के रूप में भी जाना जाता है, चक्रण और [[पिन समूह]]ों के प्रतिनिधित्व सिद्धांत में उत्पन्न होते हैं। संचालक आर<sub>k</sub>एक अनुरूप सहसंयोजक प्रथम क्रम विभेदक संक्रियक है। यहां k = 0, 1, 2, .... जब k = 0, Rarita-Schwinger संक्रियक सिर्फ | रारिटा-श्विंगर समीकरण|रारिटा-श्विंगर संक्रियक, जिन्हें स्टीन-वीस संक्रियक के रूप में भी जाना जाता है, चक्रण और [[पिन समूह]]ों के प्रतिनिधित्व सिद्धांत में उत्पन्न होते हैं। संचालक आर<sub>k</sub>एक अनुरूप सहसंयोजक प्रथम क्रम विभेदक संक्रियक है। यहां k = 0, 1, 2, .... जब k = 0, Rarita-Schwinger संक्रियक सिर्फ डिरैक संक्रियक है। [[ऑर्थोगोनल समूह]], ओ(एन) के लिए [[प्रतिनिधित्व सिद्धांत]] में सजातीय [[हार्मोनिक बहुपद|संनादी बहुपद]] के समष्टिों में मान लेने वाले फलनों पर विचार करना आम बात है। जब कोई इस प्रतिनिधित्व सिद्धांत को ओ (एन) के दोहरे कवरिंग पिन (एन) में परिष्कृत करता है, तो वह सजातीय संनादी बहुपद के समष्टिों को डिरैक समीकरण के [[सजातीय बहुपद]] हलों के समष्टिों से बदल देता है, अन्यथा के एकजीनी बहुपद के रूप में जाना जाता है। कोई फलन f(x, u) पर विचार करता है जहां U में x, 'R' में प्रांत है<sup>n</sup>, और u 'R' से भिन्न होता है<sup>n</sup>. इसके अतिरिक्त f(x, u) u में k-एकजीनी बहुपद है। अब डिरैक संक्रियक डी लागू करें<sub>x</sub>x से f(x, u) में। अब चूँकि क्लिफ़ोर्ड बीजगणित क्रमविनिमेय D नहीं है<sub>x</sub>f(x, u) तो यह फलन अब k एकजीनी नहीं है बल्कि u में सजातीय संनादी बहुपद है। अब प्रत्येक संनादी बहुपद h के लिए<sub>k</sub>डिग्री k के सजातीय में अलमांसी-फिशर अपघटन होता है | ||
:<math> h_{k}(x)=p_{k}(x)+xp_{k-1}(x) </math> जहां पी<sub>''k''</sub> और पी<sub>''k''−1</sub> क्रमशः k और k−1 मोनिक बहुपद हैं। माना P, h का प्रक्षेपण है<sub>''k''</sub> ऊपर<sub>''k''</sub> तब रारिटा-श्विंगर संक्रियक को पीडी के रूप में परिभाषित किया गया है<sub>k</sub>, और इसे R द्वारा दर्शाया जाता है<sub>k</sub>. यूलर लेम्मा का उपयोग करके कोई यह निर्धारित कर सकता है | :<math> h_{k}(x)=p_{k}(x)+xp_{k-1}(x) </math> जहां पी<sub>''k''</sub> और पी<sub>''k''−1</sub> क्रमशः k और k−1 मोनिक बहुपद हैं। माना P, h का प्रक्षेपण है<sub>''k''</sub> ऊपर<sub>''k''</sub> तब रारिटा-श्विंगर संक्रियक को पीडी के रूप में परिभाषित किया गया है<sub>k</sub>, और इसे R द्वारा दर्शाया जाता है<sub>k</sub>. यूलर लेम्मा का उपयोग करके कोई यह निर्धारित कर सकता है | ||
:<math>D_{u}up_{k-1}(u)=(-n-2k+2)p_{k-1}.</math> | :<math>D_{u}up_{k-1}(u)=(-n-2k+2)p_{k-1}.</math> | ||
Line 156: | Line 157: | ||
:<math>R_{k}=\left(I+\frac{1}{n+2k-2}uD_{u}\right)D_{x}.</math> | :<math>R_{k}=\left(I+\frac{1}{n+2k-2}uD_{u}\right)D_{x}.</math> | ||
==सम्मेलन और पत्रिकाएँ== | ==सम्मेलन और पत्रिकाएँ== | ||
क्लिफ़ोर्ड और ज्यामितीय बीजगणित के | क्लिफ़ोर्ड और ज्यामितीय बीजगणित के आसनिकट अनुप्रयोगों की विस्तृत श्रृंखला के साथ जीवंत और अंतःविषय समुदाय है। इस विषय में मुख्य सम्मेलनों में [http://www.smartchair.org/hp/ICCA2020/ क्लिफोर्ड बीजगणित और गणितीय भौतिकी में उनके अनुप्रयोगों (ICCA)] और [http://agacse2021.fme.vutbr पर अंतर्राष्ट्रीय सम्मेलन सम्मिलित हैं। cz/main.php कंप्यूटर विज्ञान और इंजीनियरिंग में ज्यामितीय बीजगणित के अनुप्रयोग (AGACSE)] श्रृंखला। मुख्य प्रकाशन आउटलेट स्प्रिंगर जर्नल [[एप्लाइड क्लिफ़ोर्ड बीजगणित में प्रगति]] है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 164: | Line 165: | ||
*अनुरूप रूप से सपाट कई गुना | *अनुरूप रूप से सपाट कई गुना | ||
*डिरैक संक्रियक | *डिरैक संक्रियक | ||
*पोंकारे | *पोंकारे मापीय | ||
* [[स्पिन समूह|चक्रण समूह]] | * [[स्पिन समूह|चक्रण समूह]] | ||
*चक्रण संरचना | *चक्रण संरचना | ||
Line 190: | Line 191: | ||
*{{Citation | last=Wu | first=S. | author-link = Sijue Wu | title=Well-posedness in [[Sobolev space]]s of the full water wave problem in 3-D | journal=[[Journal of the American Mathematical Society]] |volume=12 | issue=2 |pages=445–495 | year=1999 | doi=10.1090/S0894-0347-99-00290-8| doi-access=free }}. | *{{Citation | last=Wu | first=S. | author-link = Sijue Wu | title=Well-posedness in [[Sobolev space]]s of the full water wave problem in 3-D | journal=[[Journal of the American Mathematical Society]] |volume=12 | issue=2 |pages=445–495 | year=1999 | doi=10.1090/S0894-0347-99-00290-8| doi-access=free }}. | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[https://wayback.archive-it.org/all/20111004195500/http://comp.uark.edu/%7Ejryan/notes.doc Lecture notes on | *[https://wayback.archive-it.org/all/20111004195500/http://comp.uark.edu/%7Ejryan/notes.doc Lecture notes on डिरैक operators in analysis and geometry] | ||
*{{citation |url=http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-1997-53 |archive-url=https://web.archive.org/web/20090813180506/http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-1997-53 |url-status=dead |archive-date=2009-08-13 |title=Dirac operators and Clifford analysis on manifolds with boundary |first=David M.J. |last=Calderbank |id=DMF-1997-12-007 PP-1997-53 |date=1997-12-19 |publisher=Danish Mathematical Society}} | *{{citation |url=http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-1997-53 |archive-url=https://web.archive.org/web/20090813180506/http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-1997-53 |url-status=dead |archive-date=2009-08-13 |title=Dirac operators and Clifford analysis on manifolds with boundary |first=David M.J. |last=Calderbank |id=DMF-1997-12-007 PP-1997-53 |date=1997-12-19 |publisher=Danish Mathematical Society}} | ||
Revision as of 10:40, 7 July 2023
क्लिफोर्ड विश्लेषण, विलियम किंग्डन क्लिफोर्ड के नाम पर क्लिफोर्ड बीजगणित का उपयोग करते हुए, विश्लेषण और ज्यामिति में डिरैक संक्रियकों और डिरैक प्रकार के संक्रियकों का उनके अनुप्रयोगों के साथ अध्ययन है। डिरैक प्रकार के संक्रियकों के उदाहरणों में हॉज-डिरैक संक्रियक, रीमैनियन कई गुना पर , यूक्लिडियन समष्टि में डिरैक संक्रियक और पर इसका व्युत्क्रम और गोले पर उनके अनुरूप समकक्ष, यूक्लिडियन एन-समष्टि में लाप्लासियन और कई गुना चक्रण पर माइकल अतियाह-गायक-डिरैक संक्रियक, रारिटा-श्विंगर/स्टीन-वीस प्रकार के संक्रियक, जटिल चक्रण पर अनुरूप लाप्लाशियन, स्पिनोरियल लाप्लाशियन और डिरैक चक्रणc कई गुना, डिरैक संक्रियकों की प्रणालियाँ, पैनिट्ज़ संक्रियक, अतिपरवलीय समष्टि पर डिरैक संक्रियक, अतिपरवलीय लाप्लासियन और वीनस्टीन समीकरण सम्मिलित हैं, परन्तु ये इन्हीं तक सीमित नहीं हैं।
यूक्लिडियन समष्टि
यूक्लिडियन समष्टि में डिरैक संक्रियक का रूप
- होता है जहां e1, ..., en Rn के लिए लम्बवत् आधार है, Rn को एक जटिल क्लिफोर्ड बीजगणित,Cln(C) में अंतःस्थापित माना जाता है ताकि ej2 = −1।
- यह
- देता है जहां Δn एन-यूक्लिडियन समष्टि में लाप्लासियन है।
यूक्लिडियन डिरैक संक्रियक का मौलिक हल
है, जहां ωn इकाई गोले का पृष्ठीय क्षेत्रफल Sn−1 का सतह क्षेत्र है।
ध्यान दें कि
- जहां
- ,
- n ≥ 3 के लिए लाप्लास के समीकरण का मूलभूत हल है।
डिरैक संक्रियक का सबसे मूलभूत उदाहरण जटिल तल में कॉची-रीमैन संक्रियक
- है। वस्तुतः, चर जटिल विश्लेषण के कई मूलभूत गुण कई प्रथम क्रम डिरैक प्रकार संक्रियकों के लिए अनुसरण करते हैं। यूक्लिडियन समष्टि में इसमें कॉची की प्रमेय (ज्यामिति), कॉची अभिन्न सूत्र, मोरेरा की प्रमेय, टेलर श्रृंखला, लॉरेंट श्रृंखला और लिउविले की प्रमेय (जटिल विश्लेषण) सम्मिलित हैं। इस स्थिति में कॉची कर्नेल G(x−y) है। कॉची समाकलन सूत्र का प्रमाण जटिल चर के समान है और इस तथ्य का उपयोग करता है कि यूक्लिडियन समष्टि में प्रत्येक गैर-शून्य सदिश x में क्लिफोर्ड बीजगणित में गुणक व्युत्क्रम होता है, अर्थात्
- चिह्न तक यह व्युत्क्रम x का केल्विन व्युत्क्रम है। यूक्लिडियन डिरैक समीकरण Df = 0 के हल को (बाएं) एकजीनी फलन कहा जाता है। एकजीनी फलन चक्रण कई गुना पर संनादी स्पाइनर की विशेष स्थिति हैं।
3 और 4 विमाओं में क्लिफोर्ड विश्लेषण को कभी-कभी चतुर्धातुक विश्लेषण के रूप में जाना जाता है। जब n = 4, डिरैक संक्रियक को कभी-कभी कॉची-रीमैन-फ्यूटर संक्रियक के रूप में जाना जाता है। इसके अतिरिक्त क्लिफोर्ड विश्लेषण के कुछ गुणों को अतिमिश्र विश्लेषण कहा जाता है।
क्लिफोर्ड विश्लेषण में कॉची परिवर्तन , बर्गमैन कर्नेल, स्ज़ेगो कर्नेल, प्लेमेलज संक्रियक, हार्डी रिक्त समष्टि , केर्जमैन-स्टीन सूत्र और Π, या बेर्लिंग-अहलफोर्स परिवर्तन, परिवर्तन के एनालॉग हैं। इन सभी में सीमा मान समस्याओं को हल करने में अनुप्रयोग पाए गए हैं, जिनमें चलती सीमा मान समस्याएं, एकल समाकलन और उत्कृष्ट संनादी विश्लेषण सम्मिलित हैं। विशेष रूप से क्लिफोर्ड विश्लेषण का उपयोग कुछ सोबोलेव समष्टि में, 3डी में पूर्ण जल तरंग समस्या को हल करने के लिए किया गया है। यह विधि 2 से बड़े सभी विमाओं में कार्य करती है।
यदि हम जटिल क्लिफोर्ड बीजगणित को वास्तविक क्लिफोर्ड बीजगणित, Cln से प्रतिस्थापित करते हैं तो अधिकांश क्लिफोर्ड विश्लेषण करता है। यद्यपि यह स्थिति नहीं है जब हमें डिरैक संक्रियक और फूरियर परिवर्तन के बीच परस्पर क्रिया से निपटने की आवश्यकता होती है।
फूरियर परिवर्तन
जब हम सीमा 'Rn−1 के साथ ऊपरी आधे स्थान Rn+ पर विचार करते हैं, तो फूरियर रूपांतरण के अंतर्गत e1, ..., en−1, का विस्तार, डिरैक संक्रियक
का प्रतीक iζ है जहां
- है।
इस सेटिंग में सोखोटस्की-प्लेमेलज प्रमेय
- और इन संक्रियकों के प्रतीक , एक चिह्न तक,
- हैं।
ये Rn−1 पर Cln(C) मानित वर्ग पूर्णांक फलन के स्थान पर प्रक्षेपण संचालक हैं, जिन्हें अन्यथा पारस्परिक रूप से विनाशकारी निष्क्रियता के रूप में जाना जाता है।
ध्यान दें कि
जहां Rj J-वें रिज़्ज़ क्षमता है,
चूंकि का प्रतीक
है, इसलिए क्लिफोर्ड गुणन से यह सरलता से निर्धारित होता है कि
तो संवलन संक्रियक हिल्बर्ट परिवर्तन के यूक्लिडियन समष्टि का प्राकृतिक सामान्यीकरण है।
मान लीजिए U' Rn−1 में एक प्रांत है और g(x) एक Cln(C) मान वाला वास्तविक विश्लेषणात्मक फलन है। फिर g के निकट Rn में U′ के कुछ निकटवर्ती पर डिरैक समीकरण का कॉची-कोवालेवस्की विस्तार है। विस्तार स्पष्ट रूप से
- द्वारा दिया गया है।
जब यह एक्सटेंशन
में परिवर्ती x पर लागू होता है तो हमें पता चलता है कि
E+ + E− के Rn−1 का प्रतिबंध है, जहां E+ ऊपरी अर्ध समष्टि में एक एकजीनी फलन है और E− निम्न अर्ध समष्टि में एकजीनी फलन है।
क्लिफोर्ड विश्लेषण में एन-यूक्लिडियन समष्टि में पैली-वीनर प्रमेय भी सामने आया है।
अनुरूप संरचना
कई डिरैक प्रकार के संक्रियकों के निकट मापीय में अनुरूप परिवर्तन के अंतर्गत सहप्रसरण होता है। यह यूक्लिडियन समष्टि में डिरैक संक्रियक और मोबियस परिवर्तनों के अंतर्गत क्षेत्र पर डिरैक संक्रियक के लिए सत्य है। फलस्वरूप, यह डिरैक संक्रियकों के लिए अनुरूप रूप से अनुरूप कई गुना और अनुरूप कई गुना पर सत्य है जो साथ चक्रण कई गुना हैं।
केली परिवर्तन (त्रिविम प्रक्षेपण)
Rn से इकाई क्षेत्र Sn केली परिवर्तन या त्रिविम प्रक्षेपण यूक्लिडियन डिरैक संक्रियक को गोलाकार डिरैक संक्रियक DS में बदल देता है। स्पष्ट रूप से
जहां Γn गोलाकार बेल्ट्रामी-डिरैक संक्रियक
और Sn में x है।
एन-समष्टि पर केली परिवर्तन
- है।
इसका व्युत्क्रम
- है।
एन-यूक्लिडियन समष्टि में प्रांत U पर परिभाषित फलन f(x) और डिरैक समीकरण के हल के लिए,
को C(U) पर DS द्वारा नष्ट कर दिया गया है जहां
इसके अतिरिक्त
Sn पर कंफर्मल लाप्लासियन या यामाबे संक्रियक।
स्पष्ट रूप से
जहां Sn पर लाप्लास-बेल्ट्रामी संक्रियक है। परिचालक केली परिवर्तन के माध्यम से, यूक्लिडियन लाप्लासियन के अनुरूप है। इसके अतिरिक्त
n-क्षेत्र पैनिट्ज़ संक्रियक,
है। केली परिवर्तन के माध्यम से यह संक्रियक द्वि-लाप्लासियन, के अनुरूप है। ये सभी डिरैक प्रकार के संक्रियकों के उदाहरण हैं।
मोबियस परिवर्तन
एन-यूक्लिडियन समष्टि पर मोबियस परिवर्तन को इस प्रकार व्यक्त किया जा सकता है
- जहां ए, बी, सी और डी ∈ सीएलn और कुछ बाधाओं को पूरा करें। जुड़े 2 × 2 मैट्रिक्स को Ahlfors-Vahlen मैट्रिक्स कहा जाता है। अगर
- और तब Df(y) = 0 डिरैक समीकरण का हल है जहां
- और ~ क्लिफोर्ड बीजगणित पर कार्य करने वाला मूलभूत एंटीऑटोमोर्फिज्म है। संचालक डीक, या Δnk/2 जब k सम है, तो केली परिवर्तन सहित मोबियस परिवर्तन के अंतर्गत समान सहप्रसरण प्रदर्शित करता है।
जब ax+b और cx+d गैर-शून्य होते हैं तो वे दोनों क्लिफोर्ड समूह के सदस्य होते हैं।
जैसा
- तब हमारे निकट J(M, x) को परिभाषित करने में साइन इन करने का विकल्प होता है। इसका मतलब यह है कि अनुरूप रूप से सपाट कई गुना एम के लिए हमें स्पाइनर बंडल को परिभाषित करने के लिए एम पर चक्रण संरचना की आवश्यकता होती है, जिसके अनुभागों पर हम डिरैक संक्रियक को कार्य करने की अनुमति दे सकते हैं। स्पष्ट सरल उदाहरणों में एन-सिलेंडर, एन-यूक्लिडियन समष्टि से मूल को छोड़कर प्राप्त हॉपफ कई गुना, और ऊपरी आधे समष्टि पर पूरी तरह से कार्य करने वाले सामान्यीकृत मॉड्यूलर समूहों के फलनों द्वारा इसे फैक्टरिंग करके ऊपरी आधे समष्टि से प्राप्त के-हैंडल टोरस के सामान्यीकरण सम्मिलित हैं। लगातार. इन संदर्भों में डिरैक संक्रियक को पेश किया जा सकता है। ये डिरैक संक्रियक अतियाह-सिंगर-डिरैक संक्रियकों के विशेष उदाहरण हैं।
अतियाह-गायक-डिरैक संक्रियक
एक चक्रण कई गुना एम को स्पाइनर बंडल एस और एस में चिकनी खंड एस (एक्स) के साथ दिया गया है, फिर समष्टिीय ऑर्थोनॉर्मल आधार ई के संदर्भ में1(एक्स), ..., औरn(x) एम के स्पर्शरेखा बंडल में, एस पर कार्य करने वाले अतियाह-सिंगर-डिरैक संक्रियक को परिभाषित किया गया है
- जहां चक्रण कनेक्शन है, एम पर लेवी-सिविटा कनेक्शन के एस को उठाना। जब एम एन-यूक्लिडियन समष्टि है तो हम यूक्लिडियन डिरैक संक्रियक पर लौटते हैं।
अतियाह-सिंगर-डिरैक संक्रियक डी से हमारे निकट लिचनेरोविक्ज़ सूत्र है
- जहां τ कई गुना पर अदिश वक्रता है, और Γ है∗ Γ का जोड़ है। संचालक डी2स्पिनोरियल लाप्लासियन के नाम से जाना जाता है।
यदि M सघन है और τ ≥ 0 और τ > 0 कहीं न कहीं कई गुना पर कोई गैर-तुच्छ संनादी स्पाइनर नहीं हैं। यह लिचनेरोविक्ज़ प्रमेय है। यह सरलता से देखा जा सकता है कि लिचनेरोविक्ज़ प्रमेय चर जटिल विश्लेषण से लिउविले के प्रमेय (जटिल विश्लेषण) का सामान्यीकरण है। यह हमें यह ध्यान देने की अनुमति देता है कि चिकने स्पाइनर अनुभागों के समष्टि पर संक्रियक डी इस तरह के कई गुना उलटा है।
ऐसे मामलों में जहां अतियाह-सिंगर-डिरैक संक्रियक कॉम्पैक्ट समर्थन के साथ चिकनी स्पाइनर अनुभागों के समष्टि पर उलटा है, कोई भी परिचय दे सकता है
- जहां δy डिरैक डेल्टा फलन का मानांकन y पर किया गया है। यह कॉची कर्नेल को जन्म देता है, जो इस डिरैक संक्रियक का मौलिक हल है। इससे संनादी स्पाइनरों के लिए कॉची समाकलन सूत्र प्राप्त किया जा सकता है। इस कर्नेल के साथ इस प्रविष्टि के पहले खंड में वर्णित अधिकांश चीजें उल्टे अतियाह-सिंगर-डिरैक संक्रियकों के लिए होती हैं।
स्टोक्स के प्रमेय का उपयोग करके, या अन्यथा, कोई यह निर्धारित कर सकता है कि मापीय के अनुरूप परिवर्तन के अंतर्गत प्रत्येक मापीय से जुड़े डिरैक संक्रियक दूसरे के लिए आनुपातिक हैं, और परिणामस्वरूप उनके व्युत्क्रम भी हैं, यदि वे मौजूद हैं।
यह सब अतियाह-सिंगर इंडेक्स सिद्धांत और डिरैक प्रकार के संक्रियकों से जुड़े ज्यामितीय विश्लेषण के अन्य पहलुओं के लिए संभावित लिंक प्रदान करता है।
अतिपरवलीय डिरैक प्रकार संक्रियक
क्लिफ़ोर्ड विश्लेषण में अतिपरवलीय या पोंकारे मापीय के संबंध में ऊपरी आधे समष्टि, डिस्क, या हाइपरबोला पर अंतर संक्रियकों पर भी विचार किया जाता है।
ऊपरी आधे समष्टि के लिए क्लिफोर्ड बीजगणित, सीएल को विभाजित किया जाता हैn सीएल मेंn−1 + सीएलn−1en. तो सीएल में ए के लिएn कोई a को b + CE के रूप में व्यक्त कर सकता हैnसीएल में ए, बी के साथn−1. इसके बाद प्रक्षेपण संक्रियकों पी और क्यू को इस प्रकार परिभाषित किया गया है: पी(ए) = बी और क्यू(ए) = सी। ऊपरी आधे समष्टि में अतिपरवलीय मापीय के संबंध में फलन f पर कार्य करने वाले हॉज-डिरैक संक्रियक को अब परिभाषित किया गया है
- .
इस मामले में
- .
परिचालक
- पोंकारे मापीय के संबंध में लाप्लासियन है जबकि दूसरा संक्रियक वेनस्टीन संक्रियक का उदाहरण है।
अतिपरवलीय लाप्लासियन अनुरूप समूह की क्रियाओं के अंतर्गत अपरिवर्तनीय है, जबकि अतिपरवलीय डिरैक संक्रियक ऐसी क्रियाओं के अंतर्गत सहसंयोजक है।
रारिता-श्विंगर/स्टीन-वीस संक्रियक
रारिटा-श्विंगर समीकरण|रारिटा-श्विंगर संक्रियक, जिन्हें स्टीन-वीस संक्रियक के रूप में भी जाना जाता है, चक्रण और पिन समूहों के प्रतिनिधित्व सिद्धांत में उत्पन्न होते हैं। संचालक आरkएक अनुरूप सहसंयोजक प्रथम क्रम विभेदक संक्रियक है। यहां k = 0, 1, 2, .... जब k = 0, Rarita-Schwinger संक्रियक सिर्फ डिरैक संक्रियक है। ऑर्थोगोनल समूह, ओ(एन) के लिए प्रतिनिधित्व सिद्धांत में सजातीय संनादी बहुपद के समष्टिों में मान लेने वाले फलनों पर विचार करना आम बात है। जब कोई इस प्रतिनिधित्व सिद्धांत को ओ (एन) के दोहरे कवरिंग पिन (एन) में परिष्कृत करता है, तो वह सजातीय संनादी बहुपद के समष्टिों को डिरैक समीकरण के सजातीय बहुपद हलों के समष्टिों से बदल देता है, अन्यथा के एकजीनी बहुपद के रूप में जाना जाता है। कोई फलन f(x, u) पर विचार करता है जहां U में x, 'R' में प्रांत हैn, और u 'R' से भिन्न होता हैn. इसके अतिरिक्त f(x, u) u में k-एकजीनी बहुपद है। अब डिरैक संक्रियक डी लागू करेंxx से f(x, u) में। अब चूँकि क्लिफ़ोर्ड बीजगणित क्रमविनिमेय D नहीं हैxf(x, u) तो यह फलन अब k एकजीनी नहीं है बल्कि u में सजातीय संनादी बहुपद है। अब प्रत्येक संनादी बहुपद h के लिएkडिग्री k के सजातीय में अलमांसी-फिशर अपघटन होता है
- जहां पीk और पीk−1 क्रमशः k और k−1 मोनिक बहुपद हैं। माना P, h का प्रक्षेपण हैk ऊपरk तब रारिटा-श्विंगर संक्रियक को पीडी के रूप में परिभाषित किया गया हैk, और इसे R द्वारा दर्शाया जाता हैk. यूलर लेम्मा का उपयोग करके कोई यह निर्धारित कर सकता है
इसलिए
सम्मेलन और पत्रिकाएँ
क्लिफ़ोर्ड और ज्यामितीय बीजगणित के आसनिकट अनुप्रयोगों की विस्तृत श्रृंखला के साथ जीवंत और अंतःविषय समुदाय है। इस विषय में मुख्य सम्मेलनों में क्लिफोर्ड बीजगणित और गणितीय भौतिकी में उनके अनुप्रयोगों (ICCA) और पर अंतर्राष्ट्रीय सम्मेलन सम्मिलित हैं। cz/main.php कंप्यूटर विज्ञान और इंजीनियरिंग में ज्यामितीय बीजगणित के अनुप्रयोग (AGACSE) श्रृंखला। मुख्य प्रकाशन आउटलेट स्प्रिंगर जर्नल एप्लाइड क्लिफ़ोर्ड बीजगणित में प्रगति है।
यह भी देखें
- क्लिफोर्ड बीजगणित
- जटिल चक्रण संरचना
- कन्फर्मल कई गुना
- अनुरूप रूप से सपाट कई गुना
- डिरैक संक्रियक
- पोंकारे मापीय
- चक्रण समूह
- चक्रण संरचना
- स्पाइनर बंडल
संदर्भ
- Ahlfors, L.V. (1981), Möbius Transformations in Several Dimensions, Ordway professorship lectures in mathematics, University of Minnesota, hdl:2027/mdp.39015015619276, OCLC 681384835.
- Ahlfors, L. (1986), "Mobius transformations in Rn expressed through 2 × 2 matrices of Clifford numbers", Complex Variables, 5 (2–4): 215–224, doi:10.1080/17476938608814142.
- Brackx, F.; Delanghe, R.; Sommen, F. (1982), Clifford Analysis, Pitman Research Notes in Mathematics, Longman, ISBN 0-273-08535-2.
- Bures, J.; Sommen, F.; Soucek, V.; VanLancker, P. (2001), "Rarita–Schwinger type operators in Clifford analysis", Journal of Functional Analysis, 185 (2): 425–455, doi:10.1006/jfan.2001.3781.
- Colombo, F.; Sabadini, I.; Sommen, F.; Struppa, D. (2004), Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, Birkhauser Verlag, ISBN 0-8176-4255-2.
- Eastwood, M.; Ryan, J. (2007), "Aspects of Dirac operators in analysis", Milan Journal of Mathematics, 75 (1): 91–116, doi:10.1007/s00032-007-0077-5, S2CID 120593186.
- Friedrich, T. (2000), Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25, American Mathematical Society, ISBN 9780821820551.
- Jefferies, B. (2004), Spectral Properties of Noncommuting Operators, Lecture Notes in Mathematics, vol. 1843, Springer Verlag, ISBN 3-540-21923-4.
- Krausshar, R. S. (2004), Generalized Analytic Automorphic Forms in Hypercomplex Space, Frontiers in Mathematics, Birkhauser Verlag, ISBN 3-7643-7059-9.
- Lawson, H. B.; Michelsohn, M.-L. (1989), Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, ISBN 0-691-08542-0.
- McIntosh, A. (1996), "Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains", in Ryan, J. (ed.), Clifford Algebras in Analysis and Related Topics, Studies in Advanced Mathematics, CRC Press, pp. 33–87, ISBN 0-8493-8481-8.
- Mitrea, M. (1994), Singular Integrals, Hardy Spaces and Clifford Wavelets, Lecture Notes in Mathematics, vol. 1575, Springer Verlag, ISBN 0-387-57884-6.
- Roe, J. (1998), Elliptic Operators, Topology and Asymptotic Methods, Pitman Research Notes in Mathematics, vol. 395 Longman (2nd ed.), Harlow, ISBN 0-582-32502-1
{{citation}}
: CS1 maint: location missing publisher (link). - Ryan, J. (1996), Clifford Algebras in Analysis and Related Topics, Studies in Advanced Mathematics, CRC Press, ISBN 0-8493-8481-8.
- Stein, E.; Weiss, G. (1968), "Generalizations of the Cauchy Riemann equations and representations of the rotation group", American Journal of Mathematics, 90 (1): 163–196, doi:10.2307/2373431, JSTOR 2373431.
- Sudbery, A. (1979), "Quaternionic analysis", Mathematical Proceedings of the Cambridge Philosophical Society, 85 (2): 199–225, Bibcode:1979MPCPS..85..199S, doi:10.1017/S0305004100055638, S2CID 7606387.
- Tao, T. (1996), "Convolution operators on Lipschitz graphs with harmonic kernels", Advances in Applied Clifford Algebras, 6: 207–218, ISSN 0188-7009.
- Wu, S. (1999), "Well-posedness in Sobolev spaces of the full water wave problem in 3-D", Journal of the American Mathematical Society, 12 (2): 445–495, doi:10.1090/S0894-0347-99-00290-8.
बाहरी संबंध
- Lecture notes on डिरैक operators in analysis and geometry
- Calderbank, David M.J. (1997-12-19), Dirac operators and Clifford analysis on manifolds with boundary, Danish Mathematical Society, DMF-1997-12-007 PP-1997-53, archived from the original on 2009-08-13