प्रत्यावर्तन (टोपोलॉजी): Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
टोपोलॉजी में, गणित की एक शाखा, '''प्रत्यावर्तन''' एक टोपोलॉजिकल समिष्ट से एक अर्धसमिष्ट में निरंतर मैपिंग है जो उस अर्धसमिष्ट में सभी बिंदुओं की स्थिति को संरक्षित करता है।<ref>Borsuk (1931).</ref> तब उपस्थान को मूल स्थान का '''प्रत्यावर्तन''' कहा जाता है। विरूपण प्रत्यावर्तन एक मानचित्रण है जो किसी स्थान को उप-स्थान में निरन्तर संकुचन के विचार को पकड़ता है। | टोपोलॉजी में, गणित की एक शाखा, '''प्रत्यावर्तन''' एक टोपोलॉजिकल समिष्ट से एक अर्धसमिष्ट में निरंतर मैपिंग है जो उस अर्धसमिष्ट में सभी बिंदुओं की स्थिति को संरक्षित करता है।<ref>Borsuk (1931).</ref> तब उपस्थान को मूल स्थान का '''प्रत्यावर्तन''' कहा जाता है। विरूपण प्रत्यावर्तन एक मानचित्रण है जो किसी स्थान को उप-स्थान में निरन्तर संकुचन के विचार को पकड़ता है। | ||
इस प्रकार एब्सोल्यूट नेबरहुड रिट्रेक्ट ( | इस प्रकार एब्सोल्यूट नेबरहुड रिट्रेक्ट (ANR) एक विशेष रूप से [[अच्छी तरह से व्यवहार]] किया जाने वाला टोपोलॉजिकल समिष्ट है। उदाहरण के लिए, प्रत्येक [[टोपोलॉजिकल मैनिफ़ोल्ड]] एक ANR है। प्रत्येक ANR में एक अधिक ही सरल टोपोलॉजिकल समिष्ट एक [[सीडब्ल्यू कॉम्प्लेक्स]] का होमोटॉपी प्रकार होता है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
Line 34: | Line 34: | ||
यदि, विरूपण प्रत्यावर्तन की परिभाषा में, हम वह आवश्यकता जोड़ते हैं | यदि, विरूपण प्रत्यावर्तन की परिभाषा में, हम वह आवश्यकता जोड़ते हैं | ||
:<math>F(a,t) = a</math> | :<math>F(a,t) = a</math> | ||
माना [0, 1] में सभी t और a में a के लिए, तो | माना [0, 1] में सभी t और a में a के लिए, तो f को 'प्रबल विरूपण प्रत्यावर्तन' कहा जाता है। दूसरे शब्दों में, एक प्रबल विरूपण प्रत्यावर्तन पूरे समरूपता में a में अंक निर्धारित करता है। (कुछ लेखक, जैसे [[एलन हैचर]], इसे विरूपण प्रत्यावर्तन की परिभाषा के रूप में लेते हैं।) | ||
उदाहरण के रूप से, n-स्फीयर <math display="inline">S^{n}</math>का एक प्रबल विरूपण प्रत्यावर्तन है <math display="inline">\reals^{n+1} \backslash \{0\};</math> प्रबल विरूपण प्रत्यावर्तन के रूप में कोई भी मानचित्र चुन सकता है | उदाहरण के रूप से, n-स्फीयर <math display="inline">S^{n}</math>का एक प्रबल विरूपण प्रत्यावर्तन है <math display="inline">\reals^{n+1} \backslash \{0\};</math> प्रबल विरूपण प्रत्यावर्तन के रूप में कोई भी मानचित्र चुन सकता है | ||
Line 42: | Line 42: | ||
=== ''' '''[[सह-फाइब्रेशन]] और निकट विरूपण रिट्रेक्ट === | === ''' '''[[सह-फाइब्रेशन]] और निकट विरूपण रिट्रेक्ट === | ||
इस प्रकार टोपोलॉजिकल समिष्ट का एक मानचित्र f: A → X एक ([[विटोल्ड ह्यूरविक्ज़|ह्यूरविक्ज़]]) कोफाइब्रेशन है यदि इसमें किसी भी स्थान के मानचित्रों के लिए होमोटॉपी एक्सटेंशन गुण है। यह समरूपता सिद्धांत की केंद्रीय अवधारणाओं में से एक है। एक कोफाइब्रेशन | इस प्रकार टोपोलॉजिकल समिष्ट का एक मानचित्र f: A → X एक ([[विटोल्ड ह्यूरविक्ज़|ह्यूरविक्ज़]]) कोफाइब्रेशन है यदि इसमें किसी भी स्थान के मानचित्रों के लिए होमोटॉपी एक्सटेंशन गुण है। यह समरूपता सिद्धांत की केंद्रीय अवधारणाओं में से एक है। एक कोफाइब्रेशन f सदैव इंजेक्टिव होता है, वास्तव में इसकी छवि के लिए एक होमोमोर्फिज्म होता है।<ref>Hatcher (2002), Proposition 4H.1.</ref> यदि | ||
माना सभी संवर्त समावेशन के मध्य, सह-फाइब्रेशन को निम्नानुसार चित्रित किया जा सकता है। किसी स्थान X में एक संवर्त उपस्थान A का समावेश एक है सह-फाइब्रेशन यदि और केवल यदि | माना सभी संवर्त समावेशन के मध्य, सह-फाइब्रेशन को निम्नानुसार चित्रित किया जा सकता है। किसी स्थान X में एक संवर्त उपस्थान A का समावेश एक है सह-फाइब्रेशन यदि और केवल यदि a, x का निकट विरूपण प्रत्यावर्तन है, इसका मतलब है कि <math display="inline">A = u^{-1}\!\left(0\right)</math> और एक समरूपता के साथ एक सतत मानचित्र <math>u: X \rightarrow [0, 1]</math> है <math display="inline">H: X \times [0, 1] \rightarrow X</math> ऐसा कि <math display="inline">H(x,0) = x</math> सभी के लिए <math>x \in X,</math><math>H(a,t) = a</math> सभी <math>a \in A</math> के लिए और <math>t \in [0, 1],</math> और<math display="inline">H\left(x,1\right) \in A</math> यदि <math>u(x) < 1</math> है | ||
उदाहरण के लिए, सीडब्ल्यू कॉम्प्लेक्स में एक उप-कॉम्प्लेक्स को सम्मिलित करना एक सह-फाइब्रेशन है। | उदाहरण के लिए, सीडब्ल्यू कॉम्प्लेक्स में एक उप-कॉम्प्लेक्स को सम्मिलित करना एक सह-फाइब्रेशन है। | ||
Line 55: | Line 55: | ||
n -आयामी गेंद की सीमा, अथार्त (n −1)-गोला, गेंद का प्रत्यावर्तन नहीं है। (ब्राउवर फिक्स्ड-पॉइंट प्रमेय देखें § होमोलॉजी या कोहोमोलॉजी का उपयोग करके एक प्रमाण।) | n -आयामी गेंद की सीमा, अथार्त (n −1)-गोला, गेंद का प्रत्यावर्तन नहीं है। (ब्राउवर फिक्स्ड-पॉइंट प्रमेय देखें § होमोलॉजी या कोहोमोलॉजी का उपयोग करके एक प्रमाण।) | ||
==एब्सोल्यूट नेबरहुड रिट्रेक्ट ( | ==एब्सोल्यूट नेबरहुड रिट्रेक्ट (ANR) == | ||
टोपोलॉजिकल समिष्ट <math display="inline">Y</math> के एक संवर्त उपसमुच्चय <math display="inline">X</math> को <math display="inline">Y</math> का निकट रिट्रेक्ट कहा जाता है यदि <math display="inline">X</math> <math display="inline">X</math> के कुछ विवर्त उपसमुच्चय का रिट्रेक्ट है जिसमें <math display="inline">X</math> होता है। | टोपोलॉजिकल समिष्ट <math display="inline">Y</math> के एक संवर्त उपसमुच्चय <math display="inline">X</math> को <math display="inline">Y</math> का निकट रिट्रेक्ट कहा जाता है यदि <math display="inline">X</math> <math display="inline">X</math> के कुछ विवर्त उपसमुच्चय का रिट्रेक्ट है जिसमें <math display="inline">X</math> होता है। | ||
मान लीजिए कि <math>\mathcal{C}</math> टोपोलॉजिकल रिक्त स्थान का एक वर्ग है, जो होमोमोर्फिज्म के तहत संवर्त है और संवर्त उपसमुच्चय के लिए मार्ग है। बोर्सुक के बाद (1931 से प्रारंभ), एक स्थान <math display="inline">X</math> को वर्ग <math>\mathcal{C}</math> के लिए एक पूर्ण रिट्रेक्ट कहा जाता है, जिसे <math display="inline">\operatorname{AR} \left(\mathcal{C}\right),</math> लिखा जाता है यदि <math display="inline">X</math> <math>\mathcal{C}</math> में है और जब भी <math display="inline">X</math> एक का एक संवर्त उपसमुच्चय है <math display="inline">Y</math> में स्थान <math>\mathcal{C}</math>, <math display="inline">X</math>, <math display="inline">Y</math> का प्रत्यावर्तन है। एक स्थान <math display="inline">X</math> वर्ग <math>\mathcal{C}</math> के लिए एक पूर्ण समीप का खंड है, जिसे <math display="inline">\operatorname{ANR} \left(\mathcal{C}\right),</math> लिखा जाता है यदि <math display="inline">X</math> <math>\mathcal{C}</math> में है और जब भी <math display="inline">X</math> एक स्थान का एक संवर्त उपसमुच्चय है <math display="inline">Y</math> में <math>\mathcal{C}</math>, <math display="inline">X</math> है <math display="inline">Y</math> का एक निकटतम वापस लेना होता है। | मान लीजिए कि <math>\mathcal{C}</math> टोपोलॉजिकल रिक्त स्थान का एक वर्ग है, जो होमोमोर्फिज्म के तहत संवर्त है और संवर्त उपसमुच्चय के लिए मार्ग है। बोर्सुक के बाद (1931 से प्रारंभ), एक स्थान <math display="inline">X</math> को वर्ग <math>\mathcal{C}</math> के लिए एक पूर्ण रिट्रेक्ट कहा जाता है, जिसे <math display="inline">\operatorname{AR} \left(\mathcal{C}\right),</math> लिखा जाता है यदि <math display="inline">X</math> <math>\mathcal{C}</math> में है और जब भी <math display="inline">X</math> एक का एक संवर्त उपसमुच्चय है <math display="inline">Y</math> में स्थान <math>\mathcal{C}</math>, <math display="inline">X</math>, <math display="inline">Y</math> का प्रत्यावर्तन है। एक स्थान <math display="inline">X</math> वर्ग <math>\mathcal{C}</math> के लिए एक पूर्ण समीप का खंड है, जिसे <math display="inline">\operatorname{ANR} \left(\mathcal{C}\right),</math> लिखा जाता है यदि <math display="inline">X</math> <math>\mathcal{C}</math> में है और जब भी <math display="inline">X</math> एक स्थान का एक संवर्त उपसमुच्चय है <math display="inline">Y</math> में <math>\mathcal{C}</math>, <math display="inline">X</math> है <math display="inline">Y</math> का एक निकटतम वापस लेना होता है। | ||
इस परिभाषा में सामान्य स्थानों जैसे विभिन्न वर्गों <math>\mathcal{C}</math> पर विचार किया गया है, किंतु मेट्रिजेबल स्थानों के वर्ग <math>\mathcal{M}</math> को सबसे संतोषजनक सिद्धांत देने वाला पाया गया है। इस कारण से, इस आलेख में अंकन AR और | इस परिभाषा में सामान्य स्थानों जैसे विभिन्न वर्गों <math>\mathcal{C}</math> पर विचार किया गया है, किंतु मेट्रिजेबल स्थानों के वर्ग <math>\mathcal{M}</math> को सबसे संतोषजनक सिद्धांत देने वाला पाया गया है। इस कारण से, इस आलेख में अंकन AR और ANR का उपयोग स्वयं ही <math>\operatorname {AR} \left({\mathcal {M}}\right)</math> और <math>\operatorname {ANR} \left({\mathcal {M}}\right)</math> के लिए किया गया है।<ref>Mardešiċ (1999), p. 242.</ref> | ||
एक मेट्रिज़ेबल समिष्ट एक | एक मेट्रिज़ेबल समिष्ट एक AR है यदि और केवल यदि यह अनुबंध योग्य है और एक ANR है।<ref>Hu (1965), Proposition II.7.2.</ref> [[जेम्स डुगुंडजी]] द्वारा, प्रत्येक स्थानीय रूप से उत्तल मेट्रिजेबल [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल वेक्टर]] समिष्ट <math display="inline">V</math> एक AR है; अधिक सामान्यतः, ऐसे सदिश समष्टि का प्रत्येक अरिक्त उत्तल समुच्चय <math display="inline">V</math> एक AR है.<ref>Hu (1965), Corollary II.14.2 and Theorem II.3.1.</ref> उदाहरण के लिए, कोई भी [[मानकीकृत सदिश स्थान]] ([[पूर्ण मीट्रिक स्थान]] या नहीं) एक AR है। अधिक ठोस रूप से, यूक्लिडियन स्थान <math display="inline">\reals^{n},</math> [[इकाई घन]] <math display="inline">I^{n},</math>और [[हिल्बर्ट क्यूब]] <math display="inline">I^{\omega}</math> AR हैं. | ||
ANR अच्छे व्यवहार वाले टोपोलॉजिकल समिष्ट का एक उल्लेखनीय वर्ग बनाते हैं। उनकी गुणों में ये हैं: | |||
* | *ANR का प्रत्येक विवर्त उपसमुच्चय एक ANR है। | ||
*[[ओलोफ़ हैनर]] के अनुसार, एक मेट्रिज़ेबल स्थान जिसमें | *[[ओलोफ़ हैनर]] के अनुसार, एक मेट्रिज़ेबल स्थान जिसमें ANR द्वारा विवर्त आवरण होता है, एक ANR होता है।<ref>Hu (1965), Theorem III.8.1.</ref> (अर्थात, ANR होना मेट्रिज़ेबल रिक्त स्थान के लिए एक [[स्थानीय संपत्ति]] है।) यह इस प्रकार है कि प्रत्येक टोपोलॉजिकल मैनिफोल्ड एक ANR है। उदाहरण के लिए, गोला <math display="inline">S^{n}</math>एक ANR है किंतु AR नहीं (क्योंकि यह अनुबंध योग्य नहीं है)। अनंत आयामों में, हैनर के प्रमेय का तात्पर्य है कि प्रत्येक हिल्बर्ट क्यूब मैनिफोल्ड के साथ-साथ (किंतु भिन्न, उदाहरण के लिए स्थानीय रूप से कॉम्पैक्ट स्थान नहीं) [[ हिल्बर्ट मैनिफ़ोल्ड |हिल्बर्ट मैनिफ़ोल्ड]] और [[बनच मैनिफोल्ड]] ANR हैं। | ||
*प्रत्येक स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स एक | *प्रत्येक स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स एक ANR है।<ref>Mardešiċ (1999), p. 245.</ref> एक इच्छानुसार सीडब्ल्यू कॉम्प्लेक्स को मेट्रिजेबल होने की आवश्यकता नहीं है, किंतु प्रत्येक सीडब्ल्यू कॉम्प्लेक्स में ANR का होमोटॉपी प्रकार होता है (जो परिभाषा के अनुसार मेट्रिजेबल है)।<ref>Fritsch & Piccinini (1990), Theorem 5.2.1.</ref> | ||
*प्रत्येक | *प्रत्येक ANR, x प्रत्येक विवर्त अर्थ में स्थानीय रूप से अनुबंध योग्य है <math display="inline">X</math> में एक बिंदु <math display="inline">x</math>का निकट <math display="inline">U</math>,<math display="inline">V</math> में समाहित <math display="inline">x</math> में से एक विवर्त निकट <math display="inline">U</math> है, जैसे कि समावेशन <math display="inline">V \hookrightarrow U</math> एक स्थिर मानचित्र के लिए समस्थानिक है। एक परिमित-आयामी मेट्रिज़ेबल स्थान एक ANR है यदि और केवल यदि यह इस अर्थ में स्थानीय रूप से अनुबंध योग्य है।<ref>Hu (1965), Theorem V.7.1.</ref> उदाहरण के लिए, कैंटर सेट वास्तविक लाइन का एक कॉम्पैक्ट उपसमुच्चय है जो ANR नहीं है, क्योंकि यह स्थानीय रूप से भी जुड़ा नहीं है। | ||
*प्रतिउदाहरण: बोर्सुक को <math display="inline">\reals^{3}</math> का एक कॉम्पैक्ट उपसमुच्चय मिला जो एक | *प्रतिउदाहरण: बोर्सुक को <math display="inline">\reals^{3}</math> का एक कॉम्पैक्ट उपसमुच्चय मिला जो एक ANR है किंतु सख्ती से स्थानीय रूप से अनुबंध योग्य नहीं है।<ref>Borsuk (1967), section IV.4.</ref> (एक स्थान सख्ती से स्थानीय रूप से अनुबंध योग्य है यदि प्रत्येक बिंदु <math display="inline">U</math> के प्रत्येक विवर्त निकट <math display="inline">x</math> में <math display="inline">x</math> का अनुबंध योग्य विवर्त निकट सम्मिलित है) बोरसुक को हिल्बर्ट क्यूब का एक कॉम्पैक्ट उपसमुच्चय भी मिला जो स्थानीय रूप से अनुबंध योग्य है (जैसा कि ऊपर परिभाषित किया गया है) किंतु ANR नहीं है<ref>Borsuk (1967), Theorem V.11.1.</ref> | ||
*प्रत्येक | *प्रत्येक ANR में व्हाइटहेड और मिल्नोर द्वारा सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।<ref>Fritsch & Piccinini (1990), Theorem 5.2.1.</ref> इसके अतिरिक्त स्थानीय रूप से कॉम्पैक्ट ANR में स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है; और, वेस्ट द्वारा, एक कॉम्पैक्ट ANR में एक परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।<ref>West (2004), p. 119.</ref> इस अर्थ में, ANR इच्छानुसार टोपोलॉजिकल रिक्त स्थान के सभी समरूप-सैद्धांतिक विकृति से बचते हैं। उदाहरण के लिए, [[व्हाइटहेड प्रमेय]] ANR के लिए है: ANR का एक नक्शा जो होमोटॉपी समूहों (आधार बिंदु के सभी विकल्पों के लिए) पर एक समरूपता उत्पन्न करता है, एक होमोटॉपी तुल्यता है। चूँकि ANR में टोपोलॉजिकल मैनिफोल्ड्स, हिल्बर्ट क्यूब मैनिफोल्ड्स, बानाच मैनिफोल्ड्स इत्यादि सम्मिलित हैं, इसलिए ये परिणाम रिक्त स्थान के एक बड़े वर्ग पर प्रयुक्त होते हैं। | ||
*कई मैपिंग समिष्ट | *कई मैपिंग समिष्ट ANR हैं। विशेष रूप से, Y को एक बंद उपस्थान A के साथ एक ANR होने दें जो कि एक ANR है, और X को कोई कॉम्पैक्ट होने दें एक बंद उप-स्थान b के साथ मेट्रिज़ेबल स्थान फिर जोड़े के मानचित्रों का स्थान <math display="inline">\left(Y, A\right)^{\left(X, B\right)}</math> ,<math display="inline">\left(X, B\right) \rightarrow \left(Y, A\right)</math> (मैपिंग समिष्ट पर कॉम्पैक्ट-ओपन टोपोलॉजी के साथ) एक ANR है।<ref>Hu (1965), Theorem VII.3.1 and Remark VII.2.3.</ref> उदाहरण के लिए, यह इस प्रकार है कि किसी भी सीडब्ल्यू कॉम्प्लेक्स के लूप समिष्ट में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है। | ||
*कॉटी द्वारा, एक मेट्रिज़ेबल समिष्ट <math display="inline">X</math> एक | *कॉटी द्वारा, एक मेट्रिज़ेबल समिष्ट <math display="inline">X</math> एक ANR है यदि और केवल तभी जब <math display="inline">X</math> के प्रत्येक विवर्त उपसमुच्चय में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता हो ।<ref>Cauty (1994), Fund. Math. 144: 11–22.</ref> | ||
*कॉटी द्वारा, एक मीट्रिक रैखिक स्थान <math display="inline">V</math> है (जिसका अर्थ अनुवाद-अपरिवर्तनीय मीट्रिक के साथ एक टोपोलॉजिकल वेक्टर स्थान है) जो | *कॉटी द्वारा, एक मीट्रिक रैखिक स्थान <math display="inline">V</math> है (जिसका अर्थ अनुवाद-अपरिवर्तनीय मीट्रिक के साथ एक टोपोलॉजिकल वेक्टर स्थान है) जो AR नहीं है। कोई व्यक्ति <math display="inline">V</math> को अलग करने योग्य और एक f-समिष्ट (अर्थात, एक पूर्ण मीट्रिक रैखिक स्थान) मान सकता है।<ref>Cauty (1994), Fund. Math. 146: 85–99.</ref> (उपरोक्त डुगुंडजी प्रमेय के अनुसार, <math display="inline">V</math> स्थानीय रूप से उत्तल नहीं हो सकता।) चूंकि <math display="inline">V</math> संकुचन योग्य है और AR नहीं है, इसलिए यह ANR भी नहीं है। उपरोक्त कॉटी के प्रमेय के अनुसार, <math display="inline">V</math> में एक विवर्त उपसमुच्चय <math display="inline">U</math> है जो सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। इस प्रकार एक मेट्रिज़ेबल समिष्ट <math display="inline">U</math> है जो सख्ती से स्थानीय रूप से अनुबंध योग्य है किंतु सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। यह ज्ञात नहीं है कि एक कॉम्पैक्ट (या स्थानीय रूप से कॉम्पैक्ट) मेट्रिज़ेबल समिष्ट जो सख्ती से स्थानीय रूप से अनुबंध योग्य है, एक ANR होना चाहिए। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 16:28, 12 July 2023
टोपोलॉजी में, गणित की एक शाखा, प्रत्यावर्तन एक टोपोलॉजिकल समिष्ट से एक अर्धसमिष्ट में निरंतर मैपिंग है जो उस अर्धसमिष्ट में सभी बिंदुओं की स्थिति को संरक्षित करता है।[1] तब उपस्थान को मूल स्थान का प्रत्यावर्तन कहा जाता है। विरूपण प्रत्यावर्तन एक मानचित्रण है जो किसी स्थान को उप-स्थान में निरन्तर संकुचन के विचार को पकड़ता है।
इस प्रकार एब्सोल्यूट नेबरहुड रिट्रेक्ट (ANR) एक विशेष रूप से अच्छी तरह से व्यवहार किया जाने वाला टोपोलॉजिकल समिष्ट है। उदाहरण के लिए, प्रत्येक टोपोलॉजिकल मैनिफ़ोल्ड एक ANR है। प्रत्येक ANR में एक अधिक ही सरल टोपोलॉजिकल समिष्ट एक सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।
परिभाषाएँ
रिट्रेक्ट
मान लीजिए कि X एक टोपोलॉजिकल समिष्ट है और A, X का एक अर्धसमिष्ट है। फिर एक सतत मानचित्र
यदि r से A तक का प्रतिबंध ए पर पहचान मानचित्र है तो यह एक रिट्रेक्ट है; अर्थात, A में सभी A के लिए समान रूप से, द्वारा निरूपित करना है
समावेशन मानचित्र, एक प्रत्यावर्तन एक सतत मानचित्र है जैसे कि
अर्थात्, समावेशन के साथ r की संरचना A की पहचान है। ध्यान दें, परिभाषा के अनुसार, एक प्रत्यावर्तन X को A पर मैप करता है। यदि ऐसा कोई प्रत्यावर्तन उपस्थित है, तो एक उपस्थान A को X का प्रत्यावर्तन कहा जाता है। उदाहरण के लिए, कोई भी गैर-रिक्त स्थान स्पष्ट विधि से एक बिंदु पर वापस आ जाता है (स्थिर मानचित्र एक रिट्रेक्ट उत्पन्न करता है)। यदि X हॉसडॉर्फ है, तो A को X का एक संवर्त उपसमुच्चय होना चाहिए।
एक प्रत्यावर्तन है, तो रचना ι∘r X से X तक एक निष्क्रिय निरंतर मानचित्र है। इसके विपरीत, कोई भी दिया गया है निष्क्रिय निरंतर मानचित्र हम कोडोमेन को प्रतिबंधित करके s की छवि पर एक रिट्रेक्ट प्राप्त करते हैं।
विकृति रिट्रेक्ट और प्रबल विकृति रिट्रेक्ट
सतत मानचित्र
स्थान X का एक उपस्थान A पर विरूपण प्रत्यावर्तन है, यदि,
दूसरे शब्दों में, एक विरूपण प्रत्यावर्तन एक प्रत्यावर्तन और x पर पहचान मानचित्र के मध्य एक समरूपता है। उपस्थान a को x का 'विरूपण प्रत्यावर्तन' कहा जाता है। एक विरूपण प्रत्यावर्तन एक समरूप समतुल्य का एक विशेष स्थिति है।
प्रत्यावर्तन को विरूपण प्रत्यावर्तन की आवश्यकता नहीं है। उदाहरण के लिए,यह किसी स्थान X के विरूपण प्रत्यावर्तन के रूप में एक एकल बिंदु होने का अर्थ यह होगा कि
नोट: विरूपण प्रत्यावर्तन की एक समतुल्य परिभाषा निम्नलिखित है। एक सतत मानचित्र एक विरूपण प्रत्यावर्तन है यदि यह एक प्रत्यावर्तन है और समावेशन के साथ इसकी संरचना x पर पहचान मानचित्र के लिए समरूप है। इस सूत्रीकरण में, एक विरूपण प्रत्यावर्तन अपने साथ x पर पहचान मानचित्र और स्वयं के मध्य एक समरूपता रखता है। .
यदि, विरूपण प्रत्यावर्तन की परिभाषा में, हम वह आवश्यकता जोड़ते हैं
माना [0, 1] में सभी t और a में a के लिए, तो f को 'प्रबल विरूपण प्रत्यावर्तन' कहा जाता है। दूसरे शब्दों में, एक प्रबल विरूपण प्रत्यावर्तन पूरे समरूपता में a में अंक निर्धारित करता है। (कुछ लेखक, जैसे एलन हैचर, इसे विरूपण प्रत्यावर्तन की परिभाषा के रूप में लेते हैं।)
उदाहरण के रूप से, n-स्फीयर का एक प्रबल विरूपण प्रत्यावर्तन है प्रबल विरूपण प्रत्यावर्तन के रूप में कोई भी मानचित्र चुन सकता है
सह-फाइब्रेशन और निकट विरूपण रिट्रेक्ट
इस प्रकार टोपोलॉजिकल समिष्ट का एक मानचित्र f: A → X एक (ह्यूरविक्ज़) कोफाइब्रेशन है यदि इसमें किसी भी स्थान के मानचित्रों के लिए होमोटॉपी एक्सटेंशन गुण है। यह समरूपता सिद्धांत की केंद्रीय अवधारणाओं में से एक है। एक कोफाइब्रेशन f सदैव इंजेक्टिव होता है, वास्तव में इसकी छवि के लिए एक होमोमोर्फिज्म होता है।[2] यदि
माना सभी संवर्त समावेशन के मध्य, सह-फाइब्रेशन को निम्नानुसार चित्रित किया जा सकता है। किसी स्थान X में एक संवर्त उपस्थान A का समावेश एक है सह-फाइब्रेशन यदि और केवल यदि a, x का निकट विरूपण प्रत्यावर्तन है, इसका मतलब है कि और एक समरूपता के साथ एक सतत मानचित्र है ऐसा कि सभी के लिए सभी के लिए और और यदि है
उदाहरण के लिए, सीडब्ल्यू कॉम्प्लेक्स में एक उप-कॉम्प्लेक्स को सम्मिलित करना एक सह-फाइब्रेशन है।
गुण
- X के रिट्रैक्ट A की एक मूल संपत्ति (प्रत्यावर्तन के साथ) यह है कि प्रत्येक निरंतर मानचित्र में कम से कम एक एक्सटेंशन अर्थात् होता है
- विरूपण प्रत्यावर्तन समरूप समतुल्यता का एक विशेष स्थिति है। वास्तव में, दो स्थान समरूप समतुल्य हैं यदि और केवल यदि वे दोनों एक ही बड़े स्थान के विरूपण के प्रति समरूप हैं।
- कोई भी टोपोलॉजिकल समिष्ट जो विरूपण एक बिंदु पर वापस आ जाता है,जो की संकुचन योग्य होता है और इसके विपरीत चूँकि ऐसे संकुचन योग्य स्थान उपस्थित हैं जो एक बिंदु पर दृढ़ता से विरूपण नहीं करते हैं।[3]
नो-रिट्रैक्शन प्रमेय
n -आयामी गेंद की सीमा, अथार्त (n −1)-गोला, गेंद का प्रत्यावर्तन नहीं है। (ब्राउवर फिक्स्ड-पॉइंट प्रमेय देखें § होमोलॉजी या कोहोमोलॉजी का उपयोग करके एक प्रमाण।)
एब्सोल्यूट नेबरहुड रिट्रेक्ट (ANR)
टोपोलॉजिकल समिष्ट के एक संवर्त उपसमुच्चय को का निकट रिट्रेक्ट कहा जाता है यदि के कुछ विवर्त उपसमुच्चय का रिट्रेक्ट है जिसमें होता है।
मान लीजिए कि टोपोलॉजिकल रिक्त स्थान का एक वर्ग है, जो होमोमोर्फिज्म के तहत संवर्त है और संवर्त उपसमुच्चय के लिए मार्ग है। बोर्सुक के बाद (1931 से प्रारंभ), एक स्थान को वर्ग के लिए एक पूर्ण रिट्रेक्ट कहा जाता है, जिसे लिखा जाता है यदि में है और जब भी एक का एक संवर्त उपसमुच्चय है में स्थान , , का प्रत्यावर्तन है। एक स्थान वर्ग के लिए एक पूर्ण समीप का खंड है, जिसे लिखा जाता है यदि में है और जब भी एक स्थान का एक संवर्त उपसमुच्चय है में , है का एक निकटतम वापस लेना होता है।
इस परिभाषा में सामान्य स्थानों जैसे विभिन्न वर्गों पर विचार किया गया है, किंतु मेट्रिजेबल स्थानों के वर्ग को सबसे संतोषजनक सिद्धांत देने वाला पाया गया है। इस कारण से, इस आलेख में अंकन AR और ANR का उपयोग स्वयं ही और के लिए किया गया है।[4]
एक मेट्रिज़ेबल समिष्ट एक AR है यदि और केवल यदि यह अनुबंध योग्य है और एक ANR है।[5] जेम्स डुगुंडजी द्वारा, प्रत्येक स्थानीय रूप से उत्तल मेट्रिजेबल टोपोलॉजिकल वेक्टर समिष्ट एक AR है; अधिक सामान्यतः, ऐसे सदिश समष्टि का प्रत्येक अरिक्त उत्तल समुच्चय एक AR है.[6] उदाहरण के लिए, कोई भी मानकीकृत सदिश स्थान (पूर्ण मीट्रिक स्थान या नहीं) एक AR है। अधिक ठोस रूप से, यूक्लिडियन स्थान इकाई घन और हिल्बर्ट क्यूब AR हैं.
ANR अच्छे व्यवहार वाले टोपोलॉजिकल समिष्ट का एक उल्लेखनीय वर्ग बनाते हैं। उनकी गुणों में ये हैं:
- ANR का प्रत्येक विवर्त उपसमुच्चय एक ANR है।
- ओलोफ़ हैनर के अनुसार, एक मेट्रिज़ेबल स्थान जिसमें ANR द्वारा विवर्त आवरण होता है, एक ANR होता है।[7] (अर्थात, ANR होना मेट्रिज़ेबल रिक्त स्थान के लिए एक स्थानीय संपत्ति है।) यह इस प्रकार है कि प्रत्येक टोपोलॉजिकल मैनिफोल्ड एक ANR है। उदाहरण के लिए, गोला एक ANR है किंतु AR नहीं (क्योंकि यह अनुबंध योग्य नहीं है)। अनंत आयामों में, हैनर के प्रमेय का तात्पर्य है कि प्रत्येक हिल्बर्ट क्यूब मैनिफोल्ड के साथ-साथ (किंतु भिन्न, उदाहरण के लिए स्थानीय रूप से कॉम्पैक्ट स्थान नहीं) हिल्बर्ट मैनिफ़ोल्ड और बनच मैनिफोल्ड ANR हैं।
- प्रत्येक स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स एक ANR है।[8] एक इच्छानुसार सीडब्ल्यू कॉम्प्लेक्स को मेट्रिजेबल होने की आवश्यकता नहीं है, किंतु प्रत्येक सीडब्ल्यू कॉम्प्लेक्स में ANR का होमोटॉपी प्रकार होता है (जो परिभाषा के अनुसार मेट्रिजेबल है)।[9]
- प्रत्येक ANR, x प्रत्येक विवर्त अर्थ में स्थानीय रूप से अनुबंध योग्य है में एक बिंदु का निकट , में समाहित में से एक विवर्त निकट है, जैसे कि समावेशन एक स्थिर मानचित्र के लिए समस्थानिक है। एक परिमित-आयामी मेट्रिज़ेबल स्थान एक ANR है यदि और केवल यदि यह इस अर्थ में स्थानीय रूप से अनुबंध योग्य है।[10] उदाहरण के लिए, कैंटर सेट वास्तविक लाइन का एक कॉम्पैक्ट उपसमुच्चय है जो ANR नहीं है, क्योंकि यह स्थानीय रूप से भी जुड़ा नहीं है।
- प्रतिउदाहरण: बोर्सुक को का एक कॉम्पैक्ट उपसमुच्चय मिला जो एक ANR है किंतु सख्ती से स्थानीय रूप से अनुबंध योग्य नहीं है।[11] (एक स्थान सख्ती से स्थानीय रूप से अनुबंध योग्य है यदि प्रत्येक बिंदु के प्रत्येक विवर्त निकट में का अनुबंध योग्य विवर्त निकट सम्मिलित है) बोरसुक को हिल्बर्ट क्यूब का एक कॉम्पैक्ट उपसमुच्चय भी मिला जो स्थानीय रूप से अनुबंध योग्य है (जैसा कि ऊपर परिभाषित किया गया है) किंतु ANR नहीं है[12]
- प्रत्येक ANR में व्हाइटहेड और मिल्नोर द्वारा सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।[13] इसके अतिरिक्त स्थानीय रूप से कॉम्पैक्ट ANR में स्थानीय रूप से परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है; और, वेस्ट द्वारा, एक कॉम्पैक्ट ANR में एक परिमित सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।[14] इस अर्थ में, ANR इच्छानुसार टोपोलॉजिकल रिक्त स्थान के सभी समरूप-सैद्धांतिक विकृति से बचते हैं। उदाहरण के लिए, व्हाइटहेड प्रमेय ANR के लिए है: ANR का एक नक्शा जो होमोटॉपी समूहों (आधार बिंदु के सभी विकल्पों के लिए) पर एक समरूपता उत्पन्न करता है, एक होमोटॉपी तुल्यता है। चूँकि ANR में टोपोलॉजिकल मैनिफोल्ड्स, हिल्बर्ट क्यूब मैनिफोल्ड्स, बानाच मैनिफोल्ड्स इत्यादि सम्मिलित हैं, इसलिए ये परिणाम रिक्त स्थान के एक बड़े वर्ग पर प्रयुक्त होते हैं।
- कई मैपिंग समिष्ट ANR हैं। विशेष रूप से, Y को एक बंद उपस्थान A के साथ एक ANR होने दें जो कि एक ANR है, और X को कोई कॉम्पैक्ट होने दें एक बंद उप-स्थान b के साथ मेट्रिज़ेबल स्थान फिर जोड़े के मानचित्रों का स्थान , (मैपिंग समिष्ट पर कॉम्पैक्ट-ओपन टोपोलॉजी के साथ) एक ANR है।[15] उदाहरण के लिए, यह इस प्रकार है कि किसी भी सीडब्ल्यू कॉम्प्लेक्स के लूप समिष्ट में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता है।
- कॉटी द्वारा, एक मेट्रिज़ेबल समिष्ट एक ANR है यदि और केवल तभी जब के प्रत्येक विवर्त उपसमुच्चय में सीडब्ल्यू कॉम्प्लेक्स का होमोटॉपी प्रकार होता हो ।[16]
- कॉटी द्वारा, एक मीट्रिक रैखिक स्थान है (जिसका अर्थ अनुवाद-अपरिवर्तनीय मीट्रिक के साथ एक टोपोलॉजिकल वेक्टर स्थान है) जो AR नहीं है। कोई व्यक्ति को अलग करने योग्य और एक f-समिष्ट (अर्थात, एक पूर्ण मीट्रिक रैखिक स्थान) मान सकता है।[17] (उपरोक्त डुगुंडजी प्रमेय के अनुसार, स्थानीय रूप से उत्तल नहीं हो सकता।) चूंकि संकुचन योग्य है और AR नहीं है, इसलिए यह ANR भी नहीं है। उपरोक्त कॉटी के प्रमेय के अनुसार, में एक विवर्त उपसमुच्चय है जो सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। इस प्रकार एक मेट्रिज़ेबल समिष्ट है जो सख्ती से स्थानीय रूप से अनुबंध योग्य है किंतु सीडब्ल्यू कॉम्प्लेक्स के समतुल्य होमोटॉपी नहीं है। यह ज्ञात नहीं है कि एक कॉम्पैक्ट (या स्थानीय रूप से कॉम्पैक्ट) मेट्रिज़ेबल समिष्ट जो सख्ती से स्थानीय रूप से अनुबंध योग्य है, एक ANR होना चाहिए।
टिप्पणियाँ
- ↑ Borsuk (1931).
- ↑ Hatcher (2002), Proposition 4H.1.
- ↑ Hatcher (2002), Exercise 0.6.
- ↑ Mardešiċ (1999), p. 242.
- ↑ Hu (1965), Proposition II.7.2.
- ↑ Hu (1965), Corollary II.14.2 and Theorem II.3.1.
- ↑ Hu (1965), Theorem III.8.1.
- ↑ Mardešiċ (1999), p. 245.
- ↑ Fritsch & Piccinini (1990), Theorem 5.2.1.
- ↑ Hu (1965), Theorem V.7.1.
- ↑ Borsuk (1967), section IV.4.
- ↑ Borsuk (1967), Theorem V.11.1.
- ↑ Fritsch & Piccinini (1990), Theorem 5.2.1.
- ↑ West (2004), p. 119.
- ↑ Hu (1965), Theorem VII.3.1 and Remark VII.2.3.
- ↑ Cauty (1994), Fund. Math. 144: 11–22.
- ↑ Cauty (1994), Fund. Math. 146: 85–99.
संदर्भ
- Borsuk, Karol (1931), "Sur les rétractes", Fundamenta Mathematicae, 17: 152–170, doi:10.4064/fm-17-1-152-170, Zbl 0003.02701
- Borsuk, Karol (1967), Theory of Retracts, Warsaw: Państwowe Wydawnictwo Naukowe, MR 0216473
- Cauty, Robert (1994), "Une caractérisation des rétractes absolus de voisinage", Fundamenta Mathematicae, 144: 11–22, doi:10.4064/fm-144-1-11-22, MR 1271475
- Cauty, Robert (1994), "Un espace métrique linéaire qui n'est pas un rétracte absolu", Fundamenta Mathematicae, 146: 85–99, doi:10.4064/fm-146-1-85-99, MR 1305261
- Fritsch, Rudolf; Piccinini, Renzo (1990), Cellular Structures in Topology, Cambridge University Press, ISBN 0-521-32784-9, MR 1074175
- Hatcher, Allen (2002), Algebraic Topology, Cambridge University Press, ISBN 0-521-79540-0, MR 1867354
- Hu, Sze-Tsen (1965), Theory of Retracts, Wayne State University Press, MR 0181977
- Mardešić, Sibe (1999), "Absolute neighborhood retracts and shape theory", in James, I. M. (ed.), History of Topology, Amsterdam: North-Holland, pp. 241–269, ISBN 0-444-82375-1, MR 1674915
- May, J. Peter (1999), A Concise Course in Algebraic Topology (PDF), University of Chicago Press, ISBN 0-226-51182-0, MR 1702278
- Milnor, John (1959), "On spaces having the homotopy type of a CW-complex", Transactions of the American Mathematical Society, 90 (2): 272–280, doi:10.2307/1993204, JSTOR 1993204, MR 0100267
- Puppe, Dieter (1967), "Bemerkungen über die Erweiterung von Homotopien", Archiv der Mathematik, 18: 81–88, doi:10.1007/BF01899475, MR 0206954, S2CID 120021003
- West, James (2004), "Absolute retracts", in Hart, K. P. (ed.), Encyclopedia of General Topology, Amsterdam: Elsevier, ISBN 0-444-50355-2, MR 2049453
बाहरी संबंध
- This article incorporates material from Neighborhood retract on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.