अंकगणित-ज्यामितीय अनुक्रम: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Calculus |शृंखला}} | {{Calculus |शृंखला}} | ||
गणित में, अंकगणित-[[ज्यामितीय अनुक्रम]] एक [[अंकगणितीय प्रगति]] के संगत शब्दों के साथ एक ज्यामितीय प्रगति के शब्द-दर-अवधि गुणन का परिणाम है। स्पष्ट रूप से कहें तो, अंकगणित-ज्यामितीय अनुक्रम का | गणित में, '''अंकगणित-[[ज्यामितीय अनुक्रम]]''' एक [[अंकगणितीय प्रगति]] के संगत शब्दों के साथ एक ज्यामितीय प्रगति के शब्द-दर-अवधि गुणन का परिणाम है। स्पष्ट रूप से कहें तो, अंकगणित-ज्यामितीय अनुक्रम का nवाँ पद अंकगणितीय अनुक्रम के nवें पद का गुणनफल है<ref>{{Cite web|title=Arithmetic-Geometric Progression {{!}} Brilliant Math & Science Wiki|url=https://brilliant.org/wiki/arithmetic-geometric-progression/|access-date=2021-04-21|website=brilliant.org|language=en-us}}</ref> | ||
अंकगणित-ज्यामितीय अनुक्रम विभिन्न अनुप्रयोगों में उत्पन्न होते हैं, जैसे संभाव्यता सिद्धांत में [[अपेक्षित मूल्य|अपेक्षित मूल्यों]] की गणना। उदाहरण के लिए, अनुक्रम | |||
:<math>\dfrac{\color{blue}{0}}{\color{green}{1}}, \ \dfrac{\color{blue}{1}}{\color{green}{2}}, \ \dfrac{\color{blue}{2}}{\color{green}{4}}, \ \dfrac{\color{blue}{3}}{\color{green}{8}}, \ \dfrac{\color{blue}{4}}{\color{green}{16}}, \ \dfrac{\color{blue}{5}}{\color{green}{32}}, \cdots </math> | :<math>\dfrac{\color{blue}{0}}{\color{green}{1}}, \ \dfrac{\color{blue}{1}}{\color{green}{2}}, \ \dfrac{\color{blue}{2}}{\color{green}{4}}, \ \dfrac{\color{blue}{3}}{\color{green}{8}}, \ \dfrac{\color{blue}{4}}{\color{green}{16}}, \ \dfrac{\color{blue}{5}}{\color{green}{32}}, \cdots </math> | ||
एक अंकगणित-ज्यामितीय अनुक्रम है। अंकगणितीय घटक अंश में (नीले रंग में) | एक अंकगणित-ज्यामितीय अनुक्रम है। अंकगणितीय घटक अंश में (नीले रंग में) और ज्यामितीय घटक हर में (हरे रंग में) दिखाई देता है। | ||
इस अनंत अनुक्रम के योग को अंकगणित-ज्यामितीय श्रृंखला के रूप में जाना जाता है | इस अनंत अनुक्रम के योग को '''अंकगणित-ज्यामितीय श्रृंखला''' के रूप में जाना जाता है और इसके सबसे बुनियादी रूप को '''गेब्रियल की सीढ़ी''' कहा गया है:<ref name="Swain2018">{{cite journal|last1=Swain|first1=Stuart G.|title=Proof Without Words: Gabriel's Staircase|journal=Mathematics Magazine|volume=67|issue=3|year=2018|pages=209–209|issn=0025-570X|doi=10.1080/0025570X.1994.11996214}}</ref><ref name="Edgar2018">{{cite journal|last1=Edgar|first1=Tom|title=सीढ़ी श्रृंखला|journal=Mathematics Magazine|volume=91|issue=2|year=2018|pages=92–95|issn=0025-570X|doi=10.1080/0025570X.2017.1415584}}</ref> | ||
:<math>\sum_{k=1}^{\infty} {\color{blue} k} {\color{green} r^k} = \frac{r}{(1 - r)^2}, \quad \mathrm{for\ }0<r<1</math> | :<math>\sum_{k=1}^{\infty} {\color{blue} k} {\color{green} r^k} = \frac{r}{(1 - r)^2}, \quad \mathrm{for\ }0<r<1</math> | ||
अंकगणित और ज्यामितीय अनुक्रम दोनों की विशेषताओं को प्रस्तुत करने वाली विभिन्न वस्तुओं पर भी मूल्यवर्ग लागू किया जा सकता है; उदाहरण के लिए | अंकगणित और ज्यामितीय अनुक्रम दोनों की विशेषताओं को प्रस्तुत करने वाली विभिन्न वस्तुओं पर भी मूल्यवर्ग लागू किया जा सकता है; उदाहरण के लिए अंकगणित-ज्यामितीय अनुक्रम की फ्रांसीसी धारणा रूप के अनुक्रमों को संदर्भित करती है <math>u_{n+1}=a u_n+b</math>, जो अंकगणित और ज्यामितीय अनुक्रम दोनों को सामान्यीकृत करता है। ऐसे अनुक्रम [[रैखिक अंतर समीकरण|रैखिक अंतर समीकरणों]] का एक विशेष स्थितिया हैं। | ||
==अनुक्रम की शर्तें== | ==अनुक्रम की शर्तें== |
Revision as of 12:51, 9 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, अंकगणित-ज्यामितीय अनुक्रम एक अंकगणितीय प्रगति के संगत शब्दों के साथ एक ज्यामितीय प्रगति के शब्द-दर-अवधि गुणन का परिणाम है। स्पष्ट रूप से कहें तो, अंकगणित-ज्यामितीय अनुक्रम का nवाँ पद अंकगणितीय अनुक्रम के nवें पद का गुणनफल है[1]
अंकगणित-ज्यामितीय अनुक्रम विभिन्न अनुप्रयोगों में उत्पन्न होते हैं, जैसे संभाव्यता सिद्धांत में अपेक्षित मूल्यों की गणना। उदाहरण के लिए, अनुक्रम
एक अंकगणित-ज्यामितीय अनुक्रम है। अंकगणितीय घटक अंश में (नीले रंग में) और ज्यामितीय घटक हर में (हरे रंग में) दिखाई देता है।
इस अनंत अनुक्रम के योग को अंकगणित-ज्यामितीय श्रृंखला के रूप में जाना जाता है और इसके सबसे बुनियादी रूप को गेब्रियल की सीढ़ी कहा गया है:[2][3]
अंकगणित और ज्यामितीय अनुक्रम दोनों की विशेषताओं को प्रस्तुत करने वाली विभिन्न वस्तुओं पर भी मूल्यवर्ग लागू किया जा सकता है; उदाहरण के लिए अंकगणित-ज्यामितीय अनुक्रम की फ्रांसीसी धारणा रूप के अनुक्रमों को संदर्भित करती है , जो अंकगणित और ज्यामितीय अनुक्रम दोनों को सामान्यीकृत करता है। ऐसे अनुक्रम रैखिक अंतर समीकरणों का एक विशेष स्थितिया हैं।
अनुक्रम की शर्तें
अंतर के साथ अंकगणितीय प्रगति (नीले रंग में) से बने अंकगणित-ज्यामितीय अनुक्रम के पहले कुछ पद और प्रारंभिक मूल्य और प्रारंभिक मूल्य के साथ एक ज्यामितीय प्रगति (हरे रंग में)। और सामान्य अनुपात द्वारा दिए गए हैं:[4]
उदाहरण
उदाहरण के लिए, अनुक्रम
द्वारा परिभाषित किया गया है , , और .
पदों का योग
प्रथम का योग n अंकगणित-ज्यामितीय अनुक्रम के पदों का रूप होता है
कहाँ और हैं iक्रमशः अंकगणित और ज्यामितीय अनुक्रम के वें पद।
इस योग में बंद-रूप अभिव्यक्ति है
प्रमाण
गुणा करना,[4]: द्वारा r, देता है
घटाने rSn से Sn, और टेलीस्कोपिंग श्रृंखला की तकनीक का उपयोग करके देता है
जहां अंतिम समानता ज्यामितीय श्रृंखला#बंद-फ़ॉर्म सूत्र के लिए अभिव्यक्ति का परिणाम है। अंततः द्वारा विभाजित करना 1 − r परिणाम देता है.
अनंत श्रृंखला
यदि −1 < r < 1 है, तो अंकगणित-ज्यामितीय श्रृंखला (गणित) का योग S, अर्थात, प्रगति के सभी अनंत पदों का योग, द्वारा दिया जाता है[4]
यदि r उपरोक्त सीमा से बाहर है, तो श्रृंखला या तो
- अपसारी श्रृंखला (जब r > 1, या जब r = 1 जहां श्रृंखला अंकगणित है और a और d दोनों शून्य नहीं हैं; यदि बाद के स्थितियोंमें a और d दोनों शून्य हैं, तो श्रृंखला के सभी पद शून्य हैं और श्रृंखला स्थिर है)
- या वैकल्पिक श्रृंखला (जब r ≤ −1)।
उदाहरण: अपेक्षित मानों पर अनुप्रयोग
उदाहरण के लिए, योग
- ,
द्वारा परिभाषित अंकगणित-ज्यामितीय श्रृंखला का योग होना , , और , में जुट जाता है .
यह क्रम टेल प्राप्त करने से पहले सिक्का उछालने की अपेक्षित संख्या से मेल खाता है। संभावना केथ टॉस में पहली बार टेल प्राप्त करने का क्रम इस प्रकार है:
- .
इसलिए, टॉस की अपेक्षित संख्या दी गई है
- .
संदर्भ
- ↑ "Arithmetic-Geometric Progression | Brilliant Math & Science Wiki". brilliant.org (in English). Retrieved 2021-04-21.
- ↑ Swain, Stuart G. (2018). "Proof Without Words: Gabriel's Staircase". Mathematics Magazine. 67 (3): 209–209. doi:10.1080/0025570X.1994.11996214. ISSN 0025-570X.
- ↑ Edgar, Tom (2018). "सीढ़ी श्रृंखला". Mathematics Magazine. 91 (2): 92–95. doi:10.1080/0025570X.2017.1415584. ISSN 0025-570X.
- ↑ 4.0 4.1 4.2 K. F. Riley; M. P. Hobson; S. J. Bence (2010). भौतिकी और इंजीनियरिंग के लिए गणितीय तरीके (3rd ed.). Cambridge University Press. p. 118. ISBN 978-0-521-86153-3.
अग्रिम पठन
- D. Khattar. The Pearson Guide to Mathematics for the IIT-JEE, 2/e (New Edition). Pearson Education India. p. 10.8. ISBN 81-317-2876-5.
- P. Gupta. Comprehensive Mathematics XI. Laxmi Publications. p. 380. ISBN 81-7008-597-7.