प्रत्यावर्तन (टोपोलॉजी): Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
टोपोलॉजी में, गणित की एक शाखा, रिट्रैक्शन एक टोपोलॉजिकल स्पेस से एक सबस्पेस में निरंतर मैपिंग है जो उस सबस्पेस में सभी बिंदुओं की स्थिति को संरक्षित करता है।<ref>Borsuk (1931).</ref> तब उपस्थान को मूल स्थान का प्रत्यावर्तन कहा जाता है। विरूपण प्रत्यावर्तन एक मानचित्रण है जो किसी स्थान को उप-स्थान में निरन्तर | टोपोलॉजी में, गणित की एक शाखा, रिट्रैक्शन एक टोपोलॉजिकल स्पेस से एक सबस्पेस में निरंतर मैपिंग है जो उस सबस्पेस में सभी बिंदुओं की स्थिति को संरक्षित करता है।<ref>Borsuk (1931).</ref> तब उपस्थान को मूल स्थान का प्रत्यावर्तन कहा जाता है। विरूपण प्रत्यावर्तन एक मानचित्रण है जो किसी स्थान को उप-स्थान में निरन्तर संकुचन के विचार को पकड़ता है। | ||
एब्सोल्यूट नेबरहुड रिट्रेक्ट (एएनआर) एक विशेष रूप से [[अच्छी तरह से व्यवहार]] किया जाने वाला टोपोलॉजिकल स्पेस है। उदाहरण के लिए, प्रत्येक [[टोपोलॉजिकल मैनिफ़ोल्ड]] एक एएनआर है। प्रत्येक एएनआर में एक बहुत ही सरल टोपोलॉजिकल स्पेस एक [[सीडब्ल्यू कॉम्प्लेक्स]] का होमोटॉपी प्रकार होता है। | एब्सोल्यूट नेबरहुड रिट्रेक्ट (एएनआर) एक विशेष रूप से [[अच्छी तरह से व्यवहार]] किया जाने वाला टोपोलॉजिकल स्पेस है। उदाहरण के लिए, प्रत्येक [[टोपोलॉजिकल मैनिफ़ोल्ड]] एक एएनआर है। प्रत्येक एएनआर में एक बहुत ही सरल टोपोलॉजिकल स्पेस एक [[सीडब्ल्यू कॉम्प्लेक्स]] का होमोटॉपी प्रकार होता है। | ||
Line 16: | Line 16: | ||
[[समावेशन मानचित्र]], एक प्रत्यावर्तन एक सतत मानचित्र है जैसे कि | [[समावेशन मानचित्र]], एक प्रत्यावर्तन एक सतत मानचित्र है जैसे कि | ||
:<math>r \circ \iota = \operatorname{id}_A,</math> | :<math>r \circ \iota = \operatorname{id}_A,</math> | ||
अर्थात्, समावेशन के साथ r की संरचना A की पहचान है। ध्यान दें, परिभाषा के अनुसार, एक प्रत्यावर्तन X को A पर मैप करता है। यदि ऐसा कोई प्रत्यावर्तन उपस्थित है, तो एक उपस्थान A को X का प्रत्यावर्तन कहा जाता है। उदाहरण के लिए, कोई भी गैर-रिक्त स्थान स्पष्ट विधि से एक बिंदु पर वापस आ जाता है (स्थिर मानचित्र एक वापसी उत्पन्न करता है)। यदि X हॉसडॉर्फ है, तो A को X का एक | अर्थात्, समावेशन के साथ r की संरचना A की पहचान है। ध्यान दें, परिभाषा के अनुसार, एक प्रत्यावर्तन X को A पर मैप करता है। यदि ऐसा कोई प्रत्यावर्तन उपस्थित है, तो एक उपस्थान A को X का प्रत्यावर्तन कहा जाता है। उदाहरण के लिए, कोई भी गैर-रिक्त स्थान स्पष्ट विधि से एक बिंदु पर वापस आ जाता है (स्थिर मानचित्र एक वापसी उत्पन्न करता है)। यदि X हॉसडॉर्फ है, तो A को X का एक संवर्त उपसमुच्चय होना चाहिए। | ||
<math display="inline">r: X \to A</math> एक प्रत्यावर्तन है, तो रचना ι∘r ''X'' से ''X'' तक एक निष्क्रिय निरंतर मानचित्र है। इसके विपरीत, कोई भी दिया गया है निष्क्रिय निरंतर मानचित्र <math display="inline">s: X \to X,</math> हम कोडोमेन को प्रतिबंधित करके s की छवि पर एक वापसी प्राप्त करते हैं। | <math display="inline">r: X \to A</math> एक प्रत्यावर्तन है, तो रचना ι∘r ''X'' से ''X'' तक एक निष्क्रिय निरंतर मानचित्र है। इसके विपरीत, कोई भी दिया गया है निष्क्रिय निरंतर मानचित्र <math display="inline">s: X \to X,</math> हम कोडोमेन को प्रतिबंधित करके s की छवि पर एक वापसी प्राप्त करते हैं। | ||
Line 40: | Line 40: | ||
</math> | </math> | ||
''' | === ''' '''[[सह-फाइब्रेशन]] और निकट विरूपण पीछे हटना === | ||
[[सह-फाइब्रेशन]] और | टोपोलॉजिकल स्पेस का एक मानचित्र f: A → X एक ([[विटोल्ड ह्यूरविक्ज़|ह्यूरविक्ज़]]) कोफाइब्रेशन है यदि इसमें किसी भी स्थान के मानचित्रों के लिए होमोटॉपी एक्सटेंशन गुण है। यह समरूपता सिद्धांत की केंद्रीय अवधारणाओं में से एक है। एक कोफाइब्रेशन एफ सदैव इंजेक्टिव होता है, वास्तव में इसकी छवि के लिए एक होमोमोर्फिज्म होता है।<ref>Hatcher (2002), Proposition 4H.1.</ref> यदि | ||
सभी संवर्त समावेशन के बीच, सह-फाइब्रेशन को निम्नानुसार चित्रित किया जा सकता है। किसी स्थान X में एक संवर्त उपस्थान A का समावेश एक है सह-फाइब्रेशन यदि और केवल यदि ए, एक्स का निकट विरूपण प्रत्यावर्तन है, इसका मतलब है कि <math display="inline">A = u^{-1}\!\left(0\right)</math> और एक समरूपता के साथ एक सतत मानचित्र <math>u: X \rightarrow [0, 1]</math> है <math display="inline">H: X \times [0, 1] \rightarrow X</math> ऐसा कि <math display="inline">H(x,0) = x</math> सभी के लिए <math>x \in X,</math><math>H(a,t) = a</math> सभी <math>a \in A</math> के लिए और <math>t \in [0, 1],</math> और<math display="inline">H\left(x,1\right) \in A</math> यदि <math>u(x) < 1</math> है | |||
उदाहरण के लिए, सीडब्ल्यू कॉम्प्लेक्स में एक उप-कॉम्प्लेक्स को सम्मिलित करना एक सह-फाइब्रेशन है। | |||
उदाहरण के लिए, सीडब्ल्यू कॉम्प्लेक्स में एक उप-कॉम्प्लेक्स को | |||
==गुण== | ==गुण== | ||
* | *''X'' के रिट्रैक्ट ''A'' की एक मूल संपत्ति (रिट्रैक्शन <math display="inline">r: X \to A</math> के साथ) यह है कि प्रत्येक निरंतर मानचित्र <math display="inline">f: A \rightarrow Y</math> में कम से कम एक एक्सटेंशन <math display="inline">g: X \rightarrow Y,</math> अर्थात् <math display="inline">g = f \circ r</math> होता है | ||
* विरूपण प्रत्यावर्तन समरूप समतुल्यता का एक विशेष स्थिति है। वास्तव में, दो स्थान समरूप समतुल्य हैं यदि और केवल यदि वे दोनों एक ही बड़े स्थान के विरूपण के प्रति समरूप हैं। | * विरूपण प्रत्यावर्तन समरूप समतुल्यता का एक विशेष स्थिति है। वास्तव में, दो स्थान समरूप समतुल्य हैं यदि और केवल यदि वे दोनों एक ही बड़े स्थान के विरूपण के प्रति समरूप हैं। | ||
* कोई भी टोपोलॉजिकल स्पेस जो विरूपण एक बिंदु पर वापस आ जाता है, | * कोई भी टोपोलॉजिकल स्पेस जो विरूपण एक बिंदु पर वापस आ जाता है,जो की संकुचन योग्य होता है और इसके विपरीत चूँकि ऐसे संकुचन योग्य स्थान उपस्थित हैं जो एक बिंदु पर दृढ़ता से विरूपण नहीं करते हैं।<ref>Hatcher (2002), Exercise 0.6.</ref> | ||
==अवापसी प्रमेय== | ==अवापसी प्रमेय== | ||
n -आयामी गेंद की सीमा, अथार्त (n −1)-गोला, गेंद का प्रत्यावर्तन नहीं है। (ब्राउवर फिक्स्ड-पॉइंट प्रमेय देखें § होमोलॉजी या कोहोमोलॉजी का उपयोग करके एक प्रमाण।) | |||
==पूर्ण | ==पूर्ण निकट पीछे हटना (और)== | ||
टोपोलॉजिकल स्पेस <math display="inline">Y</math> के एक संवर्त उपसमुच्चय <math display="inline">X</math> को <math display="inline">Y</math> का निकट रिट्रेक्ट कहा जाता है यदि <math display="inline">X</math> <math display="inline">X</math> के कुछ विवर्त उपसमुच्चय का रिट्रेक्ट है जिसमें <math display="inline">X</math> होता है। | |||
मान लीजिए कि <math>\mathcal{C}</math> टोपोलॉजिकल रिक्त स्थान का एक वर्ग है, जो होमोमोर्फिज्म के तहत संवर्त है और संवर्त उपसमुच्चय के लिए मार्ग है। बोर्सुक के बाद (1931 से प्रारंभ), एक स्थान <math display="inline">X</math> को वर्ग <math>\mathcal{C}</math> के लिए एक पूर्ण वापसी कहा जाता है, जिसे <math display="inline">\operatorname{AR} \left(\mathcal{C}\right),</math> लिखा जाता है यदि <math display="inline">X</math> <math>\mathcal{C}</math> में है और जब भी <math display="inline">X</math> एक का एक संवर्त उपसमुच्चय है <math display="inline">Y</math> में स्थान <math>\mathcal{C}</math>, <math display="inline">X</math>, <math display="inline">Y</math> का प्रत्यावर्तन है। एक स्थान <math display="inline">X</math> वर्ग <math>\mathcal{C}</math> के लिए एक पूर्ण समीप का खंड है, जिसे <math display="inline">\operatorname{ANR} \left(\mathcal{C}\right),</math> लिखा जाता है यदि <math display="inline">X</math> <math>\mathcal{C}</math> में है और जब भी <math display="inline">X</math> एक स्थान का एक संवर्त उपसमुच्चय है <math display="inline">Y</math> में <math>\mathcal{C}</math>, <math display="inline">X</math> है <math display="inline">Y</math> का एक निकटतम वापस लेना होता है। | |||
विभिन्न | इस परिभाषा में सामान्य स्थानों जैसे विभिन्न वर्गों <math>\mathcal{C}</math> पर विचार किया गया है, किंतु मेट्रिजेबल स्थानों के वर्ग <math>\mathcal{M}</math> को सबसे संतोषजनक सिद्धांत देने वाला पाया गया है। इस कारण से, इस आलेख में अंकन AR और एएनआर का उपयोग स्वयं ही <math>\operatorname {AR} \left({\mathcal {M}}\right)</math> और <math>\operatorname {ANR} \left({\mathcal {M}}\right)</math> के लिए किया गया है।<ref>Mardešiċ (1999), p. 242.</ref> | ||
एएनआर अच्छे व्यवहार वाले | एक मेट्रिज़ेबल स्पेस एक एआर है यदि और केवल यदि यह अनुबंध योग्य है और एक एएनआर है।<ref>Hu (1965), Proposition II.7.2.</ref> [[जेम्स डुगुंडजी]] द्वारा, प्रत्येक स्थानीय रूप से उत्तल मेट्रिजेबल [[टोपोलॉजिकल वेक्टर स्पेस]] <math display="inline">V</math> एक एआर है; अधिक सामान्यतः, ऐसे सदिश समष्टि का प्रत्येक अरिक्त उत्तल समुच्चय <math display="inline">V</math> एक एआर है.<ref>Hu (1965), Corollary II.14.2 and Theorem II.3.1.</ref> उदाहरण के लिए, कोई भी [[मानकीकृत सदिश स्थान]] ([[पूर्ण मीट्रिक स्थान]] या नहीं) एक एआर है। अधिक ठोस रूप से, यूक्लिडियन स्थान <math display="inline">\reals^{n},</math> [[इकाई घन]] <math display="inline">I^{n},</math>और [[हिल्बर्ट क्यूब]] <math display="inline">I^{\omega}</math> एआर हैं. | ||
*एएनआर का प्रत्येक | |||
*[[ओलोफ़ हैनर]] के अनुसार, एक मेट्रिज़ेबल स्थान जिसमें एएनआर द्वारा | एएनआर अच्छे व्यवहार वाले '''अच्छे व्यवहार वाले''' टोपोलॉजिकल स्पेस का एक उल्लेखनीय वर्ग बनाते हैं। उनकी गुणों में ये हैं: | ||
*प्रत्येक स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स एक एएनआर है।<ref>Mardešiċ (1999), p. 245.</ref> एक | *एएनआर का प्रत्येक विवर्त उपसमुच्चय एक एएनआर है। | ||
*प्रत्येक एएनआर एक्स प्रत्येक खुले | *[[ओलोफ़ हैनर]] के अनुसार, एक मेट्रिज़ेबल स्थान जिसमें एएनआर द्वारा विवर्त आवरण होता है, एक एएनआर होता है।<ref>Hu (1965), Theorem III.8.1.</ref> (अर्थात, एएनआर होना मेट्रिज़ेबल रिक्त स्थान के लिए एक [[स्थानीय संपत्ति]] है।) यह इस प्रकार है कि प्रत्येक टोपोलॉजिकल मैनिफोल्ड एक एएनआर है। उदाहरण के लिए, गोला <math display="inline">S^{n}</math>एक एएनआर है किंतु एआर नहीं (क्योंकि यह अनुबंध योग्य नहीं है)। अनंत आयामों में, हैनर के प्रमेय का तात्पर्य है कि प्रत्येक हिल्बर्ट क्यूब मैनिफोल्ड के साथ-साथ (किंतु भिन्न, उदाहरण के लिए स्थानीय रूप से कॉम्पैक्ट स्थान नहीं) [[ हिल्बर्ट मैनिफ़ोल्ड | हिल्बर्ट मैनिफ़ोल्ड]] और [[बनच मैनिफोल्ड]] एएनआर हैं। | ||
*प्रतिउदाहरण: | *प्रत्येक स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स एक एएनआर है।<ref>Mardešiċ (1999), p. 245.</ref> एक इच्छानुसार सीडब्ल्यू कॉम्प्लेक्स को मेट्रिजेबल होने की आवश्यकता नहीं है, किंतु प्रत्येक सीडब्ल्यू कॉम्प्लेक्स में एएनआर का होमोटॉपी प्रकार होता है (जो परिभाषा के अनुसार मेट्रिजेबल है)।<ref>Fritsch & Piccinini (1990), Theorem 5.2.1.</ref> | ||
*प्रत्येक | *प्रत्येक एएनआर एक्स प्रत्येक खुले अर्थ में स्थानीय रूप से अनुबंध योग्य है <math display="inline">X</math> में एक बिंदु <math display="inline">x</math>का निकट <math display="inline">U</math>,<math display="inline">V</math> में समाहित <math display="inline">x</math> में से एक विवर्त निकट <math display="inline">U</math> है, जैसे कि समावेशन <math display="inline">V \hookrightarrow U</math> एक स्थिर मानचित्र के लिए समस्थानिक है। एक परिमित-आयामी मेट्रिज़ेबल स्थान एक एएनआर है यदि और केवल यदि यह इस अर्थ में स्थानीय रूप से अनुबंध योग्य है।<ref>Hu (1965), Theorem V.7.1.</ref> उदाहरण के लिए, कैंटर सेट वास्तविक लाइन का एक कॉम्पैक्ट उपसमुच्चय है जो एएनआर नहीं है, क्योंकि यह स्थानीय रूप से भी जुड़ा नहीं है। | ||
*कई मैपिंग स्पेस | *प्रतिउदाहरण: बोर्सुक को <math display="inline">\reals^{3}</math> का एक कॉम्पैक्ट उपसमुच्चय मिला जो एक एएनआर है किंतु सख्ती से स्थानीय रूप से अनुबंध योग्य नहीं है।<ref>Borsuk (1967), section IV.4.</ref> (एक स्थान सख्ती से स्थानीय रूप से अनुबंध योग्य है यदि प्रत्येक बिंदु <math display="inline">U</math> के प्रत्येक विवर्त निकट <math display="inline">x</math> में <math display="inline">x</math> का अनुबंध योग्य विवर्त पड़ोस शामिल है) बोरसुक को हिल्बर्ट क्यूब का एक कॉम्पैक्ट उपसमुच्चय भी मिला जो स्थानीय रूप से अनुबंध योग्य है (जैसा कि ऊपर परिभाषित किया गया है) किंतु एएनआर नहीं है<ref>Borsuk (1967), Theorem V.11.1.</ref> | ||
*कॉटी द्वारा, एक | *प्रत्येक एएनआर में व्हाइटहेड और मिल्नोर द्वारा सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।<ref>Fritsch & Piccinini (1990), Theorem 5.2.1.</ref> इसके अतिरिक्त स्थानीय रूप से कॉम्पैक्ट एएनआर में स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है; और, वेस्ट द्वारा, एक कॉम्पैक्ट एएनआर में एक परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।<ref>West (2004), p. 119.</ref> इस अर्थ में, एएनआर इच्छानुसार टोपोलॉजिकल रिक्त स्थान के सभी समरूप-सैद्धांतिक विकृति से बचते हैं। उदाहरण के लिए, [[व्हाइटहेड प्रमेय]] एएनआर के लिए है: एएनआर का एक नक्शा जो होमोटॉपी समूहों (आधार बिंदु के सभी विकल्पों के लिए) पर एक समरूपता उत्पन्न करता है, एक होमोटॉपी तुल्यता है। चूँकि एएनआर में टोपोलॉजिकल मैनिफोल्ड्स, हिल्बर्ट क्यूब मैनिफोल्ड्स, बानाच मैनिफोल्ड्स इत्यादि सम्मिलित हैं, इसलिए ये परिणाम रिक्त स्थान के एक बड़े वर्ग पर प्रयुक्त होते हैं। | ||
*कॉटी द्वारा, एक | *कई मैपिंग स्पेस एएनआर हैं। विशेष रूप से, Y को एक बंद उपस्थान A के साथ एक एएनआर होने दें जो कि एक एएनआर है, और X को कोई कॉम्पैक्ट होने दें एक बंद उप-स्थान बी के साथ मेट्रिज़ेबल स्थान फिर जोड़े के मानचित्रों का स्थान <math display="inline">\left(Y, A\right)^{\left(X, B\right)}</math> ,<math display="inline">\left(X, B\right) \rightarrow \left(Y, A\right)</math> (मैपिंग स्पेस पर कॉम्पैक्ट-ओपन टोपोलॉजी के साथ) एक एएनआर है।<ref>Hu (1965), Theorem VII.3.1 and Remark VII.2.3.</ref> उदाहरण के लिए, यह इस प्रकार है कि किसी भी सीडब्ल्यू कॉम्प्लेक्स के लूप स्पेस में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है। | ||
*कॉटी द्वारा, एक मेट्रिज़ेबल स्पेस <math display="inline">X</math> एक एएनआर है यदि और केवल तभी जब <math display="inline">X</math> के प्रत्येक विवर्त उपसमुच्चय में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार हो।<ref>Cauty (1994), Fund. Math. 144: 11–22.</ref> | |||
*कॉटी द्वारा, एक मीट्रिक रैखिक स्थान <math display="inline">V</math> है (जिसका अर्थ अनुवाद-अपरिवर्तनीय मीट्रिक के साथ एक टोपोलॉजिकल वेक्टर स्थान है) जो एआर नहीं है। कोई व्यक्ति <math display="inline">V</math> को अलग करने योग्य और एक एफ-स्पेस (अर्थात, एक पूर्ण मीट्रिक रैखिक स्थान) मान सकता है।<ref>Cauty (1994), Fund. Math. 146: 85–99.</ref> (उपरोक्त डुगुंडजी प्रमेय के अनुसार, <math display="inline">V</math> स्थानीय रूप से उत्तल नहीं हो सकता।) चूंकि <math display="inline">V</math> संकुचन योग्य है और एआर नहीं है, इसलिए यह एएनआर भी नहीं है। उपरोक्त कॉटी के प्रमेय के अनुसार, <math display="inline">V</math> में एक विवर्त उपसमुच्चय <math display="inline">U</math> है जो सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। इस प्रकार एक मेट्रिज़ेबल स्पेस <math display="inline">U</math> है जो सख्ती से स्थानीय रूप से अनुबंध योग्य है किंतु सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। यह ज्ञात नहीं है कि एक कॉम्पैक्ट (या स्थानीय रूप से कॉम्पैक्ट) मेट्रिज़ेबल स्पेस जो सख्ती से स्थानीय रूप से अनुबंध योग्य है, एक एएनआर होना चाहिए। | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 11:57, 12 July 2023
टोपोलॉजी में, गणित की एक शाखा, रिट्रैक्शन एक टोपोलॉजिकल स्पेस से एक सबस्पेस में निरंतर मैपिंग है जो उस सबस्पेस में सभी बिंदुओं की स्थिति को संरक्षित करता है।[1] तब उपस्थान को मूल स्थान का प्रत्यावर्तन कहा जाता है। विरूपण प्रत्यावर्तन एक मानचित्रण है जो किसी स्थान को उप-स्थान में निरन्तर संकुचन के विचार को पकड़ता है।
एब्सोल्यूट नेबरहुड रिट्रेक्ट (एएनआर) एक विशेष रूप से अच्छी तरह से व्यवहार किया जाने वाला टोपोलॉजिकल स्पेस है। उदाहरण के लिए, प्रत्येक टोपोलॉजिकल मैनिफ़ोल्ड एक एएनआर है। प्रत्येक एएनआर में एक बहुत ही सरल टोपोलॉजिकल स्पेस एक सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।
परिभाषाएँ
वापस लेना
मान लीजिए कि X एक टोपोलॉजिकल स्पेस है और A, X का एक सबस्पेस है। फिर एक सतत मानचित्र
यदि r से A तक का प्रतिबंध ए पर पहचान मानचित्र है तो यह एक वापसी है; अर्थात, A में सभी A के लिए समान रूप से, द्वारा निरूपित करना है
समावेशन मानचित्र, एक प्रत्यावर्तन एक सतत मानचित्र है जैसे कि
अर्थात्, समावेशन के साथ r की संरचना A की पहचान है। ध्यान दें, परिभाषा के अनुसार, एक प्रत्यावर्तन X को A पर मैप करता है। यदि ऐसा कोई प्रत्यावर्तन उपस्थित है, तो एक उपस्थान A को X का प्रत्यावर्तन कहा जाता है। उदाहरण के लिए, कोई भी गैर-रिक्त स्थान स्पष्ट विधि से एक बिंदु पर वापस आ जाता है (स्थिर मानचित्र एक वापसी उत्पन्न करता है)। यदि X हॉसडॉर्फ है, तो A को X का एक संवर्त उपसमुच्चय होना चाहिए।
एक प्रत्यावर्तन है, तो रचना ι∘r X से X तक एक निष्क्रिय निरंतर मानचित्र है। इसके विपरीत, कोई भी दिया गया है निष्क्रिय निरंतर मानचित्र हम कोडोमेन को प्रतिबंधित करके s की छवि पर एक वापसी प्राप्त करते हैं।
विकृति पीछे हटती है और प्रबल विकृति पीछे हटती है
एक सतत मानचित्र
एक स्थान X का एक उपस्थान A पर विरूपण प्रत्यावर्तन है, यदि,
दूसरे शब्दों में, एक विरूपण प्रत्यावर्तन एक प्रत्यावर्तन और x पर पहचान मानचित्र के बीच एक समरूपता है। उपस्थान a को x का 'विरूपण प्रत्यावर्तन' कहा जाता है। एक विरूपण प्रत्यावर्तन एक समरूप समतुल्य का एक विशेष स्थिति है।
प्रत्यावर्तन को विरूपण प्रत्यावर्तन की आवश्यकता नहीं है। उदाहरण के लिए,यह किसी स्थान X के विरूपण प्रत्यावर्तन के रूप में एक एकल बिंदु होने का अर्थ यह होगा कि
नोट: विरूपण प्रत्यावर्तन की एक समतुल्य परिभाषा निम्नलिखित है। एक सतत मानचित्र एक विरूपण प्रत्यावर्तन है यदि यह एक प्रत्यावर्तन है और समावेशन के साथ इसकी संरचना x पर पहचान मानचित्र के लिए समरूप है। इस सूत्रीकरण में, एक विरूपण प्रत्यावर्तन अपने साथ x पर पहचान मानचित्र और स्वयं के बीच एक समरूपता रखता है। .
यदि, विरूपण प्रत्यावर्तन की परिभाषा में, हम वह आवश्यकता जोड़ते हैं
[0, 1] में सभी t और a में a के लिए, तो एफ को 'प्रबल विरूपण प्रत्यावर्तन' कहा जाता है। दूसरे शब्दों में, एक प्रबल विरूपण प्रत्यावर्तन पूरे समरूपता में a में अंक निर्धारित करता है। (कुछ लेखक, जैसे एलन हैचर, इसे विरूपण प्रत्यावर्तन की परिभाषा के रूप में लेते हैं।)
उदाहरण के रूप से, n-स्फीयर का एक प्रबल विरूपण प्रत्यावर्तन है प्रबल विरूपण प्रत्यावर्तन के रूप में कोई भी मानचित्र चुन सकता है
सह-फाइब्रेशन और निकट विरूपण पीछे हटना
टोपोलॉजिकल स्पेस का एक मानचित्र f: A → X एक (ह्यूरविक्ज़) कोफाइब्रेशन है यदि इसमें किसी भी स्थान के मानचित्रों के लिए होमोटॉपी एक्सटेंशन गुण है। यह समरूपता सिद्धांत की केंद्रीय अवधारणाओं में से एक है। एक कोफाइब्रेशन एफ सदैव इंजेक्टिव होता है, वास्तव में इसकी छवि के लिए एक होमोमोर्फिज्म होता है।[2] यदि
सभी संवर्त समावेशन के बीच, सह-फाइब्रेशन को निम्नानुसार चित्रित किया जा सकता है। किसी स्थान X में एक संवर्त उपस्थान A का समावेश एक है सह-फाइब्रेशन यदि और केवल यदि ए, एक्स का निकट विरूपण प्रत्यावर्तन है, इसका मतलब है कि और एक समरूपता के साथ एक सतत मानचित्र है ऐसा कि सभी के लिए सभी के लिए और और यदि है
उदाहरण के लिए, सीडब्ल्यू कॉम्प्लेक्स में एक उप-कॉम्प्लेक्स को सम्मिलित करना एक सह-फाइब्रेशन है।
गुण
- X के रिट्रैक्ट A की एक मूल संपत्ति (रिट्रैक्शन के साथ) यह है कि प्रत्येक निरंतर मानचित्र में कम से कम एक एक्सटेंशन अर्थात् होता है
- विरूपण प्रत्यावर्तन समरूप समतुल्यता का एक विशेष स्थिति है। वास्तव में, दो स्थान समरूप समतुल्य हैं यदि और केवल यदि वे दोनों एक ही बड़े स्थान के विरूपण के प्रति समरूप हैं।
- कोई भी टोपोलॉजिकल स्पेस जो विरूपण एक बिंदु पर वापस आ जाता है,जो की संकुचन योग्य होता है और इसके विपरीत चूँकि ऐसे संकुचन योग्य स्थान उपस्थित हैं जो एक बिंदु पर दृढ़ता से विरूपण नहीं करते हैं।[3]
अवापसी प्रमेय
n -आयामी गेंद की सीमा, अथार्त (n −1)-गोला, गेंद का प्रत्यावर्तन नहीं है। (ब्राउवर फिक्स्ड-पॉइंट प्रमेय देखें § होमोलॉजी या कोहोमोलॉजी का उपयोग करके एक प्रमाण।)
पूर्ण निकट पीछे हटना (और)
टोपोलॉजिकल स्पेस के एक संवर्त उपसमुच्चय को का निकट रिट्रेक्ट कहा जाता है यदि के कुछ विवर्त उपसमुच्चय का रिट्रेक्ट है जिसमें होता है।
मान लीजिए कि टोपोलॉजिकल रिक्त स्थान का एक वर्ग है, जो होमोमोर्फिज्म के तहत संवर्त है और संवर्त उपसमुच्चय के लिए मार्ग है। बोर्सुक के बाद (1931 से प्रारंभ), एक स्थान को वर्ग के लिए एक पूर्ण वापसी कहा जाता है, जिसे लिखा जाता है यदि में है और जब भी एक का एक संवर्त उपसमुच्चय है में स्थान , , का प्रत्यावर्तन है। एक स्थान वर्ग के लिए एक पूर्ण समीप का खंड है, जिसे लिखा जाता है यदि में है और जब भी एक स्थान का एक संवर्त उपसमुच्चय है में , है का एक निकटतम वापस लेना होता है।
इस परिभाषा में सामान्य स्थानों जैसे विभिन्न वर्गों पर विचार किया गया है, किंतु मेट्रिजेबल स्थानों के वर्ग को सबसे संतोषजनक सिद्धांत देने वाला पाया गया है। इस कारण से, इस आलेख में अंकन AR और एएनआर का उपयोग स्वयं ही और के लिए किया गया है।[4]
एक मेट्रिज़ेबल स्पेस एक एआर है यदि और केवल यदि यह अनुबंध योग्य है और एक एएनआर है।[5] जेम्स डुगुंडजी द्वारा, प्रत्येक स्थानीय रूप से उत्तल मेट्रिजेबल टोपोलॉजिकल वेक्टर स्पेस एक एआर है; अधिक सामान्यतः, ऐसे सदिश समष्टि का प्रत्येक अरिक्त उत्तल समुच्चय एक एआर है.[6] उदाहरण के लिए, कोई भी मानकीकृत सदिश स्थान (पूर्ण मीट्रिक स्थान या नहीं) एक एआर है। अधिक ठोस रूप से, यूक्लिडियन स्थान इकाई घन और हिल्बर्ट क्यूब एआर हैं.
एएनआर अच्छे व्यवहार वाले अच्छे व्यवहार वाले टोपोलॉजिकल स्पेस का एक उल्लेखनीय वर्ग बनाते हैं। उनकी गुणों में ये हैं:
- एएनआर का प्रत्येक विवर्त उपसमुच्चय एक एएनआर है।
- ओलोफ़ हैनर के अनुसार, एक मेट्रिज़ेबल स्थान जिसमें एएनआर द्वारा विवर्त आवरण होता है, एक एएनआर होता है।[7] (अर्थात, एएनआर होना मेट्रिज़ेबल रिक्त स्थान के लिए एक स्थानीय संपत्ति है।) यह इस प्रकार है कि प्रत्येक टोपोलॉजिकल मैनिफोल्ड एक एएनआर है। उदाहरण के लिए, गोला एक एएनआर है किंतु एआर नहीं (क्योंकि यह अनुबंध योग्य नहीं है)। अनंत आयामों में, हैनर के प्रमेय का तात्पर्य है कि प्रत्येक हिल्बर्ट क्यूब मैनिफोल्ड के साथ-साथ (किंतु भिन्न, उदाहरण के लिए स्थानीय रूप से कॉम्पैक्ट स्थान नहीं) हिल्बर्ट मैनिफ़ोल्ड और बनच मैनिफोल्ड एएनआर हैं।
- प्रत्येक स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स एक एएनआर है।[8] एक इच्छानुसार सीडब्ल्यू कॉम्प्लेक्स को मेट्रिजेबल होने की आवश्यकता नहीं है, किंतु प्रत्येक सीडब्ल्यू कॉम्प्लेक्स में एएनआर का होमोटॉपी प्रकार होता है (जो परिभाषा के अनुसार मेट्रिजेबल है)।[9]
- प्रत्येक एएनआर एक्स प्रत्येक खुले अर्थ में स्थानीय रूप से अनुबंध योग्य है में एक बिंदु का निकट , में समाहित में से एक विवर्त निकट है, जैसे कि समावेशन एक स्थिर मानचित्र के लिए समस्थानिक है। एक परिमित-आयामी मेट्रिज़ेबल स्थान एक एएनआर है यदि और केवल यदि यह इस अर्थ में स्थानीय रूप से अनुबंध योग्य है।[10] उदाहरण के लिए, कैंटर सेट वास्तविक लाइन का एक कॉम्पैक्ट उपसमुच्चय है जो एएनआर नहीं है, क्योंकि यह स्थानीय रूप से भी जुड़ा नहीं है।
- प्रतिउदाहरण: बोर्सुक को का एक कॉम्पैक्ट उपसमुच्चय मिला जो एक एएनआर है किंतु सख्ती से स्थानीय रूप से अनुबंध योग्य नहीं है।[11] (एक स्थान सख्ती से स्थानीय रूप से अनुबंध योग्य है यदि प्रत्येक बिंदु के प्रत्येक विवर्त निकट में का अनुबंध योग्य विवर्त पड़ोस शामिल है) बोरसुक को हिल्बर्ट क्यूब का एक कॉम्पैक्ट उपसमुच्चय भी मिला जो स्थानीय रूप से अनुबंध योग्य है (जैसा कि ऊपर परिभाषित किया गया है) किंतु एएनआर नहीं है[12]
- प्रत्येक एएनआर में व्हाइटहेड और मिल्नोर द्वारा सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।[13] इसके अतिरिक्त स्थानीय रूप से कॉम्पैक्ट एएनआर में स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है; और, वेस्ट द्वारा, एक कॉम्पैक्ट एएनआर में एक परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।[14] इस अर्थ में, एएनआर इच्छानुसार टोपोलॉजिकल रिक्त स्थान के सभी समरूप-सैद्धांतिक विकृति से बचते हैं। उदाहरण के लिए, व्हाइटहेड प्रमेय एएनआर के लिए है: एएनआर का एक नक्शा जो होमोटॉपी समूहों (आधार बिंदु के सभी विकल्पों के लिए) पर एक समरूपता उत्पन्न करता है, एक होमोटॉपी तुल्यता है। चूँकि एएनआर में टोपोलॉजिकल मैनिफोल्ड्स, हिल्बर्ट क्यूब मैनिफोल्ड्स, बानाच मैनिफोल्ड्स इत्यादि सम्मिलित हैं, इसलिए ये परिणाम रिक्त स्थान के एक बड़े वर्ग पर प्रयुक्त होते हैं।
- कई मैपिंग स्पेस एएनआर हैं। विशेष रूप से, Y को एक बंद उपस्थान A के साथ एक एएनआर होने दें जो कि एक एएनआर है, और X को कोई कॉम्पैक्ट होने दें एक बंद उप-स्थान बी के साथ मेट्रिज़ेबल स्थान फिर जोड़े के मानचित्रों का स्थान , (मैपिंग स्पेस पर कॉम्पैक्ट-ओपन टोपोलॉजी के साथ) एक एएनआर है।[15] उदाहरण के लिए, यह इस प्रकार है कि किसी भी सीडब्ल्यू कॉम्प्लेक्स के लूप स्पेस में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।
- कॉटी द्वारा, एक मेट्रिज़ेबल स्पेस एक एएनआर है यदि और केवल तभी जब के प्रत्येक विवर्त उपसमुच्चय में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार हो।[16]
- कॉटी द्वारा, एक मीट्रिक रैखिक स्थान है (जिसका अर्थ अनुवाद-अपरिवर्तनीय मीट्रिक के साथ एक टोपोलॉजिकल वेक्टर स्थान है) जो एआर नहीं है। कोई व्यक्ति को अलग करने योग्य और एक एफ-स्पेस (अर्थात, एक पूर्ण मीट्रिक रैखिक स्थान) मान सकता है।[17] (उपरोक्त डुगुंडजी प्रमेय के अनुसार, स्थानीय रूप से उत्तल नहीं हो सकता।) चूंकि संकुचन योग्य है और एआर नहीं है, इसलिए यह एएनआर भी नहीं है। उपरोक्त कॉटी के प्रमेय के अनुसार, में एक विवर्त उपसमुच्चय है जो सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। इस प्रकार एक मेट्रिज़ेबल स्पेस है जो सख्ती से स्थानीय रूप से अनुबंध योग्य है किंतु सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। यह ज्ञात नहीं है कि एक कॉम्पैक्ट (या स्थानीय रूप से कॉम्पैक्ट) मेट्रिज़ेबल स्पेस जो सख्ती से स्थानीय रूप से अनुबंध योग्य है, एक एएनआर होना चाहिए।
टिप्पणियाँ
- ↑ Borsuk (1931).
- ↑ Hatcher (2002), Proposition 4H.1.
- ↑ Hatcher (2002), Exercise 0.6.
- ↑ Mardešiċ (1999), p. 242.
- ↑ Hu (1965), Proposition II.7.2.
- ↑ Hu (1965), Corollary II.14.2 and Theorem II.3.1.
- ↑ Hu (1965), Theorem III.8.1.
- ↑ Mardešiċ (1999), p. 245.
- ↑ Fritsch & Piccinini (1990), Theorem 5.2.1.
- ↑ Hu (1965), Theorem V.7.1.
- ↑ Borsuk (1967), section IV.4.
- ↑ Borsuk (1967), Theorem V.11.1.
- ↑ Fritsch & Piccinini (1990), Theorem 5.2.1.
- ↑ West (2004), p. 119.
- ↑ Hu (1965), Theorem VII.3.1 and Remark VII.2.3.
- ↑ Cauty (1994), Fund. Math. 144: 11–22.
- ↑ Cauty (1994), Fund. Math. 146: 85–99.
संदर्भ
- Borsuk, Karol (1931), "Sur les rétractes", Fundamenta Mathematicae, 17: 152–170, doi:10.4064/fm-17-1-152-170, Zbl 0003.02701
- Borsuk, Karol (1967), Theory of Retracts, Warsaw: Państwowe Wydawnictwo Naukowe, MR 0216473
- Cauty, Robert (1994), "Une caractérisation des rétractes absolus de voisinage", Fundamenta Mathematicae, 144: 11–22, doi:10.4064/fm-144-1-11-22, MR 1271475
- Cauty, Robert (1994), "Un espace métrique linéaire qui n'est pas un rétracte absolu", Fundamenta Mathematicae, 146: 85–99, doi:10.4064/fm-146-1-85-99, MR 1305261
- Fritsch, Rudolf; Piccinini, Renzo (1990), Cellular Structures in Topology, Cambridge University Press, ISBN 0-521-32784-9, MR 1074175
- Hatcher, Allen (2002), Algebraic Topology, Cambridge University Press, ISBN 0-521-79540-0, MR 1867354
- Hu, Sze-Tsen (1965), Theory of Retracts, Wayne State University Press, MR 0181977
- Mardešić, Sibe (1999), "Absolute neighborhood retracts and shape theory", in James, I. M. (ed.), History of Topology, Amsterdam: North-Holland, pp. 241–269, ISBN 0-444-82375-1, MR 1674915
- May, J. Peter (1999), A Concise Course in Algebraic Topology (PDF), University of Chicago Press, ISBN 0-226-51182-0, MR 1702278
- Milnor, John (1959), "On spaces having the homotopy type of a CW-complex", Transactions of the American Mathematical Society, 90 (2): 272–280, doi:10.2307/1993204, JSTOR 1993204, MR 0100267
- Puppe, Dieter (1967), "Bemerkungen über die Erweiterung von Homotopien", Archiv der Mathematik, 18: 81–88, doi:10.1007/BF01899475, MR 0206954, S2CID 120021003
- West, James (2004), "Absolute retracts", in Hart, K. P. (ed.), Encyclopedia of General Topology, Amsterdam: Elsevier, ISBN 0-444-50355-2, MR 2049453
बाहरी संबंध
- This article incorporates material from Neighborhood retract on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.