विभाजन बिंदु: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Point of interest for complex multi-valued functions}} | {{Short description|Point of interest for complex multi-valued functions}} | ||
[[जटिल विश्लेषण|मिश्रित विश्लेषण]] के गणित क्षेत्र में, बहु-मानित फलन की शाखा बिंदु (सामान्यतः मिश्रित विश्लेषण के संदर्भ में बहुफलन के रूप में संदर्भित करता है) यह एक ऐसा बिंदु होता है, यदि फलन n-मानित है (जिसमें n मान हैं) उस बिंदु पर, इसके सभी निकटवर्ती में एक बिंदु होता है जिसका मान n से अधिक होता है।<ref>{{Citation |last=Das |first=Shantanu |title=Fractional Differintegrations Insight Concepts |date=2011 |url=http://dx.doi.org/10.1007/978-3-642-20545-3_5 |work=Functional Fractional Calculus |pages=213–269 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/978-3-642-20545-3_5 |isbn=978-3-642-20544-6 |access-date=2022-04-27}} (page 6)</ref> [[रीमैन सतह|रीमैन सतहों]] का उपयोग करके बहु-मानित फलनों का दृढ़ता से अध्ययन किया जाता है, और शाखा बिंदुओं की औपचारिक परिभाषा इस अवधारणा को नियोजित करती है। | [[जटिल विश्लेषण|'''मिश्रित विश्लेषण''']] के गणित क्षेत्र में, बहु-मानित फलन की '''शाखा बिंदु''' (सामान्यतः मिश्रित विश्लेषण के संदर्भ में बहुफलन के रूप में संदर्भित करता है) यह एक ऐसा बिंदु होता है, यदि फलन n-मानित है (जिसमें n मान हैं) उस बिंदु पर, इसके सभी निकटवर्ती में एक बिंदु होता है जिसका मान n से अधिक होता है।<ref>{{Citation |last=Das |first=Shantanu |title=Fractional Differintegrations Insight Concepts |date=2011 |url=http://dx.doi.org/10.1007/978-3-642-20545-3_5 |work=Functional Fractional Calculus |pages=213–269 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |doi=10.1007/978-3-642-20545-3_5 |isbn=978-3-642-20544-6 |access-date=2022-04-27}} (page 6)</ref> [[रीमैन सतह|'''रीमैन सतहों''']] का उपयोग करके बहु-मानित फलनों का दृढ़ता से अध्ययन किया जाता है, और शाखा बिंदुओं की औपचारिक परिभाषा इस अवधारणा को नियोजित करती है। | ||
शाखा बिंदु तीन व्यापक श्रेणियों बीजगणितीय शाखा बिंदु, अबीजीय शाखा बिंदु और लघुगणक शाखा बिंदु में आते हैं। बीजगणितीय शाखा बिंदु सामान्यतः उन फलनों से उत्पन्न होते हैं जिनमें मूल के निष्कर्षण में अस्पष्टता होती है, जैसे कि z के एक फलन के रूप में w के लिए समीकरण ''w''<sup>2</sup> = ''z'' को हल करना है। यहां शाखा बिंदु उत्पत्ति है, क्योंकि मूल युक्त संवृत पाश के निकट किसी भी हल के [[विश्लेषणात्मक निरंतरता]] के परिणामस्वरूप अलग फलन होगा: गैर-तुच्छ [[मोनोड्रोमी]] है। बीजगणितीय शाखा बिंदु के अतिरिक्त, फलन w को बहु-मानित फलन के रूप में ठीक रूप से परिभाषित किया गया है और उचित अर्थ में, मूल में निरंतर है। यह अबीजीय और लघुगणकीय शाखा बिंदुओं के विपरीत है, अर्थात, ऐसे बिंदु जिन पर बहु-मानित फलन में गैर-तुच्छ मोनोड्रोमी और [[आवश्यक विलक्षणता]] होती है। [[ज्यामितीय कार्य सिद्धांत|ज्यामितीय फलन सिद्धांत]] में, शब्द शाखा बिंदु का अयोग्य उपयोग सामान्यतः पूर्व अधिक प्रतिबंधात्मक प्रकार का अर्थ है: बीजगणितीय शाखा बिंदु।<ref>{{harvnb|Ahlfors|1979}}</ref> मिश्रित विश्लेषण के अन्य क्षेत्रों में, अयोग्य शब्द भी अबीजीय प्रकार के अधिक सामान्य शाखा बिंदुओं का उल्लेख कर सकता है। | इस प्रकार से शाखा बिंदु तीन व्यापक श्रेणियों बीजगणितीय शाखा बिंदु, अबीजीय शाखा बिंदु और लघुगणक शाखा बिंदु में आते हैं। बीजगणितीय शाखा बिंदु सामान्यतः उन फलनों से उत्पन्न होते हैं जिनमें मूल के निष्कर्षण में अस्पष्टता होती है, जैसे कि z के एक फलन के रूप में w के लिए समीकरण ''w''<sup>2</sup> = ''z'' को हल करना है। यहां शाखा बिंदु उत्पत्ति है, क्योंकि मूल युक्त संवृत पाश के निकट किसी भी हल के [[विश्लेषणात्मक निरंतरता|'''विश्लेषणात्मक निरंतरता''']] के परिणामस्वरूप अलग फलन होगा: गैर-तुच्छ [[मोनोड्रोमी]] है। बीजगणितीय शाखा बिंदु के अतिरिक्त, फलन w को बहु-मानित फलन के रूप में ठीक रूप से परिभाषित किया गया है और उचित अर्थ में, मूल में निरंतर है। यह अबीजीय और लघुगणकीय शाखा बिंदुओं के विपरीत है, अर्थात, ऐसे बिंदु जिन पर बहु-मानित फलन में गैर-तुच्छ मोनोड्रोमी और [[आवश्यक विलक्षणता]] होती है। [[ज्यामितीय कार्य सिद्धांत|ज्यामितीय फलन सिद्धांत]] में, शब्द शाखा बिंदु का अयोग्य उपयोग सामान्यतः पूर्व अधिक प्रतिबंधात्मक प्रकार का अर्थ है: बीजगणितीय शाखा बिंदु।<ref>{{harvnb|Ahlfors|1979}}</ref> मिश्रित विश्लेषण के अन्य क्षेत्रों में, अयोग्य शब्द भी अबीजीय प्रकार के अधिक सामान्य शाखा बिंदुओं का उल्लेख कर सकता है। | ||
== बीजगणितीय शाखा बिंदु == | == बीजगणितीय शाखा बिंदु == | ||
Line 8: | Line 8: | ||
मान लीजिए Ω मिश्रित समतल C में सम्बद्ध [[खुला सेट|विवृत समुच्चय]] है और ''ƒ'':Ω → C [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] है। यदि ''ƒ'' स्थिर नहीं है, तो ''ƒ'' के [[महत्वपूर्ण बिंदु (गणित)]] का समुच्चय, अर्थात व्युत्पन्न ''ƒ'' के शून्य <nowiki>'</nowiki>(''z''), Ω में कोई [[सीमा बिंदु]] नहीं है। तो ƒ का प्रत्येक महत्वपूर्ण बिंदु ''z''<sub>0</sub> ƒ डिस्क B(z<sub>0</sub>,r) के केंद्र पर स्थित होता है, जिसके संवृत होने में ƒ का कोई अन्य महत्वपूर्ण बिंदु नहीं होता है। | मान लीजिए Ω मिश्रित समतल C में सम्बद्ध [[खुला सेट|विवृत समुच्चय]] है और ''ƒ'':Ω → C [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] है। यदि ''ƒ'' स्थिर नहीं है, तो ''ƒ'' के [[महत्वपूर्ण बिंदु (गणित)]] का समुच्चय, अर्थात व्युत्पन्न ''ƒ'' के शून्य <nowiki>'</nowiki>(''z''), Ω में कोई [[सीमा बिंदु]] नहीं है। तो ƒ का प्रत्येक महत्वपूर्ण बिंदु ''z''<sub>0</sub> ƒ डिस्क B(z<sub>0</sub>,r) के केंद्र पर स्थित होता है, जिसके संवृत होने में ƒ का कोई अन्य महत्वपूर्ण बिंदु नहीं होता है। | ||
मान लीजिए γ '''''B (z<sub>0</sub>, r)''''' की | मान लीजिए γ '''''B (z<sub>0</sub>, r)''''' की सीमा है, इसे धनात्मक अभिविन्यास के साथ लिया गया है। इस प्रकार से बिंदु के संबंध में ƒ(γ) की विसर्पी संख्या ƒ(z<sub>0</sub>) धनात्मक पूर्णांक है जिसे ''z<sub>0</sub>'' का '''उपशाखा (गणित)''' तालिका कहा जाता है। यदि '''उपशाखा''' तालिका 1 से अधिक है, तो z<sub>0</sub> ''ƒ'' का शाखा बिंदु कहा जाता है, और संबंधित महत्वपूर्ण मान ''ƒ''(''z''<sub>0</sub>) को (बीजगणितीय) '''शाखा बिंदु''' कहा जाता है। समान रूप से, ''z''<sub>0</sub> एक प्रभाव बिंदु है यदि z<sub>0</sub> के निकटवर्ती में परिभाषित होलोमोर्फिक फलन φ स्थित है है जैसे कि पूर्णांक '''''k > 1''''' के लिए '''''ƒ(z) = φ(z)(z − z<sub>0</sub>)<sup>k</sup> + f(z<sub>0</sub>)'''''। | ||
सामान्यतः, किसी को ƒ में रूचि नहीं है, परन्तु इसके विपरीत फलन में रूचि है। यद्यपि, शाखा बिंदु के निकटवर्ती में होलोमोर्फिक फलन का व्युत्क्रम ठीक से स्थित नहीं है, और इसलिए इसे वैश्विक विश्लेषणात्मक फलन के रूप में बहु-मानित अर्थों में परिभाषित करने के लिए विवश किया जाता है। [[शब्दावली का दुरुपयोग]] करना और ƒ के शाखा बिंदु '''''w<sub>0</sub>= ƒ(z<sub>0</sub>)''''' को वैश्विक विश्लेषणात्मक फलन '''''ƒ<sup>-1</sup>''''' के शाखा बिंदु के रूप में संदर्भित करना सामान्य बात है। अन्य प्रकार के बहु-मानित वैश्विक विश्लेषणात्मक फलनों के लिए शाखा बिंदुओं की अधिक सामान्य परिभाषाएँ संभव हैं, जैसे कि परिभाषित अंतर्निहित फलन। इस प्रकार के उदाहरणों से निपटने के लिए एकीकृत संरचना निम्न रीमैन सतहों की भाषा में प्रदान किया गया है। विशेष रूप से, इस अधिक सामान्य प्रतिरूप में, 1 से अधिक क्रम के [[पोल (जटिल विश्लेषण)|ध्रुव (मिश्रित विश्लेषण)]] को भी शाखा बिंदु माना जा सकता है। | सामान्यतः, किसी को ƒ में रूचि नहीं है, परन्तु इसके विपरीत फलन में रूचि है। यद्यपि, शाखा बिंदु के निकटवर्ती में होलोमोर्फिक फलन का व्युत्क्रम ठीक से स्थित नहीं है, और इसलिए इसे वैश्विक विश्लेषणात्मक फलन के रूप में बहु-मानित अर्थों में परिभाषित करने के लिए विवश किया जाता है। इस प्रकार से [[शब्दावली का दुरुपयोग]] करना और ƒ के शाखा बिंदु '''''w<sub>0</sub>= ƒ(z<sub>0</sub>)''''' को वैश्विक विश्लेषणात्मक फलन '''''ƒ<sup>-1</sup>''''' के शाखा बिंदु के रूप में संदर्भित करना सामान्य बात है। अन्य प्रकार के बहु-मानित वैश्विक विश्लेषणात्मक फलनों के लिए शाखा बिंदुओं की अधिक सामान्य परिभाषाएँ संभव हैं, जैसे कि परिभाषित अंतर्निहित फलन। इस प्रकार के उदाहरणों से निपटने के लिए एकीकृत संरचना निम्न रीमैन सतहों की भाषा में प्रदान किया गया है। विशेष रूप से, इस अधिक सामान्य प्रतिरूप में, 1 से अधिक क्रम के [[पोल (जटिल विश्लेषण)|ध्रुव (मिश्रित विश्लेषण)]] को भी शाखा बिंदु माना जा सकता है। | ||
व्युत्क्रम वैश्विक विश्लेषणात्मक फलन '''''ƒ<sup>-1</sup>''''' के संदर्भ में, शाखा बिंदु वे बिंदु हैं जिनके चारों ओर गैर-तुच्छ मोनोड्रोमी है। उदाहरण के लिए, फलन '''''ƒ(z) = z<sup>2</sup>''''' का '''''z<sub>0</sub>= 0''''' पर शाखा बिंदु है। व्युत्क्रम फलन वर्गमूल '''''ƒ<sup>−1</sup>(w) = w<sup>1/2</sup>''''' है, जिसका शाखा बिंदु '''''w<sub>0</sub>= 0''''' पर है। वस्तुतः, संवृत पाश w = e<sup>iθ</sup> के चारों ओर घूमते हुए, कोई '''''θ = 0''''' और '''''e<sup>i0/2</sup> = 1''''' से प्रारंभ होता है। परन्तु पाश के चारों ओर '''''θ = 2{{pi}}''''' तक जाने के बाद, किसी के निकट '''''e<sup>2{{pi}}i/2</sup> = −1''''' होता है। इस प्रकार मूल को घेरने वाले इस पाश के चारों ओर मोनोड्रोमी है। | इस प्रकार से व्युत्क्रम वैश्विक विश्लेषणात्मक फलन '''''ƒ<sup>-1</sup>''''' के संदर्भ में, शाखा बिंदु वे बिंदु हैं जिनके चारों ओर गैर-तुच्छ मोनोड्रोमी है। इस प्रकार से उदाहरण के लिए, फलन '''''ƒ(z) = z<sup>2</sup>''''' का '''''z<sub>0</sub>= 0''''' पर शाखा बिंदु है। व्युत्क्रम फलन वर्गमूल '''''ƒ<sup>−1</sup>(w) = w<sup>1/2</sup>''''' है, जिसका शाखा बिंदु '''''w<sub>0</sub>= 0''''' पर है। वस्तुतः, संवृत पाश w = e<sup>iθ</sup> के चारों ओर घूमते हुए, कोई '''''θ = 0''''' और '''''e<sup>i0/2</sup> = 1''''' से प्रारंभ होता है। परन्तु पाश के चारों ओर '''''θ = 2{{pi}}''''' तक जाने के बाद, किसी के निकट '''''e<sup>2{{pi}}i/2</sup> = −1''''' होता है। इस प्रकार मूल को घेरने वाले इस पाश के चारों ओर मोनोड्रोमी है। | ||
== अबीजीय और लघुगणकीय शाखा बिंदु == | == अबीजीय और लघुगणकीय शाखा बिंदु == | ||
मान लीजिए कि g वैश्विक विश्लेषणात्मक फलन है जिसे z<sub>0</sub> के चारों ओर [[वलय (गणित)]] पर परिभाषित किया गया है। तब g का 'अबीजीय शाखा बिंदु' होता है यदि z<sub>0,</sub> g की आवश्यक विलक्षणता है जैसे कि बिंदु z<sub>0</sub> के निकट कुछ सरल संवृत वक्र के चारों ओर एक फलन अवयव की विश्लेषणात्मक निरंतरता अलग फलन अवयव का उत्पादन करती है।<ref>{{harvnb|Solomentsev|2001}}; {{harvnb|Markushevich|1965}}</ref> | मान लीजिए कि g वैश्विक विश्लेषणात्मक फलन है जिसे z<sub>0</sub> के चारों ओर [[वलय (गणित)]] पर परिभाषित किया गया है। तब g का 'अबीजीय शाखा बिंदु' होता है यदि z<sub>0,</sub> g की आवश्यक विलक्षणता है जैसे कि बिंदु z<sub>0</sub> के निकट कुछ सरल संवृत वक्र के चारों ओर एक फलन अवयव की विश्लेषणात्मक निरंतरता अलग फलन अवयव का उत्पादन करती है।<ref>{{harvnb|Solomentsev|2001}}; {{harvnb|Markushevich|1965}}</ref> | ||
अबीजीय शाखा बिंदु का उदाहरण कुछ पूर्णांक '''k > 1''' के लिए बहु-मानित फलन | इस प्रकार से अबीजीय शाखा बिंदु का उदाहरण कुछ पूर्णांक '''k > 1''' के लिए बहु-मानित फलन | ||
:<math>g(z) = \exp \left( z^{-1/k}\right)\,</math> का मूल है। | :<math>g(z) = \exp \left( z^{-1/k}\right)\,</math> का मूल है। | ||
यहां मूल के चारों ओर परिपथ के लिए मोनोड्रोमी समूह परिमित है। '''''k''''' पूर्ण परिपथ के निकट विश्लेषणात्मक निरंतरता फलन को मूल में वापस लाती है। | अतः यहां मूल के चारों ओर परिपथ के लिए मोनोड्रोमी समूह परिमित है। '''''k''''' पूर्ण परिपथ के निकट विश्लेषणात्मक निरंतरता फलन को मूल में वापस लाती है। | ||
यदि मोनोड्रोमी समूह अनंत है, अर्थात, z<sub>0</sub> के विषय में गैर-शून्य घुमावदार संख्या के साथ वक्र के साथ विश्लेषणात्मक निरंतरता द्वारा मूल फलन अवयव पर वापस लौटना असंभव है, फिर बिंदु z<sub>0</sub> लघुगणक शाखा बिंदु कहा जाता है।<ref>{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Logarithmic_branch_point|title=Logarithmic branch point - Encyclopedia of Mathematics|website=www.encyclopediaofmath.org|access-date=2019-06-11}}</ref> इसे इसलिए कहा जाता है क्योंकि इस घटना का विशिष्ट उदाहरण मूल में [[जटिल लघुगणक|मिश्रित लघुगणक]] का शाखा बिंदु है। मूल बिंदु को घेरने वाले सरल संवृत वक्र के चारों ओर एक बार वामावर्त जाने पर, मिश्रित लघुगणक '''''2{{pi}}i''''' से बढ़ जाता है। विसर्पी संख्या w के साथ पाश को घेरते हुए, लघुगणक 2{{pi}}i w से बढ़ जाता है और मोनोड्रोमी समूह अनंत चक्रीय समूह <math>\mathbb{Z}</math> है। | यदि मोनोड्रोमी समूह अनंत है, अर्थात, z<sub>0</sub> के विषय में गैर-शून्य घुमावदार संख्या के साथ वक्र के साथ विश्लेषणात्मक निरंतरता द्वारा मूल फलन अवयव पर वापस लौटना असंभव है, फिर बिंदु z<sub>0</sub> लघुगणक शाखा बिंदु कहा जाता है।<ref>{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Logarithmic_branch_point|title=Logarithmic branch point - Encyclopedia of Mathematics|website=www.encyclopediaofmath.org|access-date=2019-06-11}}</ref> इसे इसलिए कहा जाता है क्योंकि इस घटना का विशिष्ट उदाहरण मूल में [[जटिल लघुगणक|मिश्रित लघुगणक]] का शाखा बिंदु है। मूल बिंदु को घेरने वाले सरल संवृत वक्र के चारों ओर एक बार वामावर्त जाने पर, मिश्रित लघुगणक '''''2{{pi}}i''''' से बढ़ जाता है। विसर्पी संख्या w के साथ पाश को घेरते हुए, लघुगणक 2{{pi}}i w से बढ़ जाता है और मोनोड्रोमी समूह अनंत चक्रीय समूह <math>\mathbb{Z}</math> है। | ||
लघुगणकीय शाखा बिंदु अबीजीय शाखा बिंदु की विशेष स्थिति हैं। | इस प्रकार से लघुगणकीय शाखा बिंदु अबीजीय शाखा बिंदु की विशेष स्थिति हैं। | ||
अबीजीय और लघुगणकीय शाखा बिंदु के लिए शाखाकरण की कोई संगत धारणा नहीं है क्योंकि रीमैन सतह को आच्छादित करने वाली संबंधित शाखा को विश्लेषणात्मक रूप से शाखा बिंदु के आच्छादन तक जारी नहीं रखा जा सकता है। इसलिए इस प्रकार के आच्छादन सदैव असम्बद्ध होते हैं। | अबीजीय और लघुगणकीय शाखा बिंदु के लिए शाखाकरण की कोई संगत धारणा नहीं है क्योंकि रीमैन सतह को आच्छादित करने वाली संबंधित शाखा को विश्लेषणात्मक रूप से शाखा बिंदु के आच्छादन तक जारी नहीं रखा जा सकता है। इसलिए इस प्रकार के आच्छादन सदैव असम्बद्ध होते हैं। | ||
Line 36: | Line 36: | ||
== शाखा काट == | == शाखा काट == | ||
साधारणतया, शाखा बिंदु वे बिंदु होते हैं जहां से अधिक मानित फलन की विभिन्न शीट साथ आती हैं। फलन की शाखाएँ फलन की विभिन्न शीट हैं। उदाहरण के लिए, फलन '''''w=z<sup>1/2</sup>''''' की दो शाखाएँ हैं: जहाँ वर्गमूल धन चिह्न के साथ आता है, और दूसरा ऋण चिह्न के साथ। शाखा काट मिश्रित समतल में वक्र है जैसे कि वक्र के समतल पर बहु-मानित फलन की एकल विश्लेषणात्मक शाखा को परिभाषित करना संभव है। शाखा काट सामान्यतः शाखा बिंदुओं के युग्मों के बीच ली जाती है, परन्तु सदैव नहीं। | साधारणतया, शाखा बिंदु वे बिंदु होते हैं जहां से अधिक मानित फलन की विभिन्न शीट साथ आती हैं। फलन की शाखाएँ फलन की विभिन्न शीट हैं। इस प्रकार से उदाहरण के लिए, फलन '''''w=z<sup>1/2</sup>''''' की दो शाखाएँ हैं: जहाँ वर्गमूल धन चिह्न के साथ आता है, और दूसरा ऋण चिह्न के साथ। शाखा काट मिश्रित समतल में वक्र है जैसे कि वक्र के समतल पर बहु-मानित फलन की एकल विश्लेषणात्मक शाखा को परिभाषित करना संभव है। शाखा काट सामान्यतः शाखा बिंदुओं के युग्मों के बीच ली जाती है, परन्तु सदैव नहीं। | ||
शाखा काट एकल-मानित फलनों के संग्रह के साथ काम करने की अनुमति देती है, बहु-मानित फलन के अतिरिक्त शाखा काट के साथ साथ चिपक जाती है। उदाहरण के लिए, फलन | इस प्रकार से शाखा काट एकल-मानित फलनों के संग्रह के साथ काम करने की अनुमति देती है, बहु-मानित फलन के अतिरिक्त शाखा काट के साथ साथ चिपक जाती है। इस प्रकार से उदाहरण के लिए, फलन | ||
:<math>F(z) = \sqrt{z} \sqrt{1-z}\,</math> | :<math>F(z) = \sqrt{z} \sqrt{1-z}\,</math> | ||
को एकल-मानित बनाने के लिए, कोई वास्तविक अक्ष पर अंतराल '''''[0, 1]''''' के साथ एक शाखा काटता है, जो फलन के दो शाखा बिंदुओं को जोड़ता है। यही विचार फलन {{radic|''z''}} पर लागू किया जा सकता है; परन्तु उस स्थिति में किसी को यह समझना होगा कि अनंत पर बिंदु 0 से संयोजन करने के लिए उपयुक्त 'अन्य' शाखा बिंदु है, उदाहरण के लिए पूर्ण पूर्णऋणात्मक वास्तविक धुरी के साथ। | को एकल-मानित बनाने के लिए, कोई वास्तविक अक्ष पर अंतराल '''''[0, 1]''''' के साथ एक शाखा काटता है, जो फलन के दो शाखा बिंदुओं को जोड़ता है। यही विचार फलन {{radic|''z''}} पर लागू किया जा सकता है; परन्तु उस स्थिति में किसी को यह समझना होगा कि अनंत पर बिंदु 0 से संयोजन करने के लिए उपयुक्त 'अन्य' शाखा बिंदु है, इस प्रकार से उदाहरण के लिए पूर्ण पूर्णऋणात्मक वास्तविक धुरी के साथ। | ||
शाखा काट उपकरण यादृच्छिक दिखाई दे सकता है (और यह है); परन्तु यह बहुत उपयोगी है, उदाहरण के लिए विशेष फलनों के सिद्धांत में। शाखा परिघटना की अपरिवर्तनीय व्याख्या रीमैन सतह सिद्धांत (जिसमें से यह ऐतिहासिक रूप से मूल है) में विकसित की गई है, और अधिक सामान्यतः [[बीजगणितीय कार्य|बीजगणितीय फलनों]] और [[अंतर समीकरण|अंतर समीकरणों]] के शाखाकरण और मोनोड्रोमी सिद्धांत में। | अतः शाखा काट उपकरण यादृच्छिक दिखाई दे सकता है (और यह है); परन्तु यह बहुत उपयोगी है, इस प्रकार से उदाहरण के लिए विशेष फलनों के सिद्धांत में। शाखा परिघटना की अपरिवर्तनीय व्याख्या रीमैन सतह सिद्धांत (जिसमें से यह ऐतिहासिक रूप से मूल है) में विकसित की गई है, और अधिक सामान्यतः [[बीजगणितीय कार्य|बीजगणितीय फलनों]] और [[अंतर समीकरण|अंतर समीकरणों]] के शाखाकरण और मोनोड्रोमी सिद्धांत में। | ||
=== मिश्रित लघुगणक === | === मिश्रित लघुगणक === | ||
Line 51: | Line 51: | ||
शाखा काट का विशिष्ट उदाहरण मिश्रित लघुगणक है। यदि एक मिश्रित संख्या को ध्रुवीय रूप '''''z=re<sup>iθ</sup>''''' में दर्शाया गया है, तो z का लघुगणक | शाखा काट का विशिष्ट उदाहरण मिश्रित लघुगणक है। यदि एक मिश्रित संख्या को ध्रुवीय रूप '''''z=re<sup>iθ</sup>''''' में दर्शाया गया है, तो z का लघुगणक | ||
:'''<math>\ln z = \ln r + i\theta\,</math>''' है। | :'''<math>\ln z = \ln r + i\theta\,</math>''' है। | ||
यद्यपि, कोण θ को परिभाषित करने में स्पष्ट अस्पष्टता है: θ में '''''2{{pi}}''''' का कोई भी पूर्णांक गुणज जोड़ने पर एक और संभावित कोण प्राप्त होगा। लघुगणक की शाखा सतत फलन '''''L(z)''''' है जो मिश्रित समतल में जुड़े विवृत समुच्चय में सभी z के लिए z का लघुगणक देता है। विशेष रूप से, लघुगणक की शाखा मूल से अनंत तक किसी भी किरण के पूरक में स्थित होती है: शाखा काट। शाखा काट का सामान्य विकल्प पूर्णऋणात्मक वास्तविक धुरी है, यद्यपि चुनाव व्यापक रूप से सुविधा का विषय है। | यद्यपि, कोण θ को परिभाषित करने में स्पष्ट अस्पष्टता है: θ में '''''2{{pi}}''''' का कोई भी पूर्णांक गुणज जोड़ने पर एक और संभावित कोण प्राप्त होगा। लघुगणक की शाखा सतत फलन '''''L(z)''''' है जो मिश्रित समतल में जुड़े विवृत समुच्चय में सभी z के लिए z का लघुगणक देता है। विशेष रूप से, लघुगणक की शाखा मूल से अनंत तक किसी भी किरण के पूरक में स्थित होती है: शाखा काट। इस प्रकार से शाखा काट का सामान्य विकल्प पूर्णऋणात्मक वास्तविक धुरी है, यद्यपि चुनाव व्यापक रूप से सुविधा का विषय है। | ||
शाखा काट को पार करते समय लघुगणक में '''''2{{pi}}i''''' की वृद्धि असंततता होती है। लघुगणक को साथ चिपकाकर निरंतर बनाया जा सकता है, शाखा काट के साथ मिश्रित समतल की कई प्रतियाँ, जिन्हें शीट कहा जाता है, इनको एक साथ जोड़कर लघुगणक को निरंतर बनाया जा सकता है। प्रत्येक शीट पर, लॉग का मान उसके मूल मान से '''''2{{pi}}i''''' के गुणक से भिन्न होता है। लघुगणक को निरंतर बनाने के लिए इन सतहों को अद्वितीय विधि से काट शाखा के साथ दूसरे से चिपकाया जाता है। प्रत्येक समय चर मूल के निकट जाता है, लघुगणक अलग शाखा में चला जाता है। | अतः शाखा काट को पार करते समय लघुगणक में '''''2{{pi}}i''''' की वृद्धि असंततता होती है। लघुगणक को साथ चिपकाकर निरंतर बनाया जा सकता है, शाखा काट के साथ मिश्रित समतल की कई प्रतियाँ, जिन्हें शीट कहा जाता है, इनको एक साथ जोड़कर लघुगणक को निरंतर बनाया जा सकता है। प्रत्येक शीट पर, लॉग का मान उसके मूल मान से '''''2{{pi}}i''''' के गुणक से भिन्न होता है। लघुगणक को निरंतर बनाने के लिए इन सतहों को अद्वितीय विधि से काट शाखा के साथ दूसरे से चिपकाया जाता है। प्रत्येक समय चर मूल के निकट जाता है, लघुगणक अलग शाखा में चला जाता है। | ||
=== ध्रुवों की निरंतरता === | === ध्रुवों की निरंतरता === | ||
एक कारण यह है कि शाखाओं में काट मिश्रित विश्लेषण की सामान्य विशेषताएं हैं कि शाखा काट को अनंततः अवशेषों के साथ मिश्रित समतल में रेखा के साथ व्यवस्थित कई ध्रुवों के योग के रूप में माना जा सकता है। उदाहरण के लिए, | एक कारण यह है कि शाखाओं में काट मिश्रित विश्लेषण की सामान्य विशेषताएं हैं कि शाखा काट को अनंततः अवशेषों के साथ मिश्रित समतल में रेखा के साथ व्यवस्थित कई ध्रुवों के योग के रूप में माना जा सकता है। इस प्रकार से उदाहरण के लिए, | ||
: <math> | : <math> | ||
Line 67: | Line 67: | ||
u(z) = \int_{a=-1}^{a=1} f_a(z) \,da = \int_{a=-1}^{a=1} {1\over z-a} \,da = \log \left({z+1\over z-1}\right) | u(z) = \int_{a=-1}^{a=1} f_a(z) \,da = \int_{a=-1}^{a=1} {1\over z-a} \,da = \log \left({z+1\over z-1}\right) | ||
</math> | </math> | ||
-1 से 1 तक कटौती के साथ एक फलन '''''u(z)''''' को परिभाषित करता है। शाखा काट को इधर-उधर ले जाया जा सकता है, क्योंकि एकीकरण रेखा को अभिन्न के मान में परिवर्तन किए बिना स्थानांतरित किया जा सकता है, जब तक कि रेखा बिंदु z के पार नहीं जाती है। | -1 से 1 तक कटौती के साथ एक फलन '''''u(z)''''' को परिभाषित करता है। इस प्रकार से शाखा काट को इधर-उधर ले जाया जा सकता है, क्योंकि एकीकरण रेखा को अभिन्न के मान में परिवर्तन किए बिना स्थानांतरित किया जा सकता है, जब तक कि रेखा बिंदु z के पार नहीं जाती है। | ||
== रीमैन तल == | == रीमैन तल == | ||
एक शाखा बिंदु की अवधारणा को होलोमॉर्फिक फलन ƒ:X → Y के लिए परिभाषित किया गया है, जो संहत सम्बद्ध रीमैन सतह X से संहत रीमैन सतह Y (सामान्यतः [[रीमैन क्षेत्र]]) तक है। जब तक यह स्थिर नहीं है, फलन ƒ अपने प्रतिरूप पर एक सीमित संख्या में बिंदुओं को छोड़कर एक [[अंतरिक्ष को कवर करना|प्रतिचित्र आवरण]] होगा। X के बिंदु जहां ƒ आवरण बनने में विफल रहता है, ƒ के शाखा बिंदु हैं, और ƒ के अंतर्गत शाखा बिंदु के प्रतिरूप को शाखा बिंदु कहा जाता है। | अतः एक शाखा बिंदु की अवधारणा को होलोमॉर्फिक फलन ƒ:X → Y के लिए परिभाषित किया गया है, जो संहत सम्बद्ध रीमैन सतह X से संहत रीमैन सतह Y (सामान्यतः [[रीमैन क्षेत्र]]) तक है। जब तक यह स्थिर नहीं है, फलन ƒ अपने प्रतिरूप पर एक सीमित संख्या में बिंदुओं को छोड़कर एक [[अंतरिक्ष को कवर करना|प्रतिचित्र आवरण]] होगा। X के बिंदु जहां ƒ आवरण बनने में विफल रहता है, ƒ के शाखा बिंदु हैं, और ƒ के अंतर्गत शाखा बिंदु के प्रतिरूप को शाखा बिंदु कहा जाता है। | ||
किसी भी बिंदु '''''P ∈ X''''' ''और '''Q = ƒ(P) ∈ Y''''' के लिए, P के निकट X के लिए होलोमोर्फिक [[स्थानीय निर्देशांक]] z और Q के निकट Y के लिए w हैं, जिसके संदर्भ में फलन '''''ƒ(z)''''' कुछ पूर्णांक k के लिए | इस प्रकार से किसी भी बिंदु '''''P ∈ X''''' ''और '''Q = ƒ(P) ∈ Y''''' के लिए, P के निकट X के लिए होलोमोर्फिक [[स्थानीय निर्देशांक]] z और Q के निकट Y के लिए w हैं, जिसके संदर्भ में फलन '''''ƒ(z)''''' कुछ पूर्णांक k के लिए | ||
:<math>w = z^k</math> | :<math>w = z^k</math> | ||
द्वारा दिया जाता है। इस पूर्णांक को P का उपशाखा तालिका कहा जाता है। सामान्यतः उपशाखा तालिका होती है। परन्तु यदि उपशाखा तालिका के बराबर नहीं है, तो P परिभाषा के अनुसार उपशाखा बिंदु है, और Q शाखा बिंदु है। | द्वारा दिया जाता है। अतः इस पूर्णांक को P का उपशाखा तालिका कहा जाता है। सामान्यतः उपशाखा तालिका होती है। परन्तु यदि उपशाखा तालिका के बराबर नहीं है, तो P परिभाषा के अनुसार उपशाखा बिंदु है, और Q शाखा बिंदु है। | ||
यदि Y मात्र रीमैन क्षेत्र है, और Q, Y के परिमित भाग में है, तो विशेष निर्देशांकों का चयन करने की कोई आवश्यकता नहीं है। उपशाखा तालिका की गणना कॉची के अभिन्न सूत्र से स्पष्ट रूप से की जा सकती है। γ को P के चारों ओर X में सरल सुधार योग्य पाश होने दें। P पर ƒ का उपशाखा तालिका | यदि Y मात्र रीमैन क्षेत्र है, और Q, Y के परिमित भाग में है, तो विशेष निर्देशांकों का चयन करने की कोई आवश्यकता नहीं है। उपशाखा तालिका की गणना कॉची के अभिन्न सूत्र से स्पष्ट रूप से की जा सकती है। γ को P के चारों ओर X में सरल सुधार योग्य पाश होने दें। P पर ƒ का उपशाखा तालिका | ||
:<math>e_P = \frac{1}{2\pi i}\int_\gamma \frac{f'(z)}{f(z)-f(P)}\,dz</math> है। | :<math>e_P = \frac{1}{2\pi i}\int_\gamma \frac{f'(z)}{f(z)-f(P)}\,dz</math> है। | ||
यह समाकल बिंदु Q के चारों ओर ƒ(γ) घुमाव की संख्या है। ऊपर के रूप में, P शाखा बिंदु है और Q शाखा बिंदु है यदि e<sub>''P''</sub> > 1। | इस प्रकार से यह समाकल बिंदु Q के चारों ओर ƒ(γ) घुमाव की संख्या है। ऊपर के रूप में, P शाखा बिंदु है और Q शाखा बिंदु है यदि e<sub>''P''</sub> > 1। | ||
== बीजगणितीय ज्यामिति == | == बीजगणितीय ज्यामिति == | ||
{{Main|शाखित आवरण}} | {{Main|शाखित आवरण}} | ||
{{See also|असंबद्ध रूपवाद}} | {{See also|असंबद्ध रूपवाद}} | ||
[[बीजगणितीय ज्यामिति]] के संदर्भ में शाखा बिंदुओं की धारणा को स्वैच्छिक [[बीजगणितीय वक्र|बीजगणितीय वक्रों]] के बीच प्रतिचित्रण के लिए सामान्यीकृत किया जा सकता है। मान लीजिए ƒ:X → Y बीजगणितीय वक्रों का आकार है। Y पर तर्कसंगत फलनों को X पर तर्कसंगत फलनों में वापस खींचकर, '''''K(X) K(Y)''''' का क्षेत्र विस्तार है। ƒ की घात को इस क्षेत्र विस्तार की घात के रूप में परिभाषित किया गया है '''''[K(X):K(Y)]''''', और ƒ को परिमित कहा जाता है यदि घात परिमित है। | अतः [[बीजगणितीय ज्यामिति]] के संदर्भ में शाखा बिंदुओं की धारणा को स्वैच्छिक [[बीजगणितीय वक्र|बीजगणितीय वक्रों]] के बीच प्रतिचित्रण के लिए सामान्यीकृत किया जा सकता है। मान लीजिए ƒ:X → Y बीजगणितीय वक्रों का आकार है। Y पर तर्कसंगत फलनों को X पर तर्कसंगत फलनों में वापस खींचकर, '''''K(X) K(Y)''''' का क्षेत्र विस्तार है। ƒ की घात को इस क्षेत्र विस्तार की घात के रूप में परिभाषित किया गया है '''''[K(X):K(Y)]''''', और ƒ को परिमित कहा जाता है यदि घात परिमित है। | ||
मान लीजिए कि ƒ परिमित है। बिंदु '''''P∈ X''''' के लिए, शाखा अनुक्रमणिका '''''e<sub>P</sub>''''' निम्नानुसार परिभाषित किया गया है। मान लीजिए '''''Q'' = ƒ(''P'')''' और मान लीजिए कि '''''t, P''''' पर एक [[स्थानीय पैरामीटर]] है; अर्थात्, '''''t, Q''''' के निकटतम '''''t(Q) = 0''''' के साथ परिभाषित एक नियमित फलन है जिसका अंतर गैर-शून्य है। t को ƒ द्वारा पीछे खींचना X पर एक नियमित फलन को परिभाषित करता है। फिर | मान लीजिए कि ƒ परिमित है। बिंदु '''''P∈ X''''' के लिए, शाखा अनुक्रमणिका '''''e<sub>P</sub>''''' निम्नानुसार परिभाषित किया गया है। मान लीजिए '''''Q'' = ƒ(''P'')''' और मान लीजिए कि '''''t, P''''' पर एक [[स्थानीय पैरामीटर]] है; अर्थात्, '''''t, Q''''' के निकटतम '''''t(Q) = 0''''' के साथ परिभाषित एक नियमित फलन है जिसका अंतर गैर-शून्य है। इस प्रकार से t को ƒ द्वारा पीछे खींचना X पर एक नियमित फलन को परिभाषित करता है। फिर | ||
:<math>e_P = v_P(t\circ f)</math> | :<math>e_P = v_P(t\circ f)</math> | ||
जहां '''''v<sub>P</sub>''''' P पर नियमित फलनों के स्थानीय वलय में [[मूल्यांकन की अंगूठी|मूल्यांकन वलय]] है। अर्थात, e<sub>''P''</sub> वह क्रम है जिससे '''''<math>t\circ f</math> P''''' पर लुप्त हो जाता है। यदि '''''e<sub>P</sub>> 1''''', तो ƒ को P पर शाखायुक्त कहा जाता है। | जहां '''''v<sub>P</sub>''''' P पर नियमित फलनों के स्थानीय वलय में [[मूल्यांकन की अंगूठी|मूल्यांकन वलय]] है। अर्थात, e<sub>''P''</sub> वह क्रम है जिससे '''''<math>t\circ f</math> P''''' पर लुप्त हो जाता है। यदि '''''e<sub>P</sub>> 1''''', तो ƒ को P पर शाखायुक्त कहा जाता है। अतः इस प्रकार से इस स्थिति में, Q को शाखा बिंदु कहा जाता है। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 22:29, 10 July 2023
मिश्रित विश्लेषण के गणित क्षेत्र में, बहु-मानित फलन की शाखा बिंदु (सामान्यतः मिश्रित विश्लेषण के संदर्भ में बहुफलन के रूप में संदर्भित करता है) यह एक ऐसा बिंदु होता है, यदि फलन n-मानित है (जिसमें n मान हैं) उस बिंदु पर, इसके सभी निकटवर्ती में एक बिंदु होता है जिसका मान n से अधिक होता है।[1] रीमैन सतहों का उपयोग करके बहु-मानित फलनों का दृढ़ता से अध्ययन किया जाता है, और शाखा बिंदुओं की औपचारिक परिभाषा इस अवधारणा को नियोजित करती है।
इस प्रकार से शाखा बिंदु तीन व्यापक श्रेणियों बीजगणितीय शाखा बिंदु, अबीजीय शाखा बिंदु और लघुगणक शाखा बिंदु में आते हैं। बीजगणितीय शाखा बिंदु सामान्यतः उन फलनों से उत्पन्न होते हैं जिनमें मूल के निष्कर्षण में अस्पष्टता होती है, जैसे कि z के एक फलन के रूप में w के लिए समीकरण w2 = z को हल करना है। यहां शाखा बिंदु उत्पत्ति है, क्योंकि मूल युक्त संवृत पाश के निकट किसी भी हल के विश्लेषणात्मक निरंतरता के परिणामस्वरूप अलग फलन होगा: गैर-तुच्छ मोनोड्रोमी है। बीजगणितीय शाखा बिंदु के अतिरिक्त, फलन w को बहु-मानित फलन के रूप में ठीक रूप से परिभाषित किया गया है और उचित अर्थ में, मूल में निरंतर है। यह अबीजीय और लघुगणकीय शाखा बिंदुओं के विपरीत है, अर्थात, ऐसे बिंदु जिन पर बहु-मानित फलन में गैर-तुच्छ मोनोड्रोमी और आवश्यक विलक्षणता होती है। ज्यामितीय फलन सिद्धांत में, शब्द शाखा बिंदु का अयोग्य उपयोग सामान्यतः पूर्व अधिक प्रतिबंधात्मक प्रकार का अर्थ है: बीजगणितीय शाखा बिंदु।[2] मिश्रित विश्लेषण के अन्य क्षेत्रों में, अयोग्य शब्द भी अबीजीय प्रकार के अधिक सामान्य शाखा बिंदुओं का उल्लेख कर सकता है।
बीजगणितीय शाखा बिंदु
मान लीजिए Ω मिश्रित समतल C में सम्बद्ध विवृत समुच्चय है और ƒ:Ω → C होलोमॉर्फिक फलन है। यदि ƒ स्थिर नहीं है, तो ƒ के महत्वपूर्ण बिंदु (गणित) का समुच्चय, अर्थात व्युत्पन्न ƒ के शून्य '(z), Ω में कोई सीमा बिंदु नहीं है। तो ƒ का प्रत्येक महत्वपूर्ण बिंदु z0 ƒ डिस्क B(z0,r) के केंद्र पर स्थित होता है, जिसके संवृत होने में ƒ का कोई अन्य महत्वपूर्ण बिंदु नहीं होता है।
मान लीजिए γ B (z0, r) की सीमा है, इसे धनात्मक अभिविन्यास के साथ लिया गया है। इस प्रकार से बिंदु के संबंध में ƒ(γ) की विसर्पी संख्या ƒ(z0) धनात्मक पूर्णांक है जिसे z0 का उपशाखा (गणित) तालिका कहा जाता है। यदि उपशाखा तालिका 1 से अधिक है, तो z0 ƒ का शाखा बिंदु कहा जाता है, और संबंधित महत्वपूर्ण मान ƒ(z0) को (बीजगणितीय) शाखा बिंदु कहा जाता है। समान रूप से, z0 एक प्रभाव बिंदु है यदि z0 के निकटवर्ती में परिभाषित होलोमोर्फिक फलन φ स्थित है है जैसे कि पूर्णांक k > 1 के लिए ƒ(z) = φ(z)(z − z0)k + f(z0)।
सामान्यतः, किसी को ƒ में रूचि नहीं है, परन्तु इसके विपरीत फलन में रूचि है। यद्यपि, शाखा बिंदु के निकटवर्ती में होलोमोर्फिक फलन का व्युत्क्रम ठीक से स्थित नहीं है, और इसलिए इसे वैश्विक विश्लेषणात्मक फलन के रूप में बहु-मानित अर्थों में परिभाषित करने के लिए विवश किया जाता है। इस प्रकार से शब्दावली का दुरुपयोग करना और ƒ के शाखा बिंदु w0= ƒ(z0) को वैश्विक विश्लेषणात्मक फलन ƒ-1 के शाखा बिंदु के रूप में संदर्भित करना सामान्य बात है। अन्य प्रकार के बहु-मानित वैश्विक विश्लेषणात्मक फलनों के लिए शाखा बिंदुओं की अधिक सामान्य परिभाषाएँ संभव हैं, जैसे कि परिभाषित अंतर्निहित फलन। इस प्रकार के उदाहरणों से निपटने के लिए एकीकृत संरचना निम्न रीमैन सतहों की भाषा में प्रदान किया गया है। विशेष रूप से, इस अधिक सामान्य प्रतिरूप में, 1 से अधिक क्रम के ध्रुव (मिश्रित विश्लेषण) को भी शाखा बिंदु माना जा सकता है।
इस प्रकार से व्युत्क्रम वैश्विक विश्लेषणात्मक फलन ƒ-1 के संदर्भ में, शाखा बिंदु वे बिंदु हैं जिनके चारों ओर गैर-तुच्छ मोनोड्रोमी है। इस प्रकार से उदाहरण के लिए, फलन ƒ(z) = z2 का z0= 0 पर शाखा बिंदु है। व्युत्क्रम फलन वर्गमूल ƒ−1(w) = w1/2 है, जिसका शाखा बिंदु w0= 0 पर है। वस्तुतः, संवृत पाश w = eiθ के चारों ओर घूमते हुए, कोई θ = 0 और ei0/2 = 1 से प्रारंभ होता है। परन्तु पाश के चारों ओर θ = 2π तक जाने के बाद, किसी के निकट e2πi/2 = −1 होता है। इस प्रकार मूल को घेरने वाले इस पाश के चारों ओर मोनोड्रोमी है।
अबीजीय और लघुगणकीय शाखा बिंदु
मान लीजिए कि g वैश्विक विश्लेषणात्मक फलन है जिसे z0 के चारों ओर वलय (गणित) पर परिभाषित किया गया है। तब g का 'अबीजीय शाखा बिंदु' होता है यदि z0, g की आवश्यक विलक्षणता है जैसे कि बिंदु z0 के निकट कुछ सरल संवृत वक्र के चारों ओर एक फलन अवयव की विश्लेषणात्मक निरंतरता अलग फलन अवयव का उत्पादन करती है।[3]
इस प्रकार से अबीजीय शाखा बिंदु का उदाहरण कुछ पूर्णांक k > 1 के लिए बहु-मानित फलन
- का मूल है।
अतः यहां मूल के चारों ओर परिपथ के लिए मोनोड्रोमी समूह परिमित है। k पूर्ण परिपथ के निकट विश्लेषणात्मक निरंतरता फलन को मूल में वापस लाती है।
यदि मोनोड्रोमी समूह अनंत है, अर्थात, z0 के विषय में गैर-शून्य घुमावदार संख्या के साथ वक्र के साथ विश्लेषणात्मक निरंतरता द्वारा मूल फलन अवयव पर वापस लौटना असंभव है, फिर बिंदु z0 लघुगणक शाखा बिंदु कहा जाता है।[4] इसे इसलिए कहा जाता है क्योंकि इस घटना का विशिष्ट उदाहरण मूल में मिश्रित लघुगणक का शाखा बिंदु है। मूल बिंदु को घेरने वाले सरल संवृत वक्र के चारों ओर एक बार वामावर्त जाने पर, मिश्रित लघुगणक 2πi से बढ़ जाता है। विसर्पी संख्या w के साथ पाश को घेरते हुए, लघुगणक 2πi w से बढ़ जाता है और मोनोड्रोमी समूह अनंत चक्रीय समूह है।
इस प्रकार से लघुगणकीय शाखा बिंदु अबीजीय शाखा बिंदु की विशेष स्थिति हैं।
अबीजीय और लघुगणकीय शाखा बिंदु के लिए शाखाकरण की कोई संगत धारणा नहीं है क्योंकि रीमैन सतह को आच्छादित करने वाली संबंधित शाखा को विश्लेषणात्मक रूप से शाखा बिंदु के आच्छादन तक जारी नहीं रखा जा सकता है। इसलिए इस प्रकार के आच्छादन सदैव असम्बद्ध होते हैं।
उदाहरण
- 0 वर्गमूल फलन का शाखा बिंदु है। मान लीजिए w=z1/2, और z 4 से प्रारंभ होता है और 0 पर केंद्रित सम्मिश्र समतल में त्रिज्या 4 के चक्र के साथ चलता है। निरंतर विधि से z पर निर्भर करते हुए निर्भर चर w बदलता है। जब z ने पूर्ण वृत्त बनाया है, 4 से फिर से 4 पर जाकर, w ने 4 के धनात्मक वर्गमूल से, अर्थात 2 से, 4 के ऋणात्मक वर्गमूल तक, अर्धवृत्त बनाया होगा, अर्थात, -2।
- 0 प्राकृतिक लघुगणक का शाखा बिंदु भी है। चूंकि e0, e2πi के समान है, 0 और 2πi दोनों ln(1) के एकाधिक मानों में से हैं। जैसे ही z, 0 पर केन्द्रित त्रिज्या 1 के एक वृत्त के साथ चलता है, w = ln(z) 0 से 2πi तक चला जाता है।
- त्रिकोणमिति में, चूँकि tan(π/4) और tan(5π/4) दोनों 1 के बराबर हैं, दो संख्याएँ π/4 और 5π/4 arctan(1) के एकाधिक मानों में से हैं। काल्पनिक इकाइयाँ i और −i चाप स्पर्शरेखा फलन arctan(z) = (1/2i)log[(i − z)/(i + z)] के शाखा बिंदु हैं। इसे यह देखकर देखा जा सकता है कि व्युत्पन्न (d/dz) arctan(z) = 1/(1 + z2) के उन दो बिंदुओं पर सरल ध्रुव हैं, क्योंकि उन बिंदुओं पर हर शून्य है।
- यदि किसी फलन ƒ के व्युत्पन्न ƒ ' में बिंदु a पर सरल ध्रुव (मिश्रित विश्लेषण) है, तो ƒ में a पर लघुगणकीय शाखा बिंदु है। विलोम सत्य नहीं है, क्योंकि फलन ƒ(z) = zα अपरिमेय α के लिए लघुगणक शाखा बिंदु है, और इसका व्युत्पन्न ध्रुव के बिना एकवचन है।
शाखा काट
साधारणतया, शाखा बिंदु वे बिंदु होते हैं जहां से अधिक मानित फलन की विभिन्न शीट साथ आती हैं। फलन की शाखाएँ फलन की विभिन्न शीट हैं। इस प्रकार से उदाहरण के लिए, फलन w=z1/2 की दो शाखाएँ हैं: जहाँ वर्गमूल धन चिह्न के साथ आता है, और दूसरा ऋण चिह्न के साथ। शाखा काट मिश्रित समतल में वक्र है जैसे कि वक्र के समतल पर बहु-मानित फलन की एकल विश्लेषणात्मक शाखा को परिभाषित करना संभव है। शाखा काट सामान्यतः शाखा बिंदुओं के युग्मों के बीच ली जाती है, परन्तु सदैव नहीं।
इस प्रकार से शाखा काट एकल-मानित फलनों के संग्रह के साथ काम करने की अनुमति देती है, बहु-मानित फलन के अतिरिक्त शाखा काट के साथ साथ चिपक जाती है। इस प्रकार से उदाहरण के लिए, फलन
को एकल-मानित बनाने के लिए, कोई वास्तविक अक्ष पर अंतराल [0, 1] के साथ एक शाखा काटता है, जो फलन के दो शाखा बिंदुओं को जोड़ता है। यही विचार फलन √z पर लागू किया जा सकता है; परन्तु उस स्थिति में किसी को यह समझना होगा कि अनंत पर बिंदु 0 से संयोजन करने के लिए उपयुक्त 'अन्य' शाखा बिंदु है, इस प्रकार से उदाहरण के लिए पूर्ण पूर्णऋणात्मक वास्तविक धुरी के साथ।
अतः शाखा काट उपकरण यादृच्छिक दिखाई दे सकता है (और यह है); परन्तु यह बहुत उपयोगी है, इस प्रकार से उदाहरण के लिए विशेष फलनों के सिद्धांत में। शाखा परिघटना की अपरिवर्तनीय व्याख्या रीमैन सतह सिद्धांत (जिसमें से यह ऐतिहासिक रूप से मूल है) में विकसित की गई है, और अधिक सामान्यतः बीजगणितीय फलनों और अंतर समीकरणों के शाखाकरण और मोनोड्रोमी सिद्धांत में।
मिश्रित लघुगणक
शाखा काट का विशिष्ट उदाहरण मिश्रित लघुगणक है। यदि एक मिश्रित संख्या को ध्रुवीय रूप z=reiθ में दर्शाया गया है, तो z का लघुगणक
- है।
यद्यपि, कोण θ को परिभाषित करने में स्पष्ट अस्पष्टता है: θ में 2π का कोई भी पूर्णांक गुणज जोड़ने पर एक और संभावित कोण प्राप्त होगा। लघुगणक की शाखा सतत फलन L(z) है जो मिश्रित समतल में जुड़े विवृत समुच्चय में सभी z के लिए z का लघुगणक देता है। विशेष रूप से, लघुगणक की शाखा मूल से अनंत तक किसी भी किरण के पूरक में स्थित होती है: शाखा काट। इस प्रकार से शाखा काट का सामान्य विकल्प पूर्णऋणात्मक वास्तविक धुरी है, यद्यपि चुनाव व्यापक रूप से सुविधा का विषय है।
अतः शाखा काट को पार करते समय लघुगणक में 2πi की वृद्धि असंततता होती है। लघुगणक को साथ चिपकाकर निरंतर बनाया जा सकता है, शाखा काट के साथ मिश्रित समतल की कई प्रतियाँ, जिन्हें शीट कहा जाता है, इनको एक साथ जोड़कर लघुगणक को निरंतर बनाया जा सकता है। प्रत्येक शीट पर, लॉग का मान उसके मूल मान से 2πi के गुणक से भिन्न होता है। लघुगणक को निरंतर बनाने के लिए इन सतहों को अद्वितीय विधि से काट शाखा के साथ दूसरे से चिपकाया जाता है। प्रत्येक समय चर मूल के निकट जाता है, लघुगणक अलग शाखा में चला जाता है।
ध्रुवों की निरंतरता
एक कारण यह है कि शाखाओं में काट मिश्रित विश्लेषण की सामान्य विशेषताएं हैं कि शाखा काट को अनंततः अवशेषों के साथ मिश्रित समतल में रेखा के साथ व्यवस्थित कई ध्रुवों के योग के रूप में माना जा सकता है। इस प्रकार से उदाहरण के लिए,
z = a पर साधारण ध्रुव वाला फलन है। ध्रुव के स्थान पर एकीकरण:
-1 से 1 तक कटौती के साथ एक फलन u(z) को परिभाषित करता है। इस प्रकार से शाखा काट को इधर-उधर ले जाया जा सकता है, क्योंकि एकीकरण रेखा को अभिन्न के मान में परिवर्तन किए बिना स्थानांतरित किया जा सकता है, जब तक कि रेखा बिंदु z के पार नहीं जाती है।
रीमैन तल
अतः एक शाखा बिंदु की अवधारणा को होलोमॉर्फिक फलन ƒ:X → Y के लिए परिभाषित किया गया है, जो संहत सम्बद्ध रीमैन सतह X से संहत रीमैन सतह Y (सामान्यतः रीमैन क्षेत्र) तक है। जब तक यह स्थिर नहीं है, फलन ƒ अपने प्रतिरूप पर एक सीमित संख्या में बिंदुओं को छोड़कर एक प्रतिचित्र आवरण होगा। X के बिंदु जहां ƒ आवरण बनने में विफल रहता है, ƒ के शाखा बिंदु हैं, और ƒ के अंतर्गत शाखा बिंदु के प्रतिरूप को शाखा बिंदु कहा जाता है।
इस प्रकार से किसी भी बिंदु P ∈ X और Q = ƒ(P) ∈ Y के लिए, P के निकट X के लिए होलोमोर्फिक स्थानीय निर्देशांक z और Q के निकट Y के लिए w हैं, जिसके संदर्भ में फलन ƒ(z) कुछ पूर्णांक k के लिए
द्वारा दिया जाता है। अतः इस पूर्णांक को P का उपशाखा तालिका कहा जाता है। सामान्यतः उपशाखा तालिका होती है। परन्तु यदि उपशाखा तालिका के बराबर नहीं है, तो P परिभाषा के अनुसार उपशाखा बिंदु है, और Q शाखा बिंदु है।
यदि Y मात्र रीमैन क्षेत्र है, और Q, Y के परिमित भाग में है, तो विशेष निर्देशांकों का चयन करने की कोई आवश्यकता नहीं है। उपशाखा तालिका की गणना कॉची के अभिन्न सूत्र से स्पष्ट रूप से की जा सकती है। γ को P के चारों ओर X में सरल सुधार योग्य पाश होने दें। P पर ƒ का उपशाखा तालिका
- है।
इस प्रकार से यह समाकल बिंदु Q के चारों ओर ƒ(γ) घुमाव की संख्या है। ऊपर के रूप में, P शाखा बिंदु है और Q शाखा बिंदु है यदि eP > 1।
बीजगणितीय ज्यामिति
अतः बीजगणितीय ज्यामिति के संदर्भ में शाखा बिंदुओं की धारणा को स्वैच्छिक बीजगणितीय वक्रों के बीच प्रतिचित्रण के लिए सामान्यीकृत किया जा सकता है। मान लीजिए ƒ:X → Y बीजगणितीय वक्रों का आकार है। Y पर तर्कसंगत फलनों को X पर तर्कसंगत फलनों में वापस खींचकर, K(X) K(Y) का क्षेत्र विस्तार है। ƒ की घात को इस क्षेत्र विस्तार की घात के रूप में परिभाषित किया गया है [K(X):K(Y)], और ƒ को परिमित कहा जाता है यदि घात परिमित है।
मान लीजिए कि ƒ परिमित है। बिंदु P∈ X के लिए, शाखा अनुक्रमणिका eP निम्नानुसार परिभाषित किया गया है। मान लीजिए Q = ƒ(P) और मान लीजिए कि t, P पर एक स्थानीय पैरामीटर है; अर्थात्, t, Q के निकटतम t(Q) = 0 के साथ परिभाषित एक नियमित फलन है जिसका अंतर गैर-शून्य है। इस प्रकार से t को ƒ द्वारा पीछे खींचना X पर एक नियमित फलन को परिभाषित करता है। फिर
जहां vP P पर नियमित फलनों के स्थानीय वलय में मूल्यांकन वलय है। अर्थात, eP वह क्रम है जिससे P पर लुप्त हो जाता है। यदि eP> 1, तो ƒ को P पर शाखायुक्त कहा जाता है। अतः इस प्रकार से इस स्थिति में, Q को शाखा बिंदु कहा जाता है।
टिप्पणियाँ
- ↑ Das, Shantanu (2011), "Fractional Differintegrations Insight Concepts", Functional Fractional Calculus, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 213–269, doi:10.1007/978-3-642-20545-3_5, ISBN 978-3-642-20544-6, retrieved 2022-04-27 (page 6)
- ↑ Ahlfors 1979
- ↑ Solomentsev 2001; Markushevich 1965
- ↑ "Logarithmic branch point - Encyclopedia of Mathematics". www.encyclopediaofmath.org. Retrieved 2019-06-11.
संदर्भ
- Ablowitz, Mark J.; Fokas, Athanassios S. (2003), Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics (2nd ed.), Cambridge University Press, ISBN 978-0-521-53429-1
- Ahlfors, L. V. (1979), Complex Analysis, New York: McGraw-Hill, ISBN 978-0-07-000657-7
- Arfken, G. B.; Weber, H. J. (2000), Mathematical Methods for Physicists (5th ed.), Boston, MA: Academic Press, ISBN 978-0-12-059825-0
- Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052
- Markushevich, A. I. (1965), Theory of functions of a complex variable. Vol. I, Translated and edited by Richard A. Silverman, Englewood Cliffs, N.J.: Prentice-Hall Inc., MR 0171899
- Solomentsev, E.D. (2001) [1994], "Branch point", Encyclopedia of Mathematics, EMS Press