द्वितीय गणनीय समिष्ट: Difference between revisions
m (Abhishek moved page द्वितीय गणनीय स्थान to द्वितीय गणनीय समिष्ट without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Topological space whose topology has a countable base}} | {{short description|Topological space whose topology has a countable base}} | ||
'''द्वितीय-[[गणनीय]] | '''द्वितीय-[[गणनीय]] समिष्ट''' [[टोपोलॉजी|प्रांगणिकी]] में, जिसे पूर्णता से विभक्त समिष्ट भी कहा जाता है, ऐसा प्रांगणिक समिष्ट होता है जिसकी प्रांगणिकी में गणनीय [[आधार (टोपोलॉजी)|आधार (प्रांगणिकी)]] होता है। अधिक स्पष्ट रूप से, प्रांगणिकीय समिष्ट यदि कुछ गणनीय संग्रह उपस्थित है तो <math>T</math> द्वितीय-गणनीय है <math>\mathcal{U} = \{U_i\}_{i=1}^{\infty}</math> के बंधनरहित सेट उपसमुच्चय <math>T</math> ऐसा कि कोई भी मुक्त उपसमुच्चय <math>T</math> के कुछ उपपरिवार के तत्वों के संघ के रूप में लिखा जा सकता है जिसे <math>\mathcal{U}</math> कहा जाता है और इस प्रकार दूसरा गणनीय समिष्ट गणनीयता के दूसरे सिद्धांत को संतुष्ट करता है। अन्य गणनीयता सिद्धांतों की प्रकार, दूसरी-गणनीय होने की संपत्ति समिष्ट में उपस्थित बंधनरहित सेटों की संख्या को प्रतिबंधित करती है। | ||
गणित में कई "अच्छी प्रकार की" | गणित में कई "अच्छी प्रकार की" समिष्टें द्वितीय-गणनीय होती हैं। उदाहरण के लिए, [[ यूक्लिडियन स्थान |यूक्लिडियन समिष्ट]] (R<sup>n</sup>) अपनी सामान्य प्रांगणिकी के साथ द्वितीय-गणनीय है। चूँकि [[खुली गेंद|खुली गोलों]] का सामान्य आधार [[बेशुमार|अपरिमित]] होता है, किन्तु हम [[तर्कसंगत संख्या]] त्रिज्या वाली सभी संख्यात्मक त्रिज्या वाले बंधनरहित गोलों की संख्या पर प्रतिबंध लगा सकते हैं। यह प्रतिबंधित संख्या संख्यात्मक होती है और फिर भी आधार बनाती है। | ||
==गुण== | ==गुण== | ||
द्वितीय-गणनीयता पहल-गणनीयता से अधिक मजबूत अवधारणा है। यदि प्रत्येक बिंदु का गणनीय [[स्थानीय आधार]] हो तो | द्वितीय-गणनीयता पहल-गणनीयता से अधिक मजबूत अवधारणा है। यदि प्रत्येक बिंदु का गणनीय [[स्थानीय आधार|समिष्टीय आधार]] हो तो समिष्ट प्रथम-गणनीय होता है। प्रांगणिकी और बिंदु x के लिए आधार दिया गया हो तो x को सम्मिलित करने वाले सभी आधार सेट x पर स्थानिक आधार बनाते हैं। इस प्रकार, यदि किसी प्रांगणिकी के लिए गणनीय आधार होती है तो हर बिंदु पर गणनीय स्थानिक आधार होती है, और इसलिए हर द्वितीय-गणनीय समिष्ट भी पहल-गणनीय समिष्ट होता है। चूंकि, कोई भी अगणित विचक्षण समिष्ट पहल-गणनीय होता है किन्तु द्वितीय-गणनीय नहीं होता है। | ||
द्वितीय-गणनीयता अन्य प्रांगणिक गुणों को सूचित करती है। विशेष रूप से, प्रत्येक दूसरा-गणनीय | द्वितीय-गणनीयता अन्य प्रांगणिक गुणों को सूचित करती है। विशेष रूप से, प्रत्येक दूसरा-गणनीय समिष्ट वियोज्य समिष्ट है (इसमें गणनीय [[सघन (टोपोलॉजी)|सघन (प्रांगणिकी)]] उपसमुच्चय है) और लिंडेलोफ समिष्ट लिंडेलोफ (प्रत्येक बंधनरहित आवरण में गणनीय उपकवर होता है)। इसका कोई विपरीत प्रभाव नहीं होते हैं। उदाहरण के लिए, वास्तविक रेखा पर [[निचली सीमा टोपोलॉजी|निचली सीमा प्रांगणिकी]] प्रथम-गणनीय, वियोज्य और लिंडेलॉफ है, किन्तु द्वितीय-गणनीय नहीं है। चूँकि, मीट्रिक रिक्त समिष्ट के लिए, द्वितीय-गणनीय, वियोज्य और लिंडेलोफ़ होने के गुण सभी समान होते हैं।<ref>Willard, theorem 16.11, p. 112</ref> इसलिए, वास्तविक रेखा पर निचली सीमा प्रांगणिकी [[मेट्रिज़ेबल|मापीयता]] नहीं है। | ||
दूसरे-गणनीय स्थानों में - जैसा कि मीट्रिक स्थानों में होता है - [[ सघन स्थान |सघन स्थान]],अनुक्रमिक संघटितता, और गणनीय संघटितता सभी समान गुण हैं। | दूसरे-गणनीय स्थानों में - जैसा कि मीट्रिक स्थानों में होता है - [[ सघन स्थान |सघन स्थान]],अनुक्रमिक संघटितता, और गणनीय संघटितता सभी समान गुण हैं। | ||
यूरिसोह्न के सांकलन सिद्धांत कहता है कि प्रत्येक द्वितीय-गिनतीय, हॉसडॉर्फ | यूरिसोह्न के सांकलन सिद्धांत कहता है कि प्रत्येक द्वितीय-गिनतीय, हॉसडॉर्फ समिष्ट [[नियमित स्थान|नियमित]] समिष्ट सांकलन योग्य होता है। इससे यह निष्कर्ष निकलता है कि ऐसा प्रत्येक समिष्ट [[पूरी तरह से सामान्य स्थान|पूरी प्रकार से सामान्य]] समिष्ट होने के साथ-साथ [[ परा-सुसंहत |परा-सुसंहत]] भी है। इसलिए द्वितीय-गणनीयता प्रांगणिकीय समिष्ट पर प्रतिबंधात्मक संपत्ति है, जिसके लिए मापनीयता को दर्शाने के लिए मात्र पृथक्करण सिद्धांत की आवश्यकता होती है। | ||
===अन्य गुण=== | ===अन्य गुण=== | ||
*द्वितीय-गणनीय | *द्वितीय-गणनीय समिष्ट की सतत, खुली मानचित्र [[छवि (गणित)]] द्वितीय-गणनीय होती है। | ||
*द्वितीय-गणनीय | *द्वितीय-गणनीय समिष्ट का प्रत्येक उप-समिष्ट (प्रांगणिकी ) द्वितीय-गणनीय होता है। | ||
*द्वितीय-गणनीय स्थानों के [[भागफल स्थान (टोपोलॉजी)|भागफल | *द्वितीय-गणनीय स्थानों के [[भागफल स्थान (टोपोलॉजी)|भागफल समिष्ट (प्रांगणिकी)]] को द्वितीय-गणनीय होने की आवश्यकता नहीं है; चूँकि, बंधनरहित प्रतिसमिष्ट सदैव द्वितीय-गणनीय होते हैं। | ||
*किसी द्वितीय-गणनीय | *किसी द्वितीय-गणनीय समिष्ट का कोई भी गणनीय [[उत्पाद स्थान|उत्पाद]] समिष्ट द्वितीय-गणनीय है, चूँकि अनगिनत उत्पादों की आवश्यकता नहीं होती है। | ||
*द्वितीय-गणनीय T<sub>1</sub> | *द्वितीय-गणनीय T<sub>1</sub> समिष्ट की प्रांगणिकी की [[प्रमुखता]] c (सातत्य की कार्यमाप) से कम या उसके समान होती है। | ||
*दूसरे गणनीय | *दूसरे गणनीय समिष्ट के लिए किसी भी आधार में गणनीय उपपरिवार होता है जो अभी भी आधार है। | ||
*द्वितीय-गणनीय | *द्वितीय-गणनीय समिष्ट में असंयुक्त बंधनरहित समुच्चय का प्रत्येक संग्रह गणनीय होती है। | ||
== उदाहरण और प्रति उदाहरण == | == उदाहरण और प्रति उदाहरण == | ||
* असंयुक्त गणनीय संघ पर विचार करें <math> X = [0,1] \cup [2,3] \cup [4,5] \cup \dots \cup [2k, 2k+1] \cup \dotsb</math>. अंतराल के बाएँ छोर की पहचान करके तुल्यता संबंध और [[भागफल टोपोलॉजी|भागफल प्रांगणिकी]] को परिभाषित करें - अर्थात, 0 ~ 2 ~ 4 ~ … ~ 2k और इसी प्रकार की पहचान करें। X द्वितीय-गणनीय स्थानों के गणनीय संघ के रूप में, द्वितीय-गणनीय है। चूँकि, X/~ पहचाने गए बिंदुओं के सहसमुच्चय पर प्रथम-गणनीय नहीं है और इसलिए द्वितीय-गणनीय भी नहीं है। | * असंयुक्त गणनीय संघ पर विचार करें <math> X = [0,1] \cup [2,3] \cup [4,5] \cup \dots \cup [2k, 2k+1] \cup \dotsb</math>. अंतराल के बाएँ छोर की पहचान करके तुल्यता संबंध और [[भागफल टोपोलॉजी|भागफल प्रांगणिकी]] को परिभाषित करें - अर्थात, 0 ~ 2 ~ 4 ~ … ~ 2k और इसी प्रकार की पहचान करें। X द्वितीय-गणनीय स्थानों के गणनीय संघ के रूप में, द्वितीय-गणनीय है। चूँकि, X/~ पहचाने गए बिंदुओं के सहसमुच्चय पर प्रथम-गणनीय नहीं है और इसलिए द्वितीय-गणनीय भी नहीं है। | ||
* उपरोक्त | * उपरोक्त समिष्ट स्पष्ट मीट्रिक से संपन्न तुल्यता वर्गों के समान सेट के लिए समरूप नहीं है: अर्थात, ही अंतराल में दो बिंदुओं के लिए नियमित यूक्लिडियन दूरी, और समान अंतराल में नहीं रहने वाले बिंदुओं के लिए बाएं हाथ के बिंदु की दूरी का योग - जो उपरोक्त समिष्ट की समानता में अधिक कठोर प्रांगणिकी देता है। यह अलग करने योग्य मीट्रिक समिष्ट है (तर्कसंगत बिंदुओं के सेट पर विचार करें), और इसलिए यह द्वितीय-गणनीय होता है। | ||
* [[लंबी लाइन (टोपोलॉजी)|लंबी रेखा (प्रांगणिकी)]] द्वितीय-गणनीय नहीं है, किन्तु प्रथम-गणनीय है। | * [[लंबी लाइन (टोपोलॉजी)|लंबी रेखा (प्रांगणिकी)]] द्वितीय-गणनीय नहीं है, किन्तु प्रथम-गणनीय है। | ||
Revision as of 15:43, 12 July 2023
द्वितीय-गणनीय समिष्ट प्रांगणिकी में, जिसे पूर्णता से विभक्त समिष्ट भी कहा जाता है, ऐसा प्रांगणिक समिष्ट होता है जिसकी प्रांगणिकी में गणनीय आधार (प्रांगणिकी) होता है। अधिक स्पष्ट रूप से, प्रांगणिकीय समिष्ट यदि कुछ गणनीय संग्रह उपस्थित है तो द्वितीय-गणनीय है के बंधनरहित सेट उपसमुच्चय ऐसा कि कोई भी मुक्त उपसमुच्चय के कुछ उपपरिवार के तत्वों के संघ के रूप में लिखा जा सकता है जिसे कहा जाता है और इस प्रकार दूसरा गणनीय समिष्ट गणनीयता के दूसरे सिद्धांत को संतुष्ट करता है। अन्य गणनीयता सिद्धांतों की प्रकार, दूसरी-गणनीय होने की संपत्ति समिष्ट में उपस्थित बंधनरहित सेटों की संख्या को प्रतिबंधित करती है।
गणित में कई "अच्छी प्रकार की" समिष्टें द्वितीय-गणनीय होती हैं। उदाहरण के लिए, यूक्लिडियन समिष्ट (Rn) अपनी सामान्य प्रांगणिकी के साथ द्वितीय-गणनीय है। चूँकि खुली गोलों का सामान्य आधार अपरिमित होता है, किन्तु हम तर्कसंगत संख्या त्रिज्या वाली सभी संख्यात्मक त्रिज्या वाले बंधनरहित गोलों की संख्या पर प्रतिबंध लगा सकते हैं। यह प्रतिबंधित संख्या संख्यात्मक होती है और फिर भी आधार बनाती है।
गुण
द्वितीय-गणनीयता पहल-गणनीयता से अधिक मजबूत अवधारणा है। यदि प्रत्येक बिंदु का गणनीय समिष्टीय आधार हो तो समिष्ट प्रथम-गणनीय होता है। प्रांगणिकी और बिंदु x के लिए आधार दिया गया हो तो x को सम्मिलित करने वाले सभी आधार सेट x पर स्थानिक आधार बनाते हैं। इस प्रकार, यदि किसी प्रांगणिकी के लिए गणनीय आधार होती है तो हर बिंदु पर गणनीय स्थानिक आधार होती है, और इसलिए हर द्वितीय-गणनीय समिष्ट भी पहल-गणनीय समिष्ट होता है। चूंकि, कोई भी अगणित विचक्षण समिष्ट पहल-गणनीय होता है किन्तु द्वितीय-गणनीय नहीं होता है।
द्वितीय-गणनीयता अन्य प्रांगणिक गुणों को सूचित करती है। विशेष रूप से, प्रत्येक दूसरा-गणनीय समिष्ट वियोज्य समिष्ट है (इसमें गणनीय सघन (प्रांगणिकी) उपसमुच्चय है) और लिंडेलोफ समिष्ट लिंडेलोफ (प्रत्येक बंधनरहित आवरण में गणनीय उपकवर होता है)। इसका कोई विपरीत प्रभाव नहीं होते हैं। उदाहरण के लिए, वास्तविक रेखा पर निचली सीमा प्रांगणिकी प्रथम-गणनीय, वियोज्य और लिंडेलॉफ है, किन्तु द्वितीय-गणनीय नहीं है। चूँकि, मीट्रिक रिक्त समिष्ट के लिए, द्वितीय-गणनीय, वियोज्य और लिंडेलोफ़ होने के गुण सभी समान होते हैं।[1] इसलिए, वास्तविक रेखा पर निचली सीमा प्रांगणिकी मापीयता नहीं है।
दूसरे-गणनीय स्थानों में - जैसा कि मीट्रिक स्थानों में होता है - सघन स्थान,अनुक्रमिक संघटितता, और गणनीय संघटितता सभी समान गुण हैं।
यूरिसोह्न के सांकलन सिद्धांत कहता है कि प्रत्येक द्वितीय-गिनतीय, हॉसडॉर्फ समिष्ट नियमित समिष्ट सांकलन योग्य होता है। इससे यह निष्कर्ष निकलता है कि ऐसा प्रत्येक समिष्ट पूरी प्रकार से सामान्य समिष्ट होने के साथ-साथ परा-सुसंहत भी है। इसलिए द्वितीय-गणनीयता प्रांगणिकीय समिष्ट पर प्रतिबंधात्मक संपत्ति है, जिसके लिए मापनीयता को दर्शाने के लिए मात्र पृथक्करण सिद्धांत की आवश्यकता होती है।
अन्य गुण
- द्वितीय-गणनीय समिष्ट की सतत, खुली मानचित्र छवि (गणित) द्वितीय-गणनीय होती है।
- द्वितीय-गणनीय समिष्ट का प्रत्येक उप-समिष्ट (प्रांगणिकी ) द्वितीय-गणनीय होता है।
- द्वितीय-गणनीय स्थानों के भागफल समिष्ट (प्रांगणिकी) को द्वितीय-गणनीय होने की आवश्यकता नहीं है; चूँकि, बंधनरहित प्रतिसमिष्ट सदैव द्वितीय-गणनीय होते हैं।
- किसी द्वितीय-गणनीय समिष्ट का कोई भी गणनीय उत्पाद समिष्ट द्वितीय-गणनीय है, चूँकि अनगिनत उत्पादों की आवश्यकता नहीं होती है।
- द्वितीय-गणनीय T1 समिष्ट की प्रांगणिकी की प्रमुखता c (सातत्य की कार्यमाप) से कम या उसके समान होती है।
- दूसरे गणनीय समिष्ट के लिए किसी भी आधार में गणनीय उपपरिवार होता है जो अभी भी आधार है।
- द्वितीय-गणनीय समिष्ट में असंयुक्त बंधनरहित समुच्चय का प्रत्येक संग्रह गणनीय होती है।
उदाहरण और प्रति उदाहरण
- असंयुक्त गणनीय संघ पर विचार करें . अंतराल के बाएँ छोर की पहचान करके तुल्यता संबंध और भागफल प्रांगणिकी को परिभाषित करें - अर्थात, 0 ~ 2 ~ 4 ~ … ~ 2k और इसी प्रकार की पहचान करें। X द्वितीय-गणनीय स्थानों के गणनीय संघ के रूप में, द्वितीय-गणनीय है। चूँकि, X/~ पहचाने गए बिंदुओं के सहसमुच्चय पर प्रथम-गणनीय नहीं है और इसलिए द्वितीय-गणनीय भी नहीं है।
- उपरोक्त समिष्ट स्पष्ट मीट्रिक से संपन्न तुल्यता वर्गों के समान सेट के लिए समरूप नहीं है: अर्थात, ही अंतराल में दो बिंदुओं के लिए नियमित यूक्लिडियन दूरी, और समान अंतराल में नहीं रहने वाले बिंदुओं के लिए बाएं हाथ के बिंदु की दूरी का योग - जो उपरोक्त समिष्ट की समानता में अधिक कठोर प्रांगणिकी देता है। यह अलग करने योग्य मीट्रिक समिष्ट है (तर्कसंगत बिंदुओं के सेट पर विचार करें), और इसलिए यह द्वितीय-गणनीय होता है।
- लंबी रेखा (प्रांगणिकी) द्वितीय-गणनीय नहीं है, किन्तु प्रथम-गणनीय है।
टिप्पणियाँ
- ↑ Willard, theorem 16.11, p. 112
संदर्भ
- स्टीफन विलार्ड, जनरल प्रांगणिकी , (1970) एडिसन-वेस्ले पब्लिशिंग कंपनी, रीडिंग मैसाचुसेट्स।
- जॉन जी. हॉकिंग और गेल एस. यंग (1961)। प्रांगणिकी । संशोधित पुनर्मुद्रण, डोवर, 1988। ISBN 0-486-65676-4