जॉर्डन सामान्य रूप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}}
{{short description|Form of a matrix indicating its eigenvalues and their algebraic multiplicities}}
[[File:Jordan canonical form.svg|thumb|360px|जॉर्डन मानक रूप में मैट्रिक्स का उदाहरण। इस मैट्रिक्स में दिखाए गए सभी मैट्रिक्स आंश शून्य हैं। बाहरी वर्धिमान के वर्तमान ब्लॉकों को "जॉर्डन ब्लॉक" के रूप में जाना जाता है। प्रत्येक जॉर्डन ब्लॉक मुख्य रेखा पर नंबर लैम्बडा को समावेश करता है, और मुख्य रेखा के ऊपर वन होता है। लैम्बडा मैट्रिक्स के इजेनवैल्यूज़ हैं; वे अलग होने की आवश्यकता नहीं है।]]रैखिक बीजगणित में, जॉर्डन सामान्य रूप, जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,<ref>
[[File:Jordan canonical form.svg|thumb|360px|जॉर्डन सामान्य रूप में मैट्रिक्स का उदाहरण। नहीं दिखाई गई सभी मैट्रिक्स प्रविष्टियाँ शून्य हैं। रेखांकित वर्गों को जॉर्डन ब्लॉक के रूप में जाना जाता है। प्रत्येक जॉर्डन ब्लॉक में इसके मुख्य विकर्ण पर नंबर लैम्ब्डा होता है, और मुख्य विकर्ण के ऊपर नंबर होता है। लैम्ब्डा मैट्रिक्स के आइगेनवैल्यू हैं; उन्हें अलग होने की आवश्यकता नहीं है.]]रैखिक बीजगणित में, जॉर्डन सामान्य रूप, जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,<ref>
Shilov defines the term ''Jordan canonical form'' and in a footnote says that ''Jordan normal form'' is synonymous.
Shilov defines the term ''Jordan canonical form'' and in a footnote says that ''Jordan normal form'' is synonymous.
These terms are sometimes shortened to ''Jordan form''. (Shilov)
These terms are sometimes shortened to ''Jordan form''. (Shilov)
The term ''Classical canonical form'' is also sometimes used in the sense of this article. (James & James, 1976)
The term ''Classical canonical form'' is also sometimes used in the sense of this article. (James & James, 1976)
</ref><ref name="Holt 2009 9">{{harvtxt|Holt|Rumynin|2009|p=9}}</ref>
</ref><ref name="Holt 2009 9">{{harvtxt|Holt|Rumynin|2009|p=9}}</ref>
विशेष रूप का [[ऊपरी त्रिकोणीय मैट्रिक्स]] होती है जिसे [[जॉर्डन मैट्रिक्स]] कहा जाता है और यह किसी [[आधार (रैखिक बीजगणित)]] के संबंध में किसी [[परिमित-आयामी]] [[सदिश स्थल]] पर [[रैखिक ऑपरेटर]] का प्रतिनिधित्व करता है। ऐसे मैट्रिक्स में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के समान होती है, मुख्य विकर्ण के ठीक ऊपर ([[ अतिविकर्ण |अतिविकर्ण]] पर), और उनसे बाएं और नीचे की ओर अभिज्ञ रेखाओं के समान रेखांक होते हैं।
विशेष रूप का [[ऊपरी त्रिकोणीय मैट्रिक्स]] है जिसे [[जॉर्डन मैट्रिक्स]] कहा जाता है जो कुछ [[आधार (रैखिक बीजगणित)]] के संबंध में [[परिमित-आयामी]] [[सदिश स्थल]] पर [[रैखिक ऑपरेटर]] का प्रतिनिधित्व करता है। ऐसे मैट्रिक्स में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के समान होती है, मुख्य विकर्ण के ठीक ऊपर ([[ अतिविकर्ण | अतिविकर्ण]] पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं।


V फ़ील्ड K पर वेक्टर स्थान हो। फिर मैट्रिक्स के प्रति ऐसा आधार उपस्थित होता है जिसके संबंध में आवश्यक रूप होता है यदि मैट्रिक्स के सभी [[eigenvalue|इगनवैल्यूज]] ​​K में स्थित होते हैं, या समतुल्य रूप से यदि ऑपरेटर का [[विशेषता बहुपद]] K पर अधिकतर रूपों में विखंडित होता है। यदि K [[बीजगणितीय रूप से बंद]] होता है (उदाहरण के लिए, यदि यह [[जटिल संख्या]]ओं का क्षेत्र होता है) तो यह शर्त सदैव पूरी होती है। सामान्य रूप के वादों के डायगोनल आंश इजेनवैल्यूज़ (ऑपरेटर के) होते हैं, और प्रत्येक इजेनवैल्यू के आवर्ती घटकों की बारम्बारी को उपयोग किया जाता है इजेनवैल्यू की [[बीजगणितीय बहुलता]] कहा जाता है। <ref name= Beauregard 1973 310–316 >{{harvtxt|Beauregard|Fraleigh|1973|pp=310–316}}</ref><ref name="Golub 1996 354">{{harvtxt|Golub|Van Loan|1996|p=355}}</ref>
मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में मैट्रिक्स का आवश्यक रूप उपस्थित है, यदि मैट्रिक्स के सभी [[eigenvalue|इगनवैल्यूज]] ​​K में हैं, या समकक्ष यदि ऑपरेटर की [[विशेषता बहुपद]] है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K [[बीजगणितीय रूप से बंद]] है (उदाहरण के लिए, यदि यह [[जटिल संख्या]]ओं का क्षेत्र है) तो यह स्थिति सदैव संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज ​​​​(ऑपरेटर के) हैं, और प्रत्येक इगनवैल्यू होने की संख्या को इगनवैल्यू की [[बीजगणितीय बहुलता]] कहा जाता है। <ref name= Beauregard 1973 310–316 >{{harvtxt|Beauregard|Fraleigh|1973|pp=310–316}}</ref><ref name="Golub 1996 354">{{harvtxt|Golub|Van Loan|1996|p=355}}</ref><संदर्भ नाम = नेरिंग 1970 118-127 >{{harvtxt|Nering|1970|pp=118–127}}</ref>


यदि ऑपरेटर मूल रूप से [[वर्ग मैट्रिक्स|वर्गीकृत मैट्रिक्स]] M द्वारा दी गई हो, तो उसका जॉर्डन मानक रूप भी M के जॉर्डन मानक रूप कहलाता है। किसी भी वर्गीकृत मैट्रिक्स का जॉर्डन मानक रूप होता है यदि संख्या क्षेत्र में तारकों के सभी इजेनवैल्यूज़ को सम्मिलित करने के लिए विस्तारित किया जाता है। इसके नाम के अतिरिक्त, दिए गए M के लिए सामान्य रूप पूरी प्रकार से अद्वितीय नहीं होता है, क्योंकि यह [[जॉर्डन ब्लॉक]] से बनी ब्लॉक डायगोनल मैट्रिक्स होता है, जिसके क्रम को निर्धारित नहीं किया जाता है; यह पारंपरिक रूप से ही इजेनवैल्यू के लिए ब्लॉकों को समूहीकृत करने के लिए होता है, किन्तु इजेनवैल्यूज़ के बीच कोई क्रमबद्धता नहीं होती है, और ही इजेनवैल्यू के ब्लॉकों के बीच कोई क्रमबद्धता नहीं होती है, चूंकि आपात रूप से उनके आकार के तेजी से घटते क्रम में क्रमबद्ध किया जा सकता है।<ref name= Beauregard 1973 310 -316/><ref name="Golub 1996 354"/>
यदि ऑपरेटर मूल रूप से [[वर्ग मैट्रिक्स]] एम के लिए दिया गया है, तो इसके जॉर्डन सामान्य रूप को एम का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग मैट्रिक्स में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज ​​​​से युक्त तक बढ़ाया जाता है आव्यूह। इसके नाम के अतिरिक्त, किसी दिए गए एम के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह [[जॉर्डन ब्लॉक]] से बना ब्लॉक विकर्ण मैट्रिक्स है, जिसका क्रम निश्चित नहीं है; समान इगनवैल्यू के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, किन्तु इगनवैल्यूज ​​​​के बीच कोई क्रम नहीं लगाया जाता है, ही किसी दिए गए इगनवैल्यू के लिए ब्लॉकों के बीच, चूंकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है।<ref name= Beauregard 1973 310 -316/><ref name="Golub 1996 354"/><रेफ नाम = नेरिंग 1970 118-127 />


जॉर्डन-शेवले वितरण, ऑपरेटर के लिए जहां ऑपरेटर अपने जॉर्डन मानक रूप को ले लेता है के प्रति विशेष रूप से सरल होता है। [[विकर्णीय]] मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए [[सामान्य मैट्रिक्स]],का विशेष मामला होता है, जो जॉर्डन मानक रूप का विशेष प्रकार होता है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=270–274}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=353}}</ref><ref>{{harvtxt|Nering|1970|pp=113–118}}</ref>
जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। [[विकर्णीय]] मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए [[सामान्य मैट्रिक्स]], जॉर्डन सामान्य रूप का विशेष स्थिति है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=270–274}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=353}}</ref><ref>{{harvtxt|Nering|1970|pp=113–118}}</ref>


जॉर्डन सामान्य रूप का नाम [[केमिली जॉर्डन|कैमिल जॉर्डन]] के नाम पर रखा गया है, जिन्होंने 1870 में पहली बार जॉर्डन विभाजन सिद्धांत की घोषणा की थी।<ref name="Brechenmacher-thesis">Brechenmacher, [https://tel.archives-ouvertes.fr/tel-00142786 "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition"], Thesis, 2007</ref>
जॉर्डन सामान्य रूप का नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।<ref name="Brechenmacher-thesis">Brechenmacher, [https://tel.archives-ouvertes.fr/tel-00142786 "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition"], Thesis, 2007</ref>




Line 20: Line 20:


=== संकेतन ===
=== संकेतन ===
कुछ पाठ्यपुस्तकें [[उपविकर्ण]] पर होती हैं; अर्थात, सुपरविकर्ण के अतिरिक्त मुख्य विकर्ण के ठीक नीचे। स्वदेशी मान अभी भी मुख्य विकर्ण पर हैं।<ref>{{harvtxt|Cullen|1966|p=114}}</ref><ref>{{harvtxt|Franklin|1968|p=122}}</ref>
कुछ पाठ्यपुस्तकें [[उपविकर्ण]] पर होती हैं; अर्थात, सुपरविकर्ण के अतिरिक्त मुख्य विकर्ण के ठीक नीचे। आइगेनवैल्यू अभी भी मुख्य विकर्ण पर हैं।<ref>{{harvtxt|Cullen|1966|p=114}}</ref><ref>{{harvtxt|Franklin|1968|p=122}}</ref>
=== प्रेरणा ===
=== प्रेरणा ===
n × n मैट्रिक्स A [[विकर्णीय मैट्रिक्स]] है यदि और केवल यदि ईजेनस्पेस के आयामों का योग n है। या, समकक्ष रूप से, यदि और केवल यदि A में n [[रैखिक रूप से स्वतंत्र]] [[eigenvectors|इगनवेक्टर्स]] हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह आव्यूह कहलाते हैं। निम्नलिखित मैट्रिक्स पर विचार करें:
n × n मैट्रिक्स A [[विकर्णीय मैट्रिक्स]] है यदि और एकमात्र  ईजेनस्पेस के आयामों का योग n है। या, समकक्ष रूप से, यदि और एकमात्र  यदि A में n [[रैखिक रूप से स्वतंत्र]] [[eigenvectors|इगनवेक्टर्स]] हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह आव्यूह कहलाते हैं। निम्नलिखित मैट्रिक्स पर विचार करें:


: <math>A =
: <math>A =
Line 32: Line 32:
   \end{array}\right].
   \end{array}\right].
</math>
</math>
बहुलता सहित, A के इगनवैल्यूज ​​​​λ = 1, 2, 4, 4 हैं। इगनवैल्यू 4 के अनुरूप इगनस्पेस का आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। चूँकि, व्युत्क्रमणीय मैट्रिक्स P इस प्रकार है कि J = P<sup>−1</sup>AP, जहाँ
बहुलता सहित, A के इगनवैल्यूज ​​​​λ = 1, 2, 4, 4 हैं। इगनवैल्यू 4 के अनुरूप इगनस्पेस का Hamel आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। यद्यपि, व्युत्क्रमणीय मैट्रिक्स P इस प्रकार है कि J = P<sup>−1</sup>एपी, कहां


:<math>J = \begin{bmatrix}
:<math>J = \begin{bmatrix}
Line 40: Line 40:
   0 & 0 & 0 & 4
   0 & 0 & 0 & 4
\end{bmatrix}.</math>
\end{bmatrix}.</math>
गणित का सवाल <math>J</math> अधिकतर विकर्ण है। यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग उदाहरण गणना का विवरण भरता है।
गणित का सवाल <math>J</math> अधिकतर विकर्ण है. यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग उदाहरण गणना का विवरण भरता है।


==संमिश्र आव्यूह ==
==संमिश्र आव्यूह ==
Line 50: Line 50:
\;  & \ddots & \; \\  
\;  & \ddots & \; \\  
\;  & \;    & J_p\end{bmatrix}</math>
\;  & \;    & J_p\end{bmatrix}</math>
जहां प्रत्येक ब्लॉक J<sub>i</sub> फॉर्म का वर्ग मैट्रिक्स है
जहां प्रत्येक ब्लॉक जे<sub>i</sub>प्रपत्र का वर्ग मैट्रिक्स है


:<math>J_i =  
:<math>J_i =  
Line 59: Line 59:
\;        & \;          & \;    & \lambda_i       
\;        & \;          & \;    & \lambda_i       
\end{bmatrix}.</math>
\end{bmatrix}.</math>
तो व्युत्क्रमणीय मैट्रिक्स P उपस्थित है जैसे कि P<sup>−1</sup>AP = J होता है, जहां J जॉर्डन मानक रूप होता है। J के केवल ग़ैर-शून्य प्रविष्टियाँ आपके मैट्रिक्स की डायगनल और सुपरडायगनल पर होती हैं। हर ''J<sub>i</sub>'' को A का जॉर्डन ब्लॉक कहा जाता है। दिए गए जॉर्डन ब्लॉक में, सुपरडायगनल पर हर प्रविष्टि 1 होती है।
तो व्युत्क्रमणीय मैट्रिक्स P उपस्थित है जैसे कि P<sup>−1</sup>AP = J ऐसा है कि J की एकमात्र  गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक J<sub>''i''</sub> का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपरडायगोनल पर प्रत्येक प्रविष्टि 1 है।


इस परिणाम को मानते हुए, हम निम्नलिखित गुणों को निष्कर्षित कर सकते हैं:
इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं:


* बहुलताओं की गणना करते हुए, J और इसलिए A के इजेनवैल्यू होते हैं। वे डायगनल प्रविष्टियों के समान होते हैं।
* बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं।
* इगनवैल्यू λ<sub>''i''</sub> को दिया गया है, उसकी [[ज्यामितीय बहुलता|ज्यामितीय]] वही होती है जो ker(''A'' − ''λ<sub>i</sub>'' ''I''), की आयामिक ज्यामिति होती है, जहां I वह एकता मैट्रिक्स है, और यह ''λ<sub>i</sub>'' के संबंधित जॉर्डन ब्लॉकों की संख्या होती है।<ref name="HJp321">{{harvtxt|Horn|Johnson|1985|loc=§3.2.1}}</ref>
* इगनवैल्यू λ दिया गया है<sub>''i''</sub>, इसकी [[ज्यामितीय बहुलता]] ker(''A'' − ''λ'' का आयाम है<sub>''i'' </sub>I), जहां I पहचान मैट्रिक्स है, और यह λ के अनुरूप जॉर्डन ब्लॉक की संख्या है<sub>''i''</sub>.<ref name="HJp321">{{harvtxt|Horn|Johnson|1985|loc=§3.2.1}}</ref>
* इजेनवैल्यू ''λ<sub>i</sub>'' के सभी जॉर्डन ब्लॉकों के आकारों की योग है वही होती है जो उसकी बीजगणित ज्यामिति होती है।<ref name="HJp321" />
* इगनवैल्यू λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योग<sub>''i''</sub> इसकी बीजगणितीय बहुलता है.<ref name="HJp321" />* A विकर्णीय है यदि और एकमात्र  यदि, A के प्रत्येक इगनवैल्यू λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस स्थितियों में जॉर्डन ब्लॉक 1 × 1 मैट्रिक्स हैं; अर्थात् अदिश होता है |
*A डायगनलाइज़ किया जा सकता है यदि और केवल यदि, प्रत्येक इजेनवैल्यू λ के लिए, उसकी ज्यामिति और बीजगणित ज्यामिति मेल खाती हो। विशेष रूप से, इस स्थितियों में जॉर्डन ब्लॉक 1 × 1 मैट्रिक्सओं, अर्थात् स्केलर्स होते हैं।
* λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N [[निलपोटेंट मैट्रिक्स]] है जिसे N के रूप में परिभाषित किया गया है<sub>''ij''</sub> =डी<sub>i</sub><sub>,''j''&minus;1</sub> (जहाँ δ [[क्रोनकर डेल्टा]] है)। एफ() की गणना करते समय एन की शून्यक्षमता का उपयोग किया जा सकता है जहां एफ जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है।
* λ के संबंधित जॉर्डन ब्लॉक का आकार ''λI'' + ''N'' का होता है, जहां ''N'' [[निलपोटेंट मैट्रिक्स]] है जिसे ''N<sub>ij</sub>'' = ''δ<sub>i</sub>''<sub>,''j''−1</sub> (यहां δ [[क्रोनकर डेल्टा]] है) के रूप में परिभाषित किया जाता है। N की शून्यता को ''f''(''A'') की गणितीय फ़ंक्शन की गणना करते समय उपयोग किया जा सकता है। उदाहरण के लिए, सिद्धांती रूप से, जॉर्डन रूप व्यक्त कर सकता है व्यापक exp(''A'') के लिए बंद रूप व्यक्त कर सकता है।
* कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) है<sup>j</sup> − dim ker(A − λI)<sup>ज</sup><sup>−1</sup>. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है
* आकार j से कम संख्या के जॉर्डन ब्लॉकों की संख्या dim ker(''A'' ''λI'')<sup>''j''</sup> − dim ker(''A'' ''λI'')<sup>''j''−1</sup> होती है। इस प्रकार, आकार j के जॉर्डन ब्लॉकों की संख्या होती है
*:<math>2 \dim \ker (A - \lambda_i I)^j - \dim \ker (A - \lambda_i I)^{j+1} - \dim \ker (A - \lambda_i I)^{j-1}</math>
*:<math>2 \dim \ker (A - \lambda_i I)^j - \dim \ker (A - \lambda_i I)^{j+1} - \dim \ker (A - \lambda_i I)^{j-1}</math>
* इजेनवैल्यू ''λ<sub>i</sub>'' को दिया गया है, तो इसकी न्यूनतम बहुपदी मैट्रिक्स में इसकी गुणांकन ग़ुनांतर्गति होती है।
* इगनवैल्यू λ दिया गया है<sub>''i''</sub>, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के समान  है।


=== उदाहरण ===
=== उदाहरण ===
मैट्रिक्स पर विचार करें <math>A</math> पूर्व अनुभाग में उदाहरण से . जॉर्डन सामान्य रूप कुछ [[मैट्रिक्स समानता]] द्वारा प्राप्त किया जाता है:
मैट्रिक्स पर विचार करें <math>A</math> पिछले अनुभाग के उदाहरण से. जॉर्डन सामान्य रूप कुछ [[मैट्रिक्स समानता]] के लिए  प्राप्त किया जाता है:


:<math>P^{-1}AP = J;</math> वह है, <math>AP = PJ.</math>
:<math>P^{-1}AP = J;</math> वह है, <math>AP = PJ.</math>
Line 89: Line 88:
:<math> (A - 4 I) p_3 = 0 </math>
:<math> (A - 4 I) p_3 = 0 </math>
:<math> (A - 4 I) p_4 = p_3. </math>
:<math> (A - 4 I) p_4 = p_3. </math>
के लिए <math>i = 1,2,3</math> हमारे पास है <math>p_i \in \ker(A-\lambda_{i} I)</math>, वह है, <math>p_i</math> का इगनवेक्टर है <math>A</math> इगनवैल्यू के अनुरूप <math>\lambda_i</math>. के लिए <math>i=4</math>, दोनों पक्षों को गुणा करने पर <math>(A-4I)</math> देता है
के लिए <math>i = 1,2,3</math> अपने पास <math>p_i \in \ker(A-\lambda_{i} I)</math>, वह है, <math>p_i</math> का इगनवेक्टर है <math>A</math> इगनवैल्यू के अनुरूप <math>\lambda_i</math>. के लिए <math>i=4</math>, दोनों पक्षों को गुणा करने पर <math>(A-4I)</math> देता है
:<math> (A-4I)^2 p_4 = (A-4I) p_3. </math>
:<math> (A-4I)^2 p_4 = (A-4I) p_3. </math>
किन्तु <math>(A-4I)p_3 = 0</math>, इसलिए
लेकिन <math>(A-4I)p_3 = 0</math>, इसलिए
:<math> (A-4I)^2 p_4 = 0. </math>
:<math> (A-4I)^2 p_4 = 0. </math>
इस प्रकार, <math>p_4 \in \ker(A-4 I)^2.</math>
इस प्रकार, <math>p_4 \in \ker(A-4 I)^2.</math>
वेक्टर जैसे <math>p_4</math> A के [[सामान्यीकृत eigenvector|सामान्यीकृत इगनवेक्टर्स]] कहलाते हैं।
वेक्टर जैसे <math>p_4</math> A के [[सामान्यीकृत eigenvector|सामान्यीकृत इगनवेक्टर्स]] कहलाते हैं।


Line 113: Line 111:
A का अभिलक्षणिक बहुपद है
A का अभिलक्षणिक बहुपद है
:<math> \begin{align} \chi(\lambda) & = \det(\lambda I - A) \\ &  = \lambda^4 - 11 \lambda^3 + 42 \lambda^2 - 64 \lambda + 32  \\ & = (\lambda-1)(\lambda-2)(\lambda-4)^2. \, \end{align} </math>
:<math> \begin{align} \chi(\lambda) & = \det(\lambda I - A) \\ &  = \lambda^4 - 11 \lambda^3 + 42 \lambda^2 - 64 \lambda + 32  \\ & = (\lambda-1)(\lambda-2)(\lambda-4)^2. \, \end{align} </math>
यह दिखाता है कि इजेनवैल्यू 1, 2, 4 और 4 हैं, बीजगणित ज्यामिति के अनुसार। इजेनवैल्यू 1 के संबंधित इजेनस्पेस को समीकरण ''Av'' = ''λv'' को हल करके प्राप्त किया जा सकता है। यह (−1, 1, 0, 0)<sup>T</sup> नामक स्तंभ वेक्टर ''v'' द्वारा प्रश्न किया जा सकता है। उसी प्रकार, इजेनवैल्यू 2 के संबंधित इजेनस्पेस को (−1, 1, 0, 0)<sup>T</sup> द्वारा प्रश्न किया जा सकता है। अंतिम रूप में, इजेनवैल्यू 4 के संबंधित इजेनस्पेस भी एकमात्रिकी होता है (चूंकि यह डबल इजेनवैल्यू है) और यह (−1, 1, 0, 0)<sup>T</sup> द्वारा प्रश्न किया जा सकता है। इसलिए, प्रत्येक तीन इजेनवैल्यू की ज्यामिति (अर्थात दिए गए इजेनवैल्यू के इजेनस्पेस की आयामिकता) है। इसलिए, 4 के समान दो इजेनवैल्यू ही जॉर्डन ब्लॉक के संबंध में होते हैं, और मैट्रिक्स A का जॉर्डन मानक निर्माण नियम सीधे योग स्वरूप होता है।
इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज ​​​​1, 2, 4 और 4 हैं। इगनवैल्यू 1 के अनुरूप इगनस्पेस समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम वेक्टर v = (−1, 1, 0, 0) के लिए  फैलाया गया है<sup>टी</sup>. इसी प्रकार, इगनवैल्यू 2 के संगत इगनस्पेस को w = (1, −1, 0, 1) के लिए  फैलाया गया है।<sup>टी</sup>. अंत में, इगनवैल्यू 4 के अनुरूप इगनस्पेस भी एक-आयामी है (भले ही यह दोहरा इगनवैल्यू है) और x = (1, 0, −1, 1) के लिए  फैला हुआ है<sup>टी</sup>. तो, तीनों इगनवैल्यूज ​​​​में से प्रत्येक की ज्यामितीय बहुलता (यानी, दिए गए इगनवैल्यू के इगनस्पेस का आयाम) है। इसलिए, 4 के समान दो इगनवैल्यूज ​​​​ एकल जॉर्डन ब्लॉक के अनुरूप हैं, और मैट्रिक्स का जॉर्डन सामान्य रूप मैट्रिक्स जोड़ # प्रत्यक्ष योग है
:<math> J = J_1(1) \oplus J_1(2) \oplus J_2(4) =  
:<math> J = J_1(1) \oplus J_1(2) \oplus J_2(4) =  
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}. </math>
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}. </math>
तीन जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इजेनवैल्यू ​​​​1 और 2 के अनुरूप है। इजेनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें
तीन सामान्यीकृत ईजेनवेक्टर#जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज ​​​​1 और 2 के अनुरूप हैं। इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें
: <math>\ker(A-4I)^2 = \operatorname{span} \, \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 1 \end{array} \right] \right\}</math>
: <math>\ker(A-4I)^2 = \operatorname{span} \, \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \left[ \begin{array}{r} 1 \\ 0 \\ -1 \\ 1 \end{array} \right] \right\}</math>
जहां 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में वेक्टर चुनें जो ''A'' − 4I के कर्नेल में नहीं है; उदाहरण के लिए, ''y'' = (1,0,0,0)<sup>T</sup> अब, (''A'' 4''I'')''y'' = ''x'' और (''A'' 4''I'')''x'' = 0, so , इसलिए {''y'', ''x''} इजेनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है।
जहां I 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में वेक्टर चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)<sup>टी</sup>. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है।


संक्रमण मैट्रिक्स P इस प्रकार है कि P<sup>−1</sup>AP = J इन वैक्टरों को दूसरे के बगल में रखकर निम्नानुसार बनाया जाता है
संक्रमण मैट्रिक्स P इस प्रकार है कि P<sup>−1</sup>AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है
:<math> P = \left[\begin{array}{c|c|c|c} v & w & x & y \end{array}\right] =  
:<math> P = \left[\begin{array}{c|c|c|c} v & w & x & y \end{array}\right] =  
\left[ \begin{array}{rrrr}
\left[ \begin{array}{rrrr}
Line 128: Line 126:
  0 &  1 &  1 &  0
  0 &  1 &  1 &  0
\end{array} \right]. </math>
\end{array} \right]. </math>
गणना से पता चलता है कि समीकरण ''P''<sup>−1</sup>''AP'' = ''J'' वास्तव में सही है।
गणना से पता चलता है कि समीकरण पी<sup>−1</sup>एपी = जे वास्तव में कायम है।
 
:<math>P^{-1}AP=J=\begin{bmatrix}
:<math>P^{-1}AP=J=\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
Line 134: Line 133:
0 & 0 & 4 & 1 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 4 \end{bmatrix}.</math>
0 & 0 & 0 & 4 \end{bmatrix}.</math>
यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। चूँकि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं।
यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। हालाँकि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं।


== सामान्यीकृत ईजेनवेक्टर ==
== सामान्यीकृत ईजेनवेक्टर ==
{{main|सामान्यीकृत ईजेनवेक्टर}}
{{main|सामान्यीकृत ईजेनवेक्टर}}


प्रत्येक इजेनवैल्यू λ के संबंधित प्रत्येक जॉर्डन ब्लॉक से लिंयरली स्वतंत्र वेक्टरों की '[[जॉर्डन श्रृंखला]]' उत्पन्न होती है, पि, i = 1, ..., b, यहां b जॉर्डन ब्लॉक का आकार है। चेन का उत्पादक, या अग्रणी वेक्टर, pb सामान्यीकृत इजेनवैक्टर होता है जिसके लिए (''A'' ''λ'''''I''')<sup>''b''</sup>''p<sub>b</sub>'' = 0 होता है। वेक्टर ''p''<sub>1</sub> = (''A'' − ''λ'''''I''')<sup>''b''−1</sup>''p<sub>b</sub>'' इजेनवैल्यू λ के संबंध में सामान्य एजेनवैक्टर होता है। सामान्यतः, pi पूर्वछवि होता है जो A − λI के अधीन ''p<sub>i</sub>''<sub>−1</sub> का प्रतिछवि होता है। इस प्रकार, अग्रणी वेक्टर A − λI के द्वारा गुणांकन के माध्यम से चेन का उत्पादन करता है।<ref>{{harvtxt|Bronson|1970|pp=189,194}}</ref><ref name="Holt 2009 9" /> इसलिए हर वर्गीकृत मैट्रिक्स A को जॉर्डन मानक रूप में रखने का कथन यहां तक है कि यह प्रमाणित है कि मूल वेक्टर स्थान पर जॉर्डन चेनों से बनी आधार होती है।
इगनवैल्यू λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर पी की '[[जॉर्डन श्रृंखला]]' को जन्म देता है<sub>i</sub>, i = 1, ..., b, जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', पी<sub>b</sub>श्रृंखला का सामान्यीकृत इगनवेक्टर है जैसे कि (A − λ'I')<sup>बी</sup><sub>''b''</sub> = 0. वेक्टर पी<sub>1</sub> = (ए - λ'आई')<sup>b−1</sup>p<sub>''b''</sub> λ के अनुरूप साधारण इगनवेक्टर है। सामान्य तौर पर, पी<sub>''i''</sub> पी की पूर्व छवि है<sub>''i''−1</sub> A - λ'I' के अंतर्गत। तो लीड वेक्टर A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।<ref>{{harvtxt|Bronson|1970|pp=189,194}}</ref><ref name="Holt 2009 9" />इसलिए यह कथन कि प्रत्येक वर्ग मैट्रिक्स को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के समान  है कि अंतर्निहित वेक्टर स्थान का आधार जॉर्डन श्रृंखलाओं से बना है।


=== प्रमाण ===
=== प्रमाण ===
हम इसे बतौर सिद्धांत सिद्ध करने के लिए इंद्रधनुष के द्वारा दिया गया प्रमाण का प्रदर्शन करते हैं कि किसी भी विशिष्ट रूप में जोर्डन मानक रूप में पुट किया जा सकता है<ref>Roe Goodman and Nolan R. Wallach, ''Representations and Invariants of Classical Groups'', Cambridge UP 1998, Appendix B.1.</ref> क्योंकि आधारभूत वेक्टर स्थान को इजेनवैल्यूज़ से जुड़े स्थिर उपस्थितियों का सीधा योग होता है, इसलिए A को केवल इजेनवैल्यू λ होने की मान्यता दी जा सकती है। 1 × 1 मामला सरल होता है। A, n × n मैट्रिक्स हो, ''A'' − ''λ'''''I''' की सीमा, Ran(A − λI) को, A का ''[[अपरिवर्तनीय उपस्थान]]'' की तरफ़ दिखाया जा सकता है। इसके साथ ही, λ A का इजेनवैल्यू होने के कारण, Ran(''A'' − ''λ'''''I''') की आयामिकता, r, n से सख्त कम होती है, इसलिए, इंद्रधनुष के द्वारा प्रदर्शित की गई आनुपातिकता के अनुसार, Ran(''A'' − ''λ'''''I''') का आधार {''p''<sub>1</sub>, …, ''p<sub>r</sub>''} जोर्डन चेनों से मिलकर बनाया जा सकता है।
हम प्रेरण के लिए प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग मैट्रिक्स ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश स्थान दिखाया जा सकता है<ref>Roe Goodman and Nolan R. Wallach, ''Representations and Invariants of Classical Groups'', Cambridge UP 1998, Appendix B.1.</ref> इगनवैल्यूज ​​​​से जुड़े अपरिवर्तनीय उप-स्थानों का प्रत्यक्ष योग होने के लिए, A को एकमात्र  इगनवैल्यू λ माना जा सकता है। 1×1 मामला मामूली है. मान लीजिए A n × n मैट्रिक्स है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I'' के लिए  निरूपित किया जाता है, A का [[अपरिवर्तनीय उपस्थान]] है। इसके अलावा, चूँकि λ A का इगनवैल्यू है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p<sub>1</sub>, …, पी''r''</sub>}जॉर्डन श्रृंखलाओं से बना है।
   
   
इसके बाद [[कर्नेल (रैखिक बीजगणित)]] पर विचार करें, अर्थात, [[रैखिक उपस्थान]] केर (ए − λ'I')। यदि
इसके बाद [[कर्नेल (रैखिक बीजगणित)]] पर विचार करें, यानी, [[रैखिक उपस्थान]] केर (ए − λ'I')। अगर


:<math>\operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) = \{0\},</math>
:<math>\operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) = \{0\},</math>
वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह मामला होगा, उदाहरण के लिए, यदि A [[हर्मिटियन मैट्रिक्स]] था।)
वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह मामला होगा, उदाहरण के लिए, यदि [[हर्मिटियन मैट्रिक्स]] था।)


अन्यथा,  
अन्यथा, यदि


:<math>Q = \operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) \neq \{0\},</math>
:<math>Q = \operatorname{Ran}(A - \lambda I) \cap \ker(A - \lambda I) \neq \{0\},</math>
माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर इजेनवैक्टर होता है, इसलिए Ran(A − λI) में s जॉर्डन चेनों का अवशिष्ट होना चाहिए, जो s लीनियरली स्वतंत्र इजेनवैक्टरों के संबंध में होते हैं। इसलिए आधार {''p''<sub>1</sub>, ..., ''p<sub>r</sub>'' } में s वेक्टर होने चाहिए, कहें {''p<sub>r</sub>''<sub>−''s''+1</sub>, ..., ''p<sub>r</sub>''}, जो इन जॉर्डन चेनों के अग्रणी वेक्टर होते हैं। हम "चेन का विस्तार" कर सकते हैं, इन अग्रणी वेक्टरों के प्रतिछवि लेकर। (यह मुख्य चरण है।) ''q<sub>i</sub>'' ऐसा हो कि:-
माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर इगनवेक्टर है, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p<sub>1</sub>, ..., पी<sub>''r''</sub>} में s सदिश होना चाहिए, मान लीजिए {p<sub>''r''−''s''+1</sub>, ..., पी<sub>''r''</sub>}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो q<sub>''i''</sub> ऐसा हो कि


:<math>\; (A - \lambda I) q_i = p_i \mbox{ for } i = r-s+1, \ldots, r.</math>
:<math>\; (A - \lambda I) q_i = p_i \mbox{ for } i = r-s+1, \ldots, r.</math>
समूह {''q<sub>i</sub>''}, ''A'' − λI के अनुसार {''p<sub>i</sub>''} से पूर्वछवियों होने के कारण भी लीनियरली स्वतंत्र होता है। स्पष्ट रूप से, {pi}i=r−s+1, ..., r लीनियरली स्वतंत्र होता है के कारण कोई गैर-ट्रिवियल रूप में ''q<sub>i</sub>'' का रूपांतरण ker(''A'' − ''λI''), में स्थित नहीं हो सकता है। इसके अतिरिक्त, कोई गैर-ट्रिवियल रूप में qi का कोई संयोजन Ran(''A'' − ''λ'' '''I''') में होने से भी नहीं हो सकता है क्योंकि इससे परिणामित रूप में बुनियादी वेक्टरों p1, ..., pr के रूपांतरण की संयोजन होगी, और यह संयोजन ker(''A'' − ''λI'') में नहीं होने की आशंका है क्योंकि अन्यथा यहker(''A'' − ''λI'') में सम्मिलित होगा। ''A'' − ''λI'' के द्वारा दोनों रूपांतरण का कार्य किया जाएगा और इस प्रकार के अग्रणी वेक्टरों का और ऐसे गैर-अग्रणी वेक्टरों का सम्मिश्रण का समानांतर की समानता उत्पन्न होगी, जो (''p''<sub>1</sub>, ..., ''p<sub>r</sub>'') की लीनियर निरपेक्षता के विरुद्ध होगी।
सेट {q<sub>''i''</sub>}, रैखिक रूप से स्वतंत्र सेट {p. की पूर्वछवियाँ होने के नाते<sub>''i''</sub>}ए - λ 'आई' के तहत, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> {p के लिए ker(A − λI) में स्थित हो सकता है<sub>''i''</sub>}<sub>''i''=''r''−''s''+1, ..., ''r''</sub> रैखिक रूप से स्वतंत्र है. इसके अलावा, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं है<sub>''i''</sub> Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p का रैखिक संयोजन होगा<sub>1</sub>, ..., पी<sub>''r''</sub>, और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (ए - λI) में नहीं है क्योंकि अन्यथा यह केर (ए - λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर ए - λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (पी) की रैखिक स्वतंत्रता का खंडन करेगी।<sub>1</sub>, ..., पी<sub>''r''</sub>).


अंत में, हम किसी भी लीनियर निरपेक्ष समूह {''z''<sub>1</sub>, ..., ''z<sub>t</sub>''} को चुन सकते हैं जिसका प्रक्षेपण स्थान बाह्यवृत्ती में होता है।
अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {z चुन सकते हैं<sub>1</sub>, ..., साथ<sub>''t''</sub>} जिसका प्रक्षेपण फैला हुआ है


:<math>\ker(A - \lambda I) / Q.</math>
:<math>\ker(A - \lambda I) / Q.</math>
प्रत्येक ''z<sub>i</sub>'' लंबाई 1 की जॉर्डन चेन बनाता है। निर्माण के द्वारा, तीन समूहों {''p''<sub>1</sub>, ..., ''p<sub>r</sub>''}, {''q<sub>r</sub>''<sub>−''s'' +1</sub>, ..., ''q<sub>r</sub>''}, और {''z''<sub>1</sub>, ..., ''z<sub>t</sub>''} का संयोग लीनियर निरपेक्ष होता है, और इसके सदस्यों का समावेश जॉर्डन चेन बनाते हैं। अंत में, रैंक-शून्यता के सिद्धांत द्वारा, संयोग की कार्डिनैलिटी n है। अन्य शब्दों में, हमने जॉर्डन चेनों से मिलकर बनी आधार ढूंढ़ ली है, और यह दिखाता है कि A को जॉर्डन मानक रूप में पुटा जा सकता है।
प्रत्येक z<sub>''i''</sub> 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {पी<sub>1</sub>, ..., पी<sub>''r''</sub>}, {क्यू<sub>''r''−''s'' +1</sub>, ..., क्यू<sub>''r''</sub>}, और {z<sub>1</sub>, ..., साथ<sub>''t''</sub>} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय के लिए , संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि को जॉर्डन के सामान्य रूप में रखा जा सकता है।


=== विशिष्टता ===
=== विशिष्टता ===


दिये गए मैट्रिक्स A की जॉर्डन मानक रूप प्राकृतिक रूप से अद्यतित जोरदार ब्लॉकों के क्रम के अतिरिक्त अद्यतनीय है, इसे दिखाया जा सकता है।
यह दिखाया जा सकता है कि किसी दिए गए मैट्रिक्स ए का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है।


विशेष मैट्रिक्स A की जॉर्डन मानक रूप का एकमात्र अद्यतनीय होना सिद्ध किया जा सकता है जब ज्ञानीयतात्मक और ज्यामितात्मक बहुपदीयता का पता होता है। यदि इज़ीनवैल्यू λ की बहुपदीयता ''m''(''λ'') ज्ञात हो, तो जॉर्डन रूप की संरचना को (''A'' − ''λI'')<sup>''m''(''λ'')</sup> के शक्तियों के रैंक्स का विश्लेषण करके निर्धारित किया जा सकता है। इसे देखने के लिए, मान लें कि n × n मैट्रिक्स A का केवल इज़ीनवैल्यू λ है। इसलिए m(λ) = n होता है। ऐसा सबसे छोटा पूर्णांक ''k''<sub>1</sub> होता है जिसके लिए
आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना ए के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता एम(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (ए - λI)<sup>एम(λ)</sup>. इसे देखने के लिए, मान लीजिए कि n × n मैट्रिक्स A का एकमात्र  इगनवैल्यू λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k<sub>1</sub> ऐसा है कि


:<math>(A - \lambda I)^{k_1} = 0</math>
:<math>(A - \lambda I)^{k_1} = 0</math>
A के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है। (इस संख्या ''k''<sub>1</sub> को λ का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक
के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है (यह संख्या k<sub>1</sub> इसे ''λ'' का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक


:<math>(A - \lambda I)^{k_1 - 1}</math>
:<math>(A - \lambda I)^{k_1 - 1}</math>
आकार ''k''<sub>1</sub> के जॉर्डन ब्लॉकों की संख्या है। इसी प्रकार, का पद
k आकार के जॉर्डन ब्लॉकों की संख्या है<sub>1</sub>. इसी प्रकार, का पद


:<math>(A - \lambda I)^{k_1 - 2}</math>
:<math>(A - \lambda I)^{k_1 - 2}</math>
आकार ''k''<sub>1</sub> के जॉर्डन ब्लॉकों की संख्या और ''k''<sub>1</sub> 1 आकार के जॉर्डन ब्लॉकों की संख्या का दोगुना है सामान्य मामला समान है।
k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है<sub>1</sub> साथ ही k आकार के जॉर्डन ब्लॉकों की संख्या<sub>1</sub>- 1. सामान्य मामला समान है।


यह जॉर्डन रूप की अद्यतनीयता की अद्यतनीयता को दिखाने के लिए उपयोग किया जा सकता है। ''J''<sub>1</sub> और ''J''<sub>2</sub> दो जॉर्डन मानक रूप हों जिनका A के साथ समानांकीय है। तब ''J''<sub>1</sub> और ''J''<sub>2</sub> समान हैं और ही स्पेक्ट्रम के साथ होते हैं, इसमें इज़ीनवैल्यू की बहुपदीयता भी सम्मलित होती है। पूर्व पैराग्राफ में दिये गए प्रक्रिया का उपयोग करके इन मैट्रिक्स की संरचना निर्धारित की जा सकती है। मैट्रिक्स का रैंक समानता परिवर्तन द्वारा संरक्षित होता है, इसलिए ''J''<sub>1</sub> और ''J''<sub>2</sub> के जॉर्डन ब्लॉक्स के बीजेक्शन के बीच बीजेक्शन होता है। यह वक्तव्य की अद्यतनीयता भाग को सिद्ध करता है।
इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। चलो जे<sub>1</sub> और जे<sub>2</sub> ए के दो जॉर्डन सामान्य रूप बनें। फिर जे<sub>1</sub> और जे<sub>2</sub> समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी शामिल हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन मैट्रिक्स की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि मैट्रिक्स की रैंक समानता परिवर्तन के लिए  संरक्षित होती है, जे के जॉर्डन ब्लॉकों के बीच आपत्ति होती है<sub>1</sub> और जे<sub>2</sub>. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है।


== वास्तविक आव्यूह ==
== वास्तविक आव्यूह ==
यदि A वास्तविक मैट्रिक्स है, तो उसकी जॉर्डन रूप प्राकृतिक रूप में अस्तित्व में हो सकती है। इसे अस्पष्ट किया जाता है कि ऐसा वास्तविक प्रतिमान मैट्रिक्स P उपस्थित है जिसके लिए ''P''<sup>−1</sup>''AP'' = ''J'' होता है, जो वास्तविक ब्लॉक डायागोनल मैट्रिक्स है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक होता है।<ref>{{harvtxt|Horn|Johnson|1985|loc=Theorem 3.4.5}}</ref> वास्तविक जॉर्डन ब्लॉक या तो वास्तविक जॉर्डन ब्लॉक के समान होता है (यदि संबंधित इज़ीनवैल्यू <math>\lambda_i</math> वास्तविक है), या यह इसीलिए ब्लॉक मैट्रिक्स होता है, जिसमें 2×2 ब्लॉक (गैर-वास्तविक इज़ीनवैल्यू<math>\lambda_i = a_i+ib_i</math> जिसमें बताए गए बहुपदीयता होती है) का संरचना होता है।
यदि A वास्तविक मैट्रिक्स है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज ​​​​और सुपरडायगोनल पर प्रस्तुत करने के बजाय, वास्तविक उलटा मैट्रिक्स P उपस्थित है जैसे कि P<sup>−1</sup>एपी = जे वास्तविक ब्लॉक विकर्ण मैट्रिक्स है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।<ref>{{harvtxt|Horn|Johnson|1985|loc=Theorem 3.4.5}}</ref> वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित इगनवैल्यू <math>\lambda_i</math> वास्तविक है), या स्वयं ब्लॉक मैट्रिक्स है, जिसमें 2×2 ब्लॉक शामिल हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। <math>\lambda_i = a_i+ib_i</math> फॉर्म की दी गई बीजगणितीय बहुलता के साथ)


:<math>C_i =  
:<math>C_i =  
Line 187: Line 186:
b_i & a_i \\  
b_i & a_i \\  
\end{array} \right] </math>
\end{array} \right] </math>
और गुणन का वर्णन करें <math>\lambda_i</math> जटिल तल में सुपरडायगोनल ब्लॉक 2×2 पहचान मैट्रिक्स हैं और इसलिए इस प्रतिनिधित्व में मैट्रिक्स आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक द्वारा दिया गया है
और गुणन का वर्णन करें <math>\lambda_i</math> जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान मैट्रिक्स हैं और इसलिए इस प्रतिनिधित्व में मैट्रिक्स आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक के लिए  दिया गया है


:<math>J_i =  
:<math>J_i =  
Line 196: Line 195:
       &        &        & C_i
       &        &        & C_i
\end{bmatrix}.</math>
\end{bmatrix}.</math>
यह वास्तविक जॉर्डन रूप वास्तविक जॉर्डन रूप का परिणाम है। वास्तविक मैट्रिक्स के लिए, गैर-वास्तविक इज़ीनवैल्यू और साधारित इज़ीनवैल्यू सदैव ऐसे चुने जा सकते हैं जो गोचरीभूत जोड़ी बनाने के लिए हों। वेक्टर और इसके संयोजक के रूप में वास्तविक और काल्पनिक भाग लेते हुए, यह प्रतिमान उपन्यास के संबंध में इस रूप में होती है।
यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक मैट्रिक्स के लिए गैर-वास्तविक ईजेनवेक्टर और सामान्यीकृत ईजेनवेक्टर को हमेशा जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (वेक्टर और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में मैट्रिक्स का यह रूप है।


== फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स ==
== फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स ==
Line 202: Line 201:
जॉर्डन घटना को किसी भी वर्गीकृत मैट्रिक्स M के लिए विस्तारित किया जा सकता है जिसके अंश क्षेत्र K में होते हैं। परिणाम के अनुसार, किसी भी M को योग के रूप में लिखा जा सकता है, जहां D [[अर्धसरल ऑपरेटर]] है, N शून्यभूत है, और DN = ND है। इसे जॉर्डन-चेवली विघटन कहा जाता है। जब भी K M के इजनमानों को सम्मिलित करता है, विशेष रूप से जब K बीजगणितीय बंद होता है, नियमित रूप जॉर्डन-चेवली विघटन को जॉर्डन ब्लॉकों के [[प्रत्यक्ष योग]] के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है।
जॉर्डन घटना को किसी भी वर्गीकृत मैट्रिक्स M के लिए विस्तारित किया जा सकता है जिसके अंश क्षेत्र K में होते हैं। परिणाम के अनुसार, किसी भी M को योग के रूप में लिखा जा सकता है, जहां D [[अर्धसरल ऑपरेटर]] है, N शून्यभूत है, और DN = ND है। इसे जॉर्डन-चेवली विघटन कहा जाता है। जब भी K M के इजनमानों को सम्मिलित करता है, विशेष रूप से जब K बीजगणितीय बंद होता है, नियमित रूप जॉर्डन-चेवली विघटन को जॉर्डन ब्लॉकों के [[प्रत्यक्ष योग]] के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है।


K को चरण संख्याओं के रूप में अंशों की ज्यामिति जहां 1 ≤ k ≤ m के लिए (''M'' − ''λI'')<sup>''k''</sup> के कर्नलों की आयामों को जानना, एम के जॉर्डन रूप को निर्धारित करने में सहायता करता है, यहां m ईजनमान की बहुपदिता है। हम विचार करके K[x]-मॉड्यूल के रूप में उपस्थित वेक्टर स्थान V को K-रेखांकितता के रूप में देख सकते हैं, जिसमें x की क्रिया को M के अनुप्रयोग के रूप में माना जाता है और K-रेखांकितता द्वारा विस्तार किया जाता है। तब पॉलिनोमियल (''x'' − ''λ'')<sup>''k''</sup> M के तत्व विभाजक होते हैं, और जॉर्डन नियमित रूप को प्राथमिकताओं से जुड़े ब्लॉकों के लिए प्रस्तुत करने में लगे होते हैं।
K को चरण संख्याओं के रूप में अंशों की ज्यामिति जहां 1 ≤ k ≤ m के लिए (''M'' − ''λI'')<sup>''k''</sup> के कर्नलों की आयामों को जानना, एम के जॉर्डन रूप को निर्धारित करने में सहायता करता है, यहां m ईजनमान की बहुपदिता है। हम विचार करके K[x]-मॉड्यूल के रूप में उपस्थित वेक्टर स्थान V को K-रेखांकितता के रूप में देख सकते हैं, जिसमें x की क्रिया को M के अनुप्रयोग के रूप में माना जाता है और K-रेखांकितता के लिए  विस्तार किया जाता है। तब पॉलिनोमियल (''x'' − ''λ'')<sup>''k''</sup> M के तत्व विभाजक होते हैं, और जॉर्डन नियमित रूप को प्राथमिकताओं से जुड़े ब्लॉकों के लिए प्रस्तुत करने में लगे होते हैं।


जॉर्डन सामान्य रूप का प्रमाण सामान्यतः [[एक प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय|प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय]] के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम होता है।
जॉर्डन सामान्य रूप का प्रमाण आमतौर पर [[एक प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय|प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय]] के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम होता है।


== परिणाम ==
== परिणाम ==
Line 219: Line 218:
=== केली-हैमिल्टन प्रमेय ===
=== केली-हैमिल्टन प्रमेय ===


केली-हैमिल्टन उपन्यास के अनुसार, हर मैट्रिक्स A अपनी लक्षणिक समीकरण को पूर्ण करती है: यदि p A A का लक्षणिक बहुपद है, तो <math>p_A(A)=0</math> यह जॉर्डन रूप में सीधी गणना के माध्यम से दिखाया जा सकता है, क्योंकि यदि λ ई अवधिकता का इजनमान है, तो इसका जॉर्डन खंड J ई निश्चित रूप से संपूर्ण करता है <math>(J_i-\lambda_i I)^{m_i}=0</math> यदि यहां संपूर्ण खंड को एक-दूसरे को प्रभावित नहीं करते हैं, तो <math>(A-\lambda_i I)^{m_i}</math> का i वाला नुकताचीन खंड होता है <math>(J_i-\lambda_i I)^{m_i}=0</math>। इसलिए <math display="inline">p_A(A)=\prod_i (A-\lambda_i I)^{m_i}=0</math>.
केली-हैमिल्टन उपन्यास के अनुसार, हर मैट्रिक्स A अपनी लक्षणिक समीकरण को पूरा करती है: यदि p A A का लक्षणिक बहुपद है, तो <math>p_A(A)=0</math> यह जॉर्डन रूप में सीधी गणना के माध्यम से दिखाया जा सकता है, क्योंकि यदि λ ई अवधिकता का इजनमान है, तो इसका जॉर्डन खंड J ई निश्चित रूप से संपूर्ण करता है <math>(J_i-\lambda_i I)^{m_i}=0</math> अगर यहां संपूर्ण खंड को एक-दूसरे को प्रभावित नहीं करते हैं, तो <math>(A-\lambda_i I)^{m_i}</math> का i वाला नुकताचीन खंड होता है <math>(J_i-\lambda_i I)^{m_i}=0</math>। इसलिए <math display="inline">p_A(A)=\prod_i (A-\lambda_i I)^{m_i}=0</math>.


जॉर्डन रूप को यहां माना जा सकता है कि यह मैट्रिक्स की मूलभूत ज्यामिति का क्षेत्र होता है, उदाहरण के लिए p के [[विभाजन क्षेत्र]] के ऊर्ध्वाधिक्य के लिए; इस क्षेत्र का विस्तार मैट्रिक्स p(A) को किसी भी विधि से नहीं बदलता है।
जॉर्डन रूप को यहां माना जा सकता है कि यह मैट्रिक्स की मूलभूत ज्यामिति का क्षेत्र होता है, उदाहरण के लिए p के [[विभाजन क्षेत्र]] के ऊर्ध्वाधिक्य के लिए; इस क्षेत्र का विस्तार मैट्रिक्स p(A) को किसी भी तरीके से नहीं बदलता है।


=== न्यूनतम बहुपद ===
=== न्यूनतम बहुपद ===
Line 229: Line 228:
''λ''<sub>1</sub>, …, ''λ<sub>q</sub>'' को A के अलग-अलग इजनमानों का प्रतिनिधित्व करने वाले प्रतिष्ठित इजनमानों का आकार si होने पर प्रकट है। जॉर्डन रूप से स्पष्ट है कि A के न्यूनतम बहुपद का डिग्री Σ''s<sub>i</sub>'' होता है।
''λ''<sub>1</sub>, …, ''λ<sub>q</sub>'' को A के अलग-अलग इजनमानों का प्रतिनिधित्व करने वाले प्रतिष्ठित इजनमानों का आकार si होने पर प्रकट है। जॉर्डन रूप से स्पष्ट है कि A के न्यूनतम बहुपद का डिग्री Σ''s<sub>i</sub>'' होता है।


चूँकि जॉर्डन नियमित रूप न्यूनतम बहुपद को निर्धारित करता है, विपरीत बात यह है। इससे प्रारंभिक विभाजकों की धारणा होती है। वर्गीकृत मैट्रिक्स A के प्रारंभिक विभाजक उसके जॉर्डन खंडों के वैशिष्ट्यक पहचानक बहुपद होते हैं। m के घटक अल्पकोण न्यूनतम बहुपद होते हैं, जो अलग-अलग इजनमानों के अनुरूप सबसे बड़े डिग्री के प्रारंभिक विभाजक होते हैं।
जबकि जॉर्डन नियमित रूप न्यूनतम बहुपद को निर्धारित करता है, विपरीत बात यह है। इससे प्रारंभिक विभाजकों की धारणा होती है। वर्गीकृत मैट्रिक्स A के प्रारंभिक विभाजक उसके जॉर्डन खंडों के वैशिष्ट्यक पहचानक बहुपद होते हैं। m के घटक अल्पकोण न्यूनतम बहुपद होते हैं, जो अलग-अलग इजनमानों के अनुरूप सबसे बड़े डिग्री के प्रारंभिक विभाजक होते हैं।


प्रारंभिक विभाजक का डिग्री उससे संबंधित जॉर्डन खंड का आकार होता है, इसलिए उससे संबंधित नियामक उपस्थिति का आयाम। यदि सभी प्रारंभिक विभाजक रैखिक होते हैं, तो A वैज्ञानिक होता है।
प्रारंभिक विभाजक का डिग्री उससे संबंधित जॉर्डन खंड का आकार होता है, इसलिए उससे संबंधित नियामक उपस्थिति का आयाम। यदि सभी प्रारंभिक विभाजक रैखिक होते हैं, तो A वैज्ञानिक होता है।
Line 240: Line 239:
जहां प्रत्येक ''X<sub>i</sub>'', संबंधित जॉर्डन श्रृंखला के तारक के अंक की स्पैन होता है, और k जॉर्डन श्रृंखलाओं की संख्या होती है।
जहां प्रत्येक ''X<sub>i</sub>'', संबंधित जॉर्डन श्रृंखला के तारक के अंक की स्पैन होता है, और k जॉर्डन श्रृंखलाओं की संख्या होती है।


जॉर्डन रूप के माध्यम से हम थोड़ा अलग उपविभाजन भी प्राप्त कर सकते हैं। इजनमान ''λ<sub>i</sub>'' के द्वारा, उसके सबसे बड़े संबंधित जॉर्डन ब्लॉक का आकार ''s<sub>i</sub>'' को उसकी सूची कहते हैं और v(λi) द्वारा चिह्नित किया जाता है। (इसलिए, न्यूनतम बहुपद का डिग्री सभी सूचकों के योग होता है.) ''Y<sub>i</sub>'' द्वारा उपस्थान ''Y<sub>i</sub>'' की परिभाषा कीजिए
जॉर्डन रूप के माध्यम से हम थोड़ा अलग उपविभाजन भी प्राप्त कर सकते हैं। इजनमान ''λ<sub>i</sub>'' के के लिए , उसके सबसे बड़े संबंधित जॉर्डन ब्लॉक का आकार ''s<sub>i</sub>'' को उसकी सूची कहते हैं और v(λi) के लिए  चिह्नित किया जाता है। (इसलिए, न्यूनतम बहुपद का डिग्री सभी सूचकों के योग होता है.) ''Y<sub>i</sub>'' के लिए  उपस्थान ''Y<sub>i</sub>'' की परिभाषा कीजिए


:<math> Y_i = \ker(\lambda_i I - A)^{v(\lambda_i)}.</math>
:<math> Y_i = \ker(\lambda_i I - A)^{v(\lambda_i)}.</math>
Line 246: Line 245:


:<math>\mathbb{C}^n = \bigoplus_{i = 1}^l Y_i</math>
:<math>\mathbb{C}^n = \bigoplus_{i = 1}^l Y_i</math>
जहां ''l,'' A के विभिन्न इजनमानों की संख्या होती है। अवचित्र रूप से, हम समान इजनमान के लिए जॉर्डन खंड अविभाज्य उपस्थानों को एकत्रित करते हैं। चरम स्थितियों में जब A पहचान मैट्रिक्स का गुणक होता है, तब हमें ''k'' = ''n'' और ''l'' = 1 होता है।
जहां ''l,'' A के विभिन्न इजनमानों की संख्या होती है। अवचित्र रूप से, हम समान इजनमान के लिए जॉर्डन खंड अविभाज्य उपस्थानों को एकत्रित करते हैं। चरम स्थितियों में जब A पहचान मात्रिका का गुणक होता है, तब हमें ''k'' = ''n'' और ''l'' = 1 होता है।


Yi पर परावर्तन को और सभी अन्य ''Y<sub>j</sub>'' (j ≠ i) के अतिरिक्त के रूप में विधायक प्रोजेक्शन कहा जाता है, जिसे '''v<sub>''i''</sub>''' पर A का आधारभूत विधायक प्रोजेक्शन के रूप में चिह्नित किया जाता है। स्पेक्ट्रल प्रोजेक्शन एक-दूसरे के साथ अपरस्पष्टता करते हैं, जिसका अर्थ है कि ''P''(''λ<sub>i</sub>'' ; ''A'') ''P''(v<sub>''j''</sub> ; ''A'') = 0 यदि i ≠ j है। इसके अतिरिक्त, वे A के साथ संघात करते हैं और उनका योग पहचान मैट्रिक्स होता है। J में हर vi को में बदलते हैं और अन्य सभी प्रविष्टियों को शून्य करते हैं, फिर P(vi ; J) मिलता है, और यदि ''U J U''<sup>−1</sup> समानता परिवर्तन है जिसके लिए A = ''U J U''<sup>−1</sup> होता है, तब ''P''(''λ<sub>i</sub>'' ; ''A'') = ''U P''(''λ<sub>i</sub>'' ; ''J'') होता है। यह सीमित आयामसे बाहर नहीं होते हैं। कॉम्पैक्ट ऑपरेटर्स के लिए उनके इस्पाती उपयोग के लिए नीचे देखें, और और सामान्य चर्चा के लिए [[होलोमोर्फिक कार्यात्मक कैलकुलस]] में नीचे देखें।
Yi पर परावर्तन को और सभी अन्य ''Y<sub>j</sub>'' (j ≠ i) के अलावा के रूप में विधायक प्रोजेक्शन कहा जाता है, जिसे '''v<sub>''i''</sub>''' पर A का आधारभूत विधायक प्रोजेक्शन के रूप में चिह्नित किया जाता है। स्पेक्ट्रल प्रोजेक्शन एक-दूसरे के साथ अपरस्पष्टता करते हैं, जिसका अर्थ है कि ''P''(''λ<sub>i</sub>'' ; ''A'') ''P''(v<sub>''j''</sub> ; ''A'') = 0 यदि i ≠ j है। इसके अलावा, वे A के साथ संघात करते हैं और उनका योग पहचान मात्रिका होता है। J में हर vi को में बदलते हैं और अन्य सभी प्रविष्टियों को शून्य करते हैं, फिर P(vi ; J) मिलता है, और यदि ''U J U''<sup>−1</sup> समानता परिवर्तन है जिसके लिए A = ''U J U''<sup>−1</sup> होता है, तब ''P''(''λ<sub>i</sub>'' ; ''A'') = ''U P''(''λ<sub>i</sub>'' ; ''J'') होता है। यह सीमित आयामसे बाहर नहीं होते हैं। कॉम्पैक्ट ऑपरेटर्स के लिए उनके इस्पाती उपयोग के लिए नीचे देखें, और और सामान्य चर्चा के लिए [[होलोमोर्फिक कार्यात्मक कैलकुलस]] में नीचे देखें।


दो उपविभाजनों को समानता करते हुए, ध्यान दें कि सामान्य रूप में, l ≤ k होता है। जब A सामान्य होता है, तो प्रथम उपविभाजन में ''X<sub>i</sub>''<nowiki/>'s उपस्थान एक-आयामी होते हैं और एक-दूसरे के लिए संघाती होते हैं। यह सामान्य ऑपरेटर्स के लिए स्पेक्ट्रल सिद्धांत है। दूसरा उपविभाजन आयामीय उपविभाजनों के लिए अधिक सरलतापूर्ण रूप से सामान्य संकुचित ऑपरेटर्स पर बढ़ता है।
दो उपविभाजनों को तुलना करते हुए, ध्यान दें कि सामान्य रूप में, l ≤ k होता है। जब A सामान्य होता है, तो प्रथम उपविभाजन में ''X<sub>i</sub>''<nowiki/>'s उपस्थान एक-आयामी होते हैं और एक-दूसरे के लिए संघाती होते हैं। यह सामान्य ऑपरेटर्स के लिए स्पेक्ट्रल सिद्धांत है। दूसरा उपविभाजन आयामीय उपविभाजनों के लिए अधिक सरलतापूर्ण रूप से सामान्य संकुचित ऑपरेटर्स पर बढ़ता है।


यहां नुकताचीन सूचकांक की कुछ गुणधर्मों का उल्लेख करना रोचक हो सकता है। अधिक सामान्यतः, समान्य संख्या λ के लिए, उसकी सूचकांक को उस नकारात्मक अथवा नानात्विक संख्या ν(λ) की अल्पतम अगतिशाखा के रूप में परिभाषित किया जा सकता है, जो यह सिद्ध करता है कि
यहां नुकताचीन सूचकांक की कुछ गुणधर्मों का उल्लेख करना दिलचस्प हो सकता है। अधिक सामान्यतः, समान्य संख्या λ के लिए, उसकी सूचकांक को उस नकारात्मक अथवा नानात्विक संख्या ν(λ) की अल्पतम अगतिशाखा के रूप में परिभाषित किया जा सकता है, जो यह साबित करता है कि


:<math>\ker(A-\lambda I)^{\nu(\lambda)} = \ker(A-\lambda I)^m, \; \forall m \geq \nu(\lambda) .</math>
:<math>\ker(A-\lambda I)^{\nu(\lambda)} = \ker(A-\lambda I)^m, \; \forall m \geq \nu(\lambda) .</math>
इसलिए ''ν''(v) > 0 यदि और केवल यदि λ A का इजनमान है। सीमित आयामी स्थितियों में, ν(λ) ≤ वैज्ञानिक अनुपात है।
इसलिए ''ν''(v) > 0 अगर और एकमात्र  अगर λ A का इजनमान है। सीमित आयामी स्थितियों में, ν(λ) ≤ वैज्ञानिक अनुपात है।


===समतल (सपाट) सामान्य रूप===
===समतल (सपाट) सामान्य रूप===


जॉर्डन रूप का उपयोग मैट्रिक्सओं की समकोण तक समरूपता के लिए साधारण रूप खोजने के लिए किया जाता है, जिसके परिणामस्वरूप साधारण मैट्रिक्सएँ मूल मैट्रिक्स स्थान में न्यूनतम स्थानिकीय डिग्री की बीजगणित संख्याओं का समूह होता है।
जॉर्डन रूप का उपयोग मात्रिकाओं की समकोण तक समरूपता के लिए साधारण रूप खोजने के लिए किया जाता है, जिसके परिणामस्वरूप साधारण मात्रिकाएँ मूल मात्रिका स्थान में न्यूनतम स्थानिकीय डिग्री की बीजगणित संख्याओं का समूह होता है।


जॉर्डन रूप के लिए मैट्रिक्स समरूपता के प्रतिनिधित्वकों के सेट, या विशाल मैट्रिक्स स्थान में राष्ट्रीय गणितिक रूप में विभाजन के लिए, सामान्य रूप से रेखांकित या एफ़ाइन सबस्थान नहीं बनाते हैं।
जॉर्डन रूप के लिए मात्रिका समरूपता के प्रतिनिधित्वकों के सेट, या विशाल मात्रिका स्थान में राष्ट्रीय गणितिक रूप में विभाजन के लिए, सामान्य रूप से रेखांकित या एफ़ाइन सबस्थान नहीं बनाते हैं।


[[व्लादिमीर अर्नोल्ड]] ने पोज़ दियाने समस्या पूछी<ref>{{Cite book |editor1-first=Vladimir I |editor1-last=Arnold |date=2004 |  
[[व्लादिमीर अर्नोल्ड]] ने पोज़ दियाने समस्या पूछी<ref>{{Cite book |editor1-first=Vladimir I |editor1-last=Arnold |date=2004 |  
title = Arnold's problems| doi = 10.1007/b138219 | isbn = 978-3-540-20748-1 |page=127 |publisher = Springer-Verlag Berlin Heidelberg}}</ref> क्षेत्र में मैट्रिक्स समरूपता वर्गों के प्रतिनिधित्वकों का सेट एफाइन रैखिक उपस्थिति (फ्लैट) के संयोजन की समान्तर रूप हो। दूसरे शब्दों में, मैट्रिक्स समरूपता वर्गों के सेट को प्रारंभिक मैट्रिक्स सेट में सुरक्षित रूप से एक-विद्यमान करें जिससे इस संबद्धन की छवि - सभी साधारण मैट्रिक्सओं का सेट, सबसे कम संभावित डिग्री होता है - यह खिसे हुए रेखांकित उपविभाजनों का संयोजन होता है।
title = Arnold's problems| doi = 10.1007/b138219 | isbn = 978-3-540-20748-1 |page=127 |publisher = Springer-Verlag Berlin Heidelberg}}</ref> क्षेत्र में मात्रिका समरूपता वर्गों के प्रतिनिधित्वकों का सेट एफाइन रैखिक उपस्थिति (फ्लैट) के संयोजन की समान्तर रूप हो। दूसरे शब्दों में, मात्रिका समरूपता वर्गों के सेट को प्रारंभिक मात्रिका सेट में सुरक्षित रूप से एक-विद्यमान करें ताकि इस संबद्धन की छवि - सभी साधारण मात्रिकाओं का सेट, सबसे कम संभावित डिग्री होता है - यह खिसे हुए रेखांकित उपविभाजनों का संयोजन होता है।


यह बीजगणितिक बंद क्षेत्रों के लिए पीटरिस डौगुलिस ने बीजगणित बंदों के निर्माण को समस्या का हल किया। मैट्रिक्स के अद्वितीय निर्धारित विमान निरूपण का निर्माण जॉर्डन रूप को विचार करके प्रारंभ होता है।<ref name="originalpaper">{{cite journal | author = Peteris Daugulis |date=2012 | title = मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है|  
यह बीजगणितिक बंद क्षेत्रों के लिए पीटरिस डौगुलिस ने बीजगणित बंदों के निर्माण को समस्या का हल किया। मात्रिका के अद्वितीय निर्धारित विमान निरूपण का निर्माण जॉर्डन रूप को विचार करके शुरू होता है।<ref name="originalpaper">{{cite journal | author = Peteris Daugulis |date=2012 | title = मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है|  
pages = 709–721 | journal = Linear Algebra and Its Applications | volume = 436 | issue = 3 |   
pages = 709–721 | journal = Linear Algebra and Its Applications | volume = 436 | issue = 3 |   
doi = 10.1016/j.laa.2011.07.032 |arxiv = 1110.0907 |s2cid=119649768 }}</ref>  
doi = 10.1016/j.laa.2011.07.032 |arxiv = 1110.0907 |s2cid=119649768 }}</ref>  
Line 274: Line 273:
जॉर्डन श्रृंखला का अनुक्रमणिका विविध और प्रयोजनों के लिए विस्तार को प्रेरित करता है। संख्यात्मक मैट्रिक्सों के लिए, मैट्रिक्स फ़ंक्शन मिलता है; इसे संकुचित ऑपरेटरों और होलोमोर्फिक कार्यात्मक विश्लेषण में विस्तारित किया जा सकता है, जैसा नीचे विवरण दिया गया है।
जॉर्डन श्रृंखला का अनुक्रमणिका विविध और प्रयोजनों के लिए विस्तार को प्रेरित करता है। संख्यात्मक मैट्रिक्सों के लिए, मैट्रिक्स फ़ंक्शन मिलता है; इसे संकुचित ऑपरेटरों और होलोमोर्फिक कार्यात्मक विश्लेषण में विस्तारित किया जा सकता है, जैसा नीचे विवरण दिया गया है।


जॉर्डन साधारण रूप सबसे आसान है मैट्रिक्स फ़ंक्शनों की गणना के लिए (चूंकि यह कंप्यूटर की गणना के लिए सबसे अच्छा चयन नहीं हो सकता है)। f(z) संज्ञात्मकीय तार्किक चर का विश्लेषण हो। n×n जॉर्डन ब्लॉक J पर फ़ंक्शन का लागू होना, जिसमें इजीनमान λ होता है, ऊपरी त्रिकोणीय मैट्रिक्स देता है।
जॉर्डन साधारण रूप सबसे आसान है मैट्रिक्स फ़ंक्शनों की गणना के लिए (हालांकि यह कंप्यूटर की गणना के लिए सबसे अच्छा चयन नहीं हो सकता है)। f(z) संज्ञात्मकीय तार्किक चर का विश्लेषण हो। n×n जॉर्डन ब्लॉक J पर फ़ंक्शन का लागू होना, जिसमें इजीनमान λ होता है, ऊपरी त्रिकोणीय मैट्रिक्स देता है।


:<math>
:<math>
Line 285: Line 284:
  0  & 0  & 0  & 0  & f(\lambda)
  0  & 0  & 0  & 0  & f(\lambda)
\end{bmatrix},</math>
\end{bmatrix},</math>
जिससे परिणामी मैट्रिक्स के k-th सुपरडायागोनल के तत्व <math>\tfrac{f^{(k)}(\lambda)}{k!}</math> हों। सामान्य जॉर्डन नियमित रूप की मैट्रिक्स के लिए उपरोक्त संवेदनशीलता को प्रत्येक जॉर्डन ब्लॉक पर लागू किया जाना चाहिए।
ताकि परिणामी मैट्रिक्स के k-th सुपरडायागोनल के तत्व <math>\tfrac{f^{(k)}(\lambda)}{k!}</math> हों। सामान्य जॉर्डन नियमित रूप की मैट्रिक्स के लिए उपरोक्त संवेदनशीलता को प्रत्येक जॉर्डन ब्लॉक पर लागू किया जाना चाहिए।


निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=z<sup>n</sup> के अनुप्रयोग को दिखाता है:
निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=z<sup>n</sup> के अनुप्रयोग को दिखाता है:
Line 303: Line 302:
  0  & 0  & 0  & 0  & \lambda_2^n
  0  & 0  & 0  & 0  & \lambda_2^n
\end{bmatrix},</math>
\end{bmatrix},</math>
यहां बाइनोमियल संख्याओं की परिभाषा है <math display="inline">\binom{n}{k}=\prod_{i=1}^k \frac{n+1-i}{i}</math> यहां n के लिए पूर्णांक पॉजिटिव है, तो इसका मान आम परिभाषा के समान होता है। n के लिए नकारात्मक मान के लिए पहचान <math display="inline">\binom{-n} k = (-1)^k\binom{n+k-1}{k}</math> का उपयोग किया जा सकता है।
यहां बाइनोमियल संख्याओं की परिभाषा है <math display="inline">\binom{n}{k}=\prod_{i=1}^k \frac{n+1-i}{i}</math> यहां n के लिए पूर्णांक पॉजिटिव है, तो इसका मान आम परिभाषा के समान होता है। n के लिए नकारात्मक मान के लिए पहचान <math display="inline">\binom{-n} k = (-1)^k\binom{n+k-1}{k}</math> का उपयोग किया जा सकता है।


== [[कॉम्पैक्ट ऑपरेटर]] ==
== [[कॉम्पैक्ट ऑपरेटर]] ==
Line 313: Line 312:
X बैनाक स्थान हो, L(X) X पर सीमित ऑपरेटर्स हों, और σ(T) T ∈ L(X) का स्पेक्ट्रम हो। होलोमोर्फिक कार्यात्मक विश्लेषण निम्न रूप में परिभाषित होता है:
X बैनाक स्थान हो, L(X) X पर सीमित ऑपरेटर्स हों, और σ(T) T ∈ L(X) का स्पेक्ट्रम हो। होलोमोर्फिक कार्यात्मक विश्लेषण निम्न रूप में परिभाषित होता है:


सीमित ऑपरेटर T को ठीक करें। σ(T) को सम्मलित करने वाले किसी खुले सेट G पर [[होलोमोर्फिक फ़ंक्शन]]का परिवार Hol(T) को विचार करें। Γ = {γ<sub>i</sub>} संख्यात्मक [[जॉर्डन वक्र|जॉर्डन]] परिसंचय हो जिसमें σ(T) Γ के भीतर होता है, हम f(T) को निम्न रूप में परिभाषित करते हैं।
सीमित ऑपरेटर T को ठीक करें। σ(T) को शामिल करने वाले किसी खुले सेट G पर [[होलोमोर्फिक फ़ंक्शन]]का परिवार Hol(T) को विचार करें। Γ = {γ<sub>i</sub>} संख्यात्मक [[जॉर्डन वक्र|जॉर्डन]] परिसंचय हो जिसमें σ(T) Γ के भीतर होता है, हम f(T) को निम्न रूप में परिभाषित करते हैं।


: <math>f(T) = \frac 1 {2 \pi i} \int_\Gamma f(z)(z - T)^{-1} \, dz.</math>
: <math>f(T) = \frac 1 {2 \pi i} \int_\Gamma f(z)(z - T)^{-1} \, dz.</math>
खुला सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश स्थितियों में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम मौलिक फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी प्रकार से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है
खुला सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश स्थितियों में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम शास्त्रीय फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी तरह से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है


: <math>\; \Phi(f) = f(T).</math>
: <math>\; \Phi(f) = f(T).</math>
Line 326: Line 325:
=== परिमित-आयामी मामला ===
=== परिमित-आयामी मामला ===


परिमित-आयामी स्थितियों में, σ(T) = {λ<sub>''i''</sub>} कंप्लेक्स समतल में सीमित अस्पष्ट समूह होता है। लेट ei ऐसा फ़ंक्शन हो जो λi के कुछ खुले पड़ोस में 1 होता है और अन्यथा 0 होता है। कार्यकलाप की गुणधर्म 3 के द्वारा,
परिमित-आयामी स्थितियों में, σ(T) = {λ<sub>''i''</sub>} कंप्लेक्स समतल में सीमित अस्पष्ट समूह होता है। लेट ei ऐसा फ़ंक्शन हो जो λi के कुछ खुले पड़ोस में 1 होता है और अन्यथा 0 होता है। कार्यकलाप की गुणधर्म 3 के के लिए ,


:<math>e_i(T)</math>
:<math>e_i(T)</math>
प्रक्षेपण होता है। इसके अतिरिक्त, ν<sub>i</sub> λ<sub>''i''</sub> का सूचकांक होता है और
प्रक्षेपण होता है। इसके अलावा, ν<sub>i</sub> λ<sub>''i''</sub> का सूचकांक होता है और


:<math>f(z)= (z - \lambda_i)^{\nu_i}.</math>
:<math>f(z)= (z - \lambda_i)^{\nu_i}.</math>
Line 335: Line 334:


:<math> f(T) e_i (T) = (T - \lambda_i)^{\nu_i} e_i (T)</math>
:<math> f(T) e_i (T) = (T - \lambda_i)^{\nu_i} e_i (T)</math>
का स्पेक्ट्रम {0} होता है। गुणधर्म 1 के द्वारा, f(T) को सीधे जॉर्डन रूप में निर्धारित किया जा सकता है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)e<sub>i</sub>(टी) शून्य मैट्रिक्स है.
का स्पेक्ट्रम {0} होता है। गुणधर्म 1 के के लिए , f(T) को सीधे जॉर्डन रूप में निर्धारित किया जा सकता है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)e<sub>i</sub>(टी) शून्य मैट्रिक्स है.


गुणधर्म 3 के द्वारा, ''f''(''T'') ''e<sub>i</sub>''(''T'') = ''e<sub>i</sub>''(''T'') ''f''(''T'')। इसलिए ''e<sub>i</sub>''(''T'') सीधे उन उपस्थिति पर प्रक्षेपण होता है
गुणधर्म 3 के के लिए , ''f''(''T'') ''e<sub>i</sub>''(''T'') = ''e<sub>i</sub>''(''T'') ''f''(''T'')। इसलिए ''e<sub>i</sub>''(''T'') सीधे उन उपस्थिति पर प्रक्षेपण होता है


:<math>\operatorname{Ran} e_i (T) = \ker(T - \lambda_i)^{\nu_i}.</math>
:<math>\operatorname{Ran} e_i (T) = \ker(T - \lambda_i)^{\nu_i}.</math>
Line 349: Line 348:


:<math>\mathbb{C}^n = \bigoplus_i Y_i</math>
:<math>\mathbb{C}^n = \bigoplus_i Y_i</math>
यह पूर्व अनुभाग में दिए गए अविचलित उपस्थिति विभाजन है। प्रत्येक e_i(T) λi के लिए जोर्डन श्रृंखलाओं के उपस्थिति के द्वारा निर्धारित सशर्त पर्यायों की ओर प्रक्षेपण होता है। अन्य शब्दों में, e_i(T) = P(λi;T)। ऑपरेटर e_i(T) की इस स्पष्ट पहचान द्वारा पटलिका के लिए स्पष्ट रूप दिया जाता है।
यह पिछले अनुभाग में दिए गए अविचलित उपस्थिति विभाजन है। प्रत्येक e_i(T) λi के लिए जोर्डन श्रृंखलाओं के उपस्थिति के के लिए  निर्धारित सशर्त पर्यायों की ओर प्रक्षेपण होता है। अन्य शब्दों में, e_i(T) = P(λi;T)। ऑपरेटर e_i(T) की इस स्पष्ट पहचान के लिए  पटलिका के लिए स्पष्ट रूप दिया जाता है।


मैट्रिक्स के लिए लौरेंट श्रृंखला प्रतिस्थापन का स्पष्ट रूप भी देता है:
मैट्रिक्स के लिए लौरेंट श्रृंखला प्रतिस्थापन का स्पष्ट रूप भी देता है:
Line 359: Line 358:
=== ऑपरेटर के ध्रुव ===
=== ऑपरेटर के ध्रुव ===


T सीमित ऑपरेटर हो, λ T के σ(T) का अलगावित बिंदु हों। (जैसा कि पहले कहा गया है, जब T संकुचित होता है, तो उसके स्पेक्ट्रम में हर बिंदु अलगावित बिंदु होता है, केवल सीमा बिंदु 0 का सीमा बिंदु हो सकता है।)
T सीमित ऑपरेटर हो, λ T के σ(T) का अलगावित बिंदु हों। (जैसा कि पहले कहा गया है, जब T संकुचित होता है, तो उसके स्पेक्ट्रम में हर बिंदु अलगावित बिंदु होता है, एकमात्र  सीमा बिंदु 0 का सीमा बिंदु हो सकता है।)


ऑपरेटर T का बिंदु λ अग्रेय अवधि ν के साथ पोल कहलाता है यदि अग्निस्थापना समारेखी RT द्वारा परिभाषित होती है
ऑपरेटर T का बिंदु λ अग्रेय अवधि ν के साथ पोल कहलाता है अगर अग्निस्थापना समारेखी RT के लिए  परिभाषित होती है
:<math> R_T(\lambda) = (\lambda - T)^{-1}</math>
:<math> R_T(\lambda) = (\lambda - T)^{-1}</math>
जो λ पर ν का [[ध्रुव (जटिल विश्लेषण)]] होता है।
जो λ पर ν का [[ध्रुव (जटिल विश्लेषण)]] होता है।


हम दिखाएंगेकि, सीमित आयाम स्थितियों में, इजीनमान की आदेश उसके सूचकांक के साथ मेल खाती है। परिणाम संकुचित ऑपरेटर के लिए भी सत्य होता है।
हम दिखाएंगेकि, सीमित आयाम स्थितियों में, इजीनमान की आदेश उसके सूचकांक के साथ मेल खाती है। परिणाम संकुचित ऑपरेटर के लिए भी सत्य होता है।


λ के केंद्रित चक्र के पास आयामी इलाके A की विचार करें जिसमें ऐसा पर्याप्त छोटा त्रिज्या ε हो कि खुले वर्तुल Bε(λ) और σ(T) के प्राप्ति का छेद {λ} हों। आयामी RT A पर होलोमोर्फिक होती है। गणितीय कार्यकला से परिणाम का विस्तार करके, RT के पास A पर [[लॉरेंट श्रृंखला]] का प्रतिनिधित्व होती है:
λ के केंद्रित चक्र के पास आयामी इलाके A की विचार करें जिसमें ऐसा पर्याप्त छोटा त्रिज्या ε हो कि खुले वर्तुल Bε(λ) और σ(T) के प्राप्ति का छेद {λ} हों। आयामी RT A पर होलोमोर्फिक होती है। गणितीय कार्यकला से परिणाम का विस्तार करके, RT के पास A पर [[लॉरेंट श्रृंखला]] का प्रतिनिधित्व होती है:
Line 373: Line 372:


:<math>a_{-m} = - \frac{1}{2 \pi i} \int_C (\lambda - z) ^{m-1} (z - T)^{-1} d z</math> और C छोटा चक्र λ को केंद्रित है।
:<math>a_{-m} = - \frac{1}{2 \pi i} \int_C (\lambda - z) ^{m-1} (z - T)^{-1} d z</math> और C छोटा चक्र λ को केंद्रित है।
:पूर्व चर्चा के आधार पर, हमने दिखाया है
:पिछले चर्चा के आधार पर, हमने दिखाया है


:<math> a_{-m} = -(\lambda - T)^{m-1} e_\lambda (T)</math> जहाँ <math> e_\lambda</math> 1 पर है <math> B_\varepsilon(\lambda)</math> और अन्यत्र 0.
:<math> a_{-m} = -(\lambda - T)^{m-1} e_\lambda (T)</math> जहाँ <math> e_\lambda</math> 1 पर है <math> B_\varepsilon(\lambda)</math> और अन्यत्र 0.


किन्तु हमने देखा है कि सबसे छोटा सकारात्मक पूर्णांक m ऐसा होता है
लेकिन हमने देखा है कि सबसे छोटा सकारात्मक पूर्णांक m ऐसा होता है


:<math>a_{-m} \neq 0</math> और <math>a_{-l} = 0 \; \; \forall \; l \geq m</math>
:<math>a_{-m} \neq 0</math> और <math>a_{-l} = 0 \; \; \forall \; l \geq m</math>
Line 384: Line 383:
== संख्यात्मक विश्लेषण ==
== संख्यात्मक विश्लेषण ==


यदि मैट्रिक्स A में कई इगनवैल्यूज ​​​​हैं, या कई इगनवैल्यूज ​​​​वाले मैट्रिक्स के निकट है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए मैट्रिक्स पर विचार करें
यदि मैट्रिक्स A में कई इगनवैल्यूज ​​​​हैं, या कई इगनवैल्यूज ​​​​वाले मैट्रिक्स के करीब है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए मैट्रिक्स पर विचार करें
:<math> A = \begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix}. </math>
:<math> A = \begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix}. </math>
यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है
यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है
:<math> \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. </math>
:<math> \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. </math>
चूँकि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है
हालाँकि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है
:<math> \begin{bmatrix} 1+\sqrt\varepsilon & 0 \\ 0 & 1-\sqrt\varepsilon \end{bmatrix}. </math>
:<math> \begin{bmatrix} 1+\sqrt\varepsilon & 0 \\ 0 & 1-\sqrt\varepsilon \end{bmatrix}. </math>
यह [[शर्त संख्या]] के कारण, जॉर्डन मानक रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत जटिल हो जाता है, क्योंकि परिणाम में निर्धारित किया जाता है कि क्या दो इजीनमान को समान माना जाता है या नहीं। इसी कारण [[संख्यात्मक विश्लेषण]] में जॉर्डन मानक रूप सामान्यतः टाल दिया जाता है; स्थिर [[शूर अपघटन]]<ref>See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.</ref> या छद्म [[छद्मस्पेक्ट्रम]]<ref>See Golub & Van Loan (2014), §7.9</ref> सके उत्तम विकल्प हैं।
यह [[शर्त संख्या]] के कारण, जॉर्डन मानक रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत मुश्किल हो जाता है, क्योंकि परिणाम में निर्धारित किया जाता है कि क्या दो इजीनमान को समान माना जाता है या नहीं। इसी कारण [[संख्यात्मक विश्लेषण]] में जॉर्डन मानक रूप आमतौर पर टाल दिया जाता है; स्थिर [[शूर अपघटन]]<ref>See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.</ref> या छद्म [[छद्मस्पेक्ट्रम]]<ref>See Golub & Van Loan (2014), §7.9</ref> सके बेहतर विकल्प हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:22, 11 July 2023

जॉर्डन सामान्य रूप में मैट्रिक्स का उदाहरण। नहीं दिखाई गई सभी मैट्रिक्स प्रविष्टियाँ शून्य हैं। रेखांकित वर्गों को जॉर्डन ब्लॉक के रूप में जाना जाता है। प्रत्येक जॉर्डन ब्लॉक में इसके मुख्य विकर्ण पर नंबर लैम्ब्डा होता है, और मुख्य विकर्ण के ऊपर नंबर होता है। लैम्ब्डा मैट्रिक्स के आइगेनवैल्यू हैं; उन्हें अलग होने की आवश्यकता नहीं है.

रैखिक बीजगणित में, जॉर्डन सामान्य रूप, जिसे जॉर्डन विहित रूप (जेसीएफ) के रूप में भी जाना जाता है,[1][2]

विशेष रूप का ऊपरी त्रिकोणीय मैट्रिक्स है जिसे जॉर्डन मैट्रिक्स कहा जाता है जो कुछ आधार (रैखिक बीजगणित) के संबंध में परिमित-आयामी सदिश स्थल पर रैखिक ऑपरेटर का प्रतिनिधित्व करता है। ऐसे मैट्रिक्स में प्रत्येक गैर-शून्य ऑफ-विकर्ण प्रविष्टि 1 के समान होती है, मुख्य विकर्ण के ठीक ऊपर ( अतिविकर्ण पर), और बाईं ओर और उनके नीचे समान विकर्ण प्रविष्टियां होती हैं।

मान लीजिए V क्षेत्र (गणित) K पर सदिश समष्टि है। फिर आधार जिसके संबंध में मैट्रिक्स का आवश्यक रूप उपस्थित है, यदि मैट्रिक्स के सभी इगनवैल्यूज ​​K में हैं, या समकक्ष यदि ऑपरेटर की विशेषता बहुपद है K पर रैखिक गुणनखंडों में विभाजित हो जाता है। यदि K बीजगणितीय रूप से बंद है (उदाहरण के लिए, यदि यह जटिल संख्याओं का क्षेत्र है) तो यह स्थिति सदैव संतुष्ट होती है। सामान्य रूप की विकर्ण प्रविष्टियाँ इगनवैल्यूज ​​​​(ऑपरेटर के) हैं, और प्रत्येक इगनवैल्यू होने की संख्या को इगनवैल्यू की बीजगणितीय बहुलता कहा जाता है। Cite error: Invalid <ref> tag; invalid names, e.g. too many[3]<संदर्भ नाम = नेरिंग 1970 118-127 >Nering (1970, pp. 118–127)</ref>

यदि ऑपरेटर मूल रूप से वर्ग मैट्रिक्स एम के लिए दिया गया है, तो इसके जॉर्डन सामान्य रूप को एम का जॉर्डन सामान्य रूप भी कहा जाता है। किसी भी वर्ग मैट्रिक्स में जॉर्डन सामान्य रूप होता है यदि गुणांक के क्षेत्र को सभी इगनवैल्यूज ​​​​से युक्त तक बढ़ाया जाता है आव्यूह। इसके नाम के अतिरिक्त, किसी दिए गए एम के लिए सामान्य रूप पूरी तरह से अद्वितीय नहीं है, क्योंकि यह जॉर्डन ब्लॉक से बना ब्लॉक विकर्ण मैट्रिक्स है, जिसका क्रम निश्चित नहीं है; समान इगनवैल्यू के लिए ब्लॉकों को साथ समूहित करना पारंपरिक है, किन्तु इगनवैल्यूज ​​​​के बीच कोई क्रम नहीं लगाया जाता है, न ही किसी दिए गए इगनवैल्यू के लिए ब्लॉकों के बीच, चूंकि बाद वाले को कमजोर रूप से घटते आकार के आधार पर ऑर्डर किया जा सकता है।Cite error: Invalid <ref> tag; invalid names, e.g. too many[3]<रेफ नाम = नेरिंग 1970 118-127 />

जॉर्डन-चेवेल्ली अपघटन उस आधार के संबंध में विशेष रूप से सरल है जिसके लिए ऑपरेटर अपने जॉर्डन को सामान्य रूप लेता है। विकर्णीय मैट्रिक्स के लिए विकर्ण रूप, उदाहरण के लिए सामान्य मैट्रिक्स, जॉर्डन सामान्य रूप का विशेष स्थिति है।[4][5][6]

जॉर्डन सामान्य रूप का नाम केमिली जॉर्डन के नाम पर रखा गया है, जिन्होंने पहली बार 1870 में जॉर्डन अपघटन प्रमेय को बताया था।[7]


सिंहावलोकन

संकेतन

कुछ पाठ्यपुस्तकें उपविकर्ण पर होती हैं; अर्थात, सुपरविकर्ण के अतिरिक्त मुख्य विकर्ण के ठीक नीचे। आइगेनवैल्यू अभी भी मुख्य विकर्ण पर हैं।[8][9]

प्रेरणा

n × n मैट्रिक्स A विकर्णीय मैट्रिक्स है यदि और एकमात्र ईजेनस्पेस के आयामों का योग n है। या, समकक्ष रूप से, यदि और एकमात्र यदि A में n रैखिक रूप से स्वतंत्र इगनवेक्टर्स हैं। सभी आव्यूह विकर्णीय नहीं होते; वे आव्यूह जो विकर्णीय नहीं होते, दोषपूर्ण आव्यूह आव्यूह कहलाते हैं। निम्नलिखित मैट्रिक्स पर विचार करें:

बहुलता सहित, A के इगनवैल्यूज ​​​​λ = 1, 2, 4, 4 हैं। इगनवैल्यू 4 के अनुरूप इगनस्पेस का Hamel आयाम 1 (और 2 नहीं) है, इसलिए A विकर्णीय नहीं है। यद्यपि, व्युत्क्रमणीय मैट्रिक्स P इस प्रकार है कि J = P−1एपी, कहां

गणित का सवाल अधिकतर विकर्ण है. यह ए का जॉर्डन सामान्य रूप है। नीचे दिया गया अनुभाग उदाहरण गणना का विवरण भरता है।

संमिश्र आव्यूह

सामान्यतः, वर्ग जटिल मैट्रिक्स ए ब्लॉक विकर्ण मैट्रिक्स के समान (रैखिक बीजगणित) होता है

जहां प्रत्येक ब्लॉक जेiप्रपत्र का वर्ग मैट्रिक्स है

तो व्युत्क्रमणीय मैट्रिक्स P उपस्थित है जैसे कि P−1AP = J ऐसा है कि J की एकमात्र गैर-शून्य प्रविष्टियाँ विकर्ण और अतिविकर्ण पर हैं। J को A का 'जॉर्डन सामान्य रूप' कहा जाता है। प्रत्येक Ji ए का जॉर्डन ब्लॉक कहा जाता है। किसी दिए गए जॉर्डन ब्लॉक में, सुपरडायगोनल पर प्रत्येक प्रविष्टि 1 है।

इस परिणाम को मानते हुए, हम निम्नलिखित गुण निकाल सकते हैं:

  • बहुलताओं की गणना करते हुए, J के इगनवैल्यूज , और इसलिए A के, विकर्ण प्रविष्टियाँ हैं।
  • इगनवैल्यू λ दिया गया हैi, इसकी ज्यामितीय बहुलता ker(Aλ का आयाम हैi I), जहां I पहचान मैट्रिक्स है, और यह λ के अनुरूप जॉर्डन ब्लॉक की संख्या हैi.[10]
  • इगनवैल्यू λ के अनुरूप सभी जॉर्डन ब्लॉकों के आकार का योगi इसकी बीजगणितीय बहुलता है.[10]* A विकर्णीय है यदि और एकमात्र यदि, A के प्रत्येक इगनवैल्यू λ के लिए, इसकी ज्यामितीय और बीजगणितीय बहुलताएं मेल खाती हैं। विशेष रूप से, इस स्थितियों में जॉर्डन ब्लॉक 1 × 1 मैट्रिक्स हैं; अर्थात् अदिश होता है |
  • λ के अनुरूप जॉर्डन ब्लॉक λI + N के रूप का है, जहां N निलपोटेंट मैट्रिक्स है जिसे N के रूप में परिभाषित किया गया हैij =डीi,j−1 (जहाँ δ क्रोनकर डेल्टा है)। एफ(ए) की गणना करते समय एन की शून्यक्षमता का उपयोग किया जा सकता है जहां एफ जटिल विश्लेषणात्मक कार्य है। उदाहरण के लिए, सिद्धांत रूप में जॉर्डन फॉर्म घातीय exp(A) के लिए बंद-फॉर्म अभिव्यक्ति दे सकता है।
  • कम से कम j आकार के λ के अनुरूप जॉर्डन ब्लॉकों की संख्या मंद केर (A − λI) हैj − dim ker(A − λI)−1. इस प्रकार, j आकार के जॉर्डन ब्लॉकों की संख्या है
  • इगनवैल्यू λ दिया गया हैi, न्यूनतम बहुपद में इसकी बहुलता इसके सबसे बड़े जॉर्डन ब्लॉक के आकार के समान है।

उदाहरण

मैट्रिक्स पर विचार करें पिछले अनुभाग के उदाहरण से. जॉर्डन सामान्य रूप कुछ मैट्रिक्स समानता के लिए प्राप्त किया जाता है:

वह है,

होने देना कॉलम वैक्टर हैं , , तब

हमने देखा कि

के लिए अपने पास , वह है, का इगनवेक्टर है इगनवैल्यू के अनुरूप . के लिए , दोनों पक्षों को गुणा करने पर देता है

लेकिन , इसलिए

इस प्रकार, वेक्टर जैसे A के सामान्यीकृत इगनवेक्टर्स कहलाते हैं।

उदाहरण: सामान्य रूप प्राप्त करना

यह उदाहरण दिखाता है कि किसी दिए गए मैट्रिक्स के जॉर्डन सामान्य रूप की गणना कैसे करें।

मैट्रिक्स पर विचार करें

जिसका उल्लेख लेख की शुरुआत में किया गया है।

A का अभिलक्षणिक बहुपद है

इससे पता चलता है कि बीजगणितीय बहुलता के अनुसार इगनवैल्यूज ​​​​1, 2, 4 और 4 हैं। इगनवैल्यू 1 के अनुरूप इगनस्पेस समीकरण Av = λv को हल करके पाया जा सकता है। यह कॉलम वेक्टर v = (−1, 1, 0, 0) के लिए फैलाया गया हैटी. इसी प्रकार, इगनवैल्यू 2 के संगत इगनस्पेस को w = (1, −1, 0, 1) के लिए फैलाया गया है।टी. अंत में, इगनवैल्यू 4 के अनुरूप इगनस्पेस भी एक-आयामी है (भले ही यह दोहरा इगनवैल्यू है) और x = (1, 0, −1, 1) के लिए फैला हुआ हैटी. तो, तीनों इगनवैल्यूज ​​​​में से प्रत्येक की ज्यामितीय बहुलता (यानी, दिए गए इगनवैल्यू के इगनस्पेस का आयाम) है। इसलिए, 4 के समान दो इगनवैल्यूज ​​​​ एकल जॉर्डन ब्लॉक के अनुरूप हैं, और मैट्रिक्स ए का जॉर्डन सामान्य रूप मैट्रिक्स जोड़ # प्रत्यक्ष योग है

तीन सामान्यीकृत ईजेनवेक्टर#जॉर्डन श्रृंखलाएं हैं। दो की लंबाई है: {v} और {w}, जो क्रमशः इगनवैल्यूज ​​​​1 और 2 के अनुरूप हैं। इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है। इस श्रृंखला को खोजने के लिए, गणना करें

जहां I 4 × 4 पहचान मैट्रिक्स है। उपरोक्त अवधि में वेक्टर चुनें जो A − 4I के कर्नेल में नहीं है; उदाहरण के लिए, y = (1,0,0,0)टी. अब, (A − 4I)y = x और (A − 4I)x = 0, इसलिए {y, x} इगनवैल्यू 4 के अनुरूप लंबाई दो की श्रृंखला है।

संक्रमण मैट्रिक्स P इस प्रकार है कि P−1AP = J इन सदिशों को दूसरे के बगल में रखकर इस प्रकार बनाया जाता है

गणना से पता चलता है कि समीकरण पी−1एपी = जे वास्तव में कायम है।

यदि हमने उस क्रम को बदल दिया है जिसमें चेन वैक्टर दिखाई देते हैं, अर्थात, v, w और {x, y} के क्रम को साथ बदलते हुए, जॉर्डन ब्लॉकों को आपस में बदल दिया जाएगा। हालाँकि, जॉर्डन रूप जॉर्डन रूपों के समकक्ष हैं।

सामान्यीकृत ईजेनवेक्टर

इगनवैल्यू λ दिया गया है, प्रत्येक संबंधित जॉर्डन ब्लॉक रैखिक रूप से स्वतंत्र वैक्टर पी की 'जॉर्डन श्रृंखला' को जन्म देता हैi, i = 1, ..., b, जहां b जॉर्डन ब्लॉक का आकार है। 'जनरेटर', या 'लीड वेक्टर', पीbश्रृंखला का सामान्यीकृत इगनवेक्टर है जैसे कि (A − λ'I')बीb = 0. वेक्टर पी1 = (ए - λ'आई')b−1pb λ के अनुरूप साधारण इगनवेक्टर है। सामान्य तौर पर, पीi पी की पूर्व छवि हैi−1 A - λ'I' के अंतर्गत। तो लीड वेक्टर A - λ'I' से गुणा करके श्रृंखला उत्पन्न करता है।[11][2]इसलिए यह कथन कि प्रत्येक वर्ग मैट्रिक्स ए को जॉर्डन में सामान्य रूप में रखा जा सकता है, इस दावे के समान है कि अंतर्निहित वेक्टर स्थान का आधार जॉर्डन श्रृंखलाओं से बना है।

प्रमाण

हम प्रेरण के लिए प्रमाण देते हैं कि किसी भी जटिल-मूल्य वर्ग मैट्रिक्स ए को जॉर्डन सामान्य रूप में रखा जा सकता है। चूँकि अंतर्निहित सदिश स्थान दिखाया जा सकता है[12] इगनवैल्यूज ​​​​से जुड़े अपरिवर्तनीय उप-स्थानों का प्रत्यक्ष योग होने के लिए, A को एकमात्र इगनवैल्यू λ माना जा सकता है। 1×1 मामला मामूली है. मान लीजिए A n × n मैट्रिक्स है। A - λ'I' के फलन की सीमा, जिसे Ran(A - λ'I के लिए निरूपित किया जाता है, A का अपरिवर्तनीय उपस्थान है। इसके अलावा, चूँकि λ A का इगनवैल्यू है, Ran(A - λ) का आयाम 'I'), r, n से बिल्कुल कम है, इसलिए, आगमनात्मक परिकल्पना के अनुसार, Ran(A - λ'I') का आधार है (रैखिक बीजगणित) {p1, …, पीr}जॉर्डन श्रृंखलाओं से बना है।

इसके बाद कर्नेल (रैखिक बीजगणित) पर विचार करें, यानी, रैखिक उपस्थान केर (ए − λ'I')। अगर

वांछित परिणाम रैंक-शून्यता प्रमेय से तुरंत प्राप्त होता है। (यह मामला होगा, उदाहरण के लिए, यदि ए हर्मिटियन मैट्रिक्स था।)

अन्यथा, यदि

माना Q का आयाम s ≤ r है। Q में प्रत्येक वेक्टर इगनवेक्टर है, इसलिए Ran(A − λ'I') में s रैखिक रूप से स्वतंत्र इगनवेक्टर्स के अनुरूप s जॉर्डन श्रृंखला होनी चाहिए। इसलिए आधार {p1, ..., पीr} में s सदिश होना चाहिए, मान लीजिए {prs+1, ..., पीr}, जो इन जॉर्डन श्रृंखलाओं के प्रमुख वैक्टर हैं। हम इन लीड वैक्टरों की पूर्वछवियाँ लेकर श्रृंखलाओं का विस्तार कर सकते हैं। (यह मुख्य कदम है।) चलो qi ऐसा हो कि

सेट {qi}, रैखिक रूप से स्वतंत्र सेट {p. की पूर्वछवियाँ होने के नातेi}ए - λ 'आई' के तहत, भी रैखिक रूप से स्वतंत्र है। स्पष्टतः q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi {p के लिए ker(A − λI) में स्थित हो सकता हैi}i=rs+1, ..., r रैखिक रूप से स्वतंत्र है. इसके अलावा, q का कोई गैर-तुच्छ रैखिक संयोजन नहीं हैi Ran(A − λ 'I') से संबंधित हो सकता है क्योंकि तब यह मूल वैक्टर p का रैखिक संयोजन होगा1, ..., पीr, और इस रैखिक संयोजन में मूल वैक्टर का योगदान होगा जो कि केर (ए - λI) में नहीं है क्योंकि अन्यथा यह केर (ए - λI) से संबंधित होगा। दोनों रैखिक संयोजनों पर ए - λI की कार्रवाई तब लीड वैक्टर के गैर-तुच्छ रैखिक संयोजन और गैर-लीड वैक्टर के ऐसे रैखिक संयोजन की समानता उत्पन्न करेगी, जो (पी) की रैखिक स्वतंत्रता का खंडन करेगी।1, ..., पीr).

अंततः, हम कोई भी रैखिकतः स्वतंत्र समुच्चय {z चुन सकते हैं1, ..., साथt} जिसका प्रक्षेपण फैला हुआ है

प्रत्येक zi 1 लंबाई की जॉर्डन श्रृंखला बनाता है। निर्माण से, तीन सेटों का मिलन {पी1, ..., पीr}, {क्यूrs +1, ..., क्यूr}, और {z1, ..., साथt} रैखिक रूप से स्वतंत्र है, और इसके सदस्य मिलकर जॉर्डन श्रृंखला बनाते हैं। अंत में, रैंक-शून्यता प्रमेय के लिए , संघ की कार्डिनैलिटी n है। दूसरे शब्दों में, हमें जॉर्डन श्रृंखलाओं से बना आधार मिला है, और इससे पता चलता है कि ए को जॉर्डन के सामान्य रूप में रखा जा सकता है।

विशिष्टता

यह दिखाया जा सकता है कि किसी दिए गए मैट्रिक्स ए का जॉर्डन सामान्य रूप जॉर्डन ब्लॉक के क्रम तक अद्वितीय है।

आइजेनवैल्यू की बीजगणितीय और ज्यामितीय बहुलताओं को जानना ए के जॉर्डन सामान्य रूप को निर्धारित करने के लिए पर्याप्त नहीं है। यह मानते हुए कि आइजेनवैल्यू λ की बीजगणितीय बहुलता एम(λ) ज्ञात है, जॉर्डन फॉर्म की संरचना को रैंकों का विश्लेषण करके पता लगाया जा सकता है। शक्तियां (ए - λI)एम(λ). इसे देखने के लिए, मान लीजिए कि n × n मैट्रिक्स A का एकमात्र इगनवैल्यू λ है। तो m(λ) = n. सबसे छोटा पूर्णांक k1 ऐसा है कि

ए के जॉर्डन रूप में सबसे बड़े जॉर्डन ब्लॉक का आकार है (यह संख्या k1 इसे λ का सूचकांक भी कहा जाता है। निम्नलिखित अनुभाग में चर्चा देखें।) की रैंक

k आकार के जॉर्डन ब्लॉकों की संख्या है1. इसी प्रकार, का पद

k आकार के जॉर्डन ब्लॉकों की संख्या दोगुनी है1 साथ ही k आकार के जॉर्डन ब्लॉकों की संख्या1- 1. सामान्य मामला समान है।

इसका उपयोग जॉर्डन रूप की विशिष्टता दिखाने के लिए किया जा सकता है। चलो जे1 और जे2 ए के दो जॉर्डन सामान्य रूप बनें। फिर जे1 और जे2 समान हैं और इनका स्पेक्ट्रम भी समान है, जिसमें आइगेनवैल्यू की बीजगणितीय बहुलताएं भी शामिल हैं। पिछले पैराग्राफ में उल्लिखित प्रक्रिया का उपयोग इन मैट्रिक्स की संरचना निर्धारित करने के लिए किया जा सकता है। चूँकि मैट्रिक्स की रैंक समानता परिवर्तन के लिए संरक्षित होती है, जे के जॉर्डन ब्लॉकों के बीच आपत्ति होती है1 और जे2. यह कथन की विशिष्टता वाले भाग को सिद्ध करता है।

वास्तविक आव्यूह

यदि A वास्तविक मैट्रिक्स है, तो इसका जॉर्डन रूप अभी भी गैर-वास्तविक हो सकता है। जैसा कि ऊपर चर्चा की गई है, इसे जटिल इगनवैल्यूज ​​​​और सुपरडायगोनल पर प्रस्तुत करने के बजाय, वास्तविक उलटा मैट्रिक्स P उपस्थित है जैसे कि P−1एपी = जे वास्तविक ब्लॉक विकर्ण मैट्रिक्स है जिसमें प्रत्येक ब्लॉक वास्तविक जॉर्डन ब्लॉक है।[13] वास्तविक जॉर्डन ब्लॉक या तो जटिल जॉर्डन ब्लॉक के समान होता है (यदि संबंधित इगनवैल्यू वास्तविक है), या स्वयं ब्लॉक मैट्रिक्स है, जिसमें 2×2 ब्लॉक शामिल हैं (गैर-वास्तविक आइजेनवैल्यू के लिए)। फॉर्म की दी गई बीजगणितीय बहुलता के साथ)।

और गुणन का वर्णन करें जटिल तल में. सुपरडायगोनल ब्लॉक 2×2 पहचान मैट्रिक्स हैं और इसलिए इस प्रतिनिधित्व में मैट्रिक्स आयाम जटिल जॉर्डन फॉर्म से बड़े हैं। पूर्ण वास्तविक जॉर्डन ब्लॉक के लिए दिया गया है

यह वास्तविक जॉर्डन स्वरूप जटिल जॉर्डन स्वरूप का परिणाम है। वास्तविक मैट्रिक्स के लिए गैर-वास्तविक ईजेनवेक्टर और सामान्यीकृत ईजेनवेक्टर को हमेशा जटिल संयुग्म जोड़े बनाने के लिए चुना जा सकता है। वास्तविक और काल्पनिक भाग (वेक्टर और उसके संयुग्म का रैखिक संयोजन) लेते हुए, नए आधार के संबंध में मैट्रिक्स का यह रूप है।

फ़ील्ड में प्रविष्टियों के साथ मैट्रिक्स

जॉर्डन घटना को किसी भी वर्गीकृत मैट्रिक्स M के लिए विस्तारित किया जा सकता है जिसके अंश क्षेत्र K में होते हैं। परिणाम के अनुसार, किसी भी M को योग के रूप में लिखा जा सकता है, जहां D अर्धसरल ऑपरेटर है, N शून्यभूत है, और DN = ND है। इसे जॉर्डन-चेवली विघटन कहा जाता है। जब भी K M के इजनमानों को सम्मिलित करता है, विशेष रूप से जब K बीजगणितीय बंद होता है, नियमित रूप जॉर्डन-चेवली विघटन को जॉर्डन ब्लॉकों के प्रत्यक्ष योग के रूप में स्पष्ट रूप से व्यक्त किया जा सकता है।

K को चरण संख्याओं के रूप में अंशों की ज्यामिति जहां 1 ≤ k ≤ m के लिए (MλI)k के कर्नलों की आयामों को जानना, एम के जॉर्डन रूप को निर्धारित करने में सहायता करता है, यहां m ईजनमान की बहुपदिता है। हम विचार करके K[x]-मॉड्यूल के रूप में उपस्थित वेक्टर स्थान V को K-रेखांकितता के रूप में देख सकते हैं, जिसमें x की क्रिया को M के अनुप्रयोग के रूप में माना जाता है और K-रेखांकितता के लिए विस्तार किया जाता है। तब पॉलिनोमियल (xλ)k M के तत्व विभाजक होते हैं, और जॉर्डन नियमित रूप को प्राथमिकताओं से जुड़े ब्लॉकों के लिए प्रस्तुत करने में लगे होते हैं।

जॉर्डन सामान्य रूप का प्रमाण आमतौर पर प्रमुख आदर्श डोमेन पर अंतिम रूप से उत्पन्न मॉड्यूल के लिए संरचना प्रमेय के रिंग (गणित) K[x] के अनुप्रयोग के रूप में किया जाता है, जिसका यह परिणाम होता है।

परिणाम

जॉर्डन नियमित रूप को स्वतंत्रता सूत्र का तथ्य के रूप में देखा जा सकता है जो वर्गीकरण मैट्रिक्सों के लिए होता है, और इसलिए रूप से कई महत्वपूर्ण परिणाम रूप में उसके परिणाम के रूप में देखे जा सकते हैं।

स्पेक्ट्रल मैपिंग प्रमेय

जॉर्डन नियमित रूप का उपयोग करके, सीधी गणना से प्रारम्भिक विभाजक के लिए स्पेक्ट्रल मैपिंग सूत्र मिलता है: A n × n मैट्रिक्स हो, जिसके इजनमान हैं λ1, ..., λn, तो किसी भी बहुपद p के लिए, p(A) के इजनमान होंगे p(λ1), ..., p(λn)।

अभिलक्षणिक बहुपद

A का लक्षणिक बहुपद है समान मैट्रिक्सों का ही लक्षणिक बहुपद होता है। इसलिए यहां का ith मूल है और इसकी अवधिकता है, क्योंकि यह स्पष्ट रूप से A के जॉर्डन रूप का लक्षणिक बहुपद है।

केली-हैमिल्टन प्रमेय

केली-हैमिल्टन उपन्यास के अनुसार, हर मैट्रिक्स A अपनी लक्षणिक समीकरण को पूरा करती है: यदि p A A का लक्षणिक बहुपद है, तो यह जॉर्डन रूप में सीधी गणना के माध्यम से दिखाया जा सकता है, क्योंकि यदि λ ई अवधिकता का इजनमान है, तो इसका जॉर्डन खंड J ई निश्चित रूप से संपूर्ण करता है अगर यहां संपूर्ण खंड को एक-दूसरे को प्रभावित नहीं करते हैं, तो का i वाला नुकताचीन खंड होता है । इसलिए .

जॉर्डन रूप को यहां माना जा सकता है कि यह मैट्रिक्स की मूलभूत ज्यामिति का क्षेत्र होता है, उदाहरण के लिए p के विभाजन क्षेत्र के ऊर्ध्वाधिक्य के लिए; इस क्षेत्र का विस्तार मैट्रिक्स p(A) को किसी भी तरीके से नहीं बदलता है।

न्यूनतम बहुपद

वर्गीकृत मैट्रिक्स A का न्यूनतम बहुपद (रैखिक बीजगणित) P वह एकमान्य मोनिक बहुपद है, जिसकी अवधि m कम से कम होती है, ऐसा कि P(A) = 0 होता है। वैकल्पिक रूप से, दी गई A को समाप्त करने वाले बहुपदों का सेट बहुपदों का आईडीयल I बनाता है, C[x] में बहुपदों के प्रमुख आईडीयल डोमेन, जिसमें घटाक संख्याओं के अनुरूप। I को उत्पन्न करने वाला मोनिक तत्व बिल्कुल P होता है।

λ1, …, λq को A के अलग-अलग इजनमानों का प्रतिनिधित्व करने वाले प्रतिष्ठित इजनमानों का आकार si होने पर प्रकट है। जॉर्डन रूप से स्पष्ट है कि A के न्यूनतम बहुपद का डिग्री Σsi होता है।

जबकि जॉर्डन नियमित रूप न्यूनतम बहुपद को निर्धारित करता है, विपरीत बात यह है। इससे प्रारंभिक विभाजकों की धारणा होती है। वर्गीकृत मैट्रिक्स A के प्रारंभिक विभाजक उसके जॉर्डन खंडों के वैशिष्ट्यक पहचानक बहुपद होते हैं। m के घटक अल्पकोण न्यूनतम बहुपद होते हैं, जो अलग-अलग इजनमानों के अनुरूप सबसे बड़े डिग्री के प्रारंभिक विभाजक होते हैं।

प्रारंभिक विभाजक का डिग्री उससे संबंधित जॉर्डन खंड का आकार होता है, इसलिए उससे संबंधित नियामक उपस्थिति का आयाम। यदि सभी प्रारंभिक विभाजक रैखिक होते हैं, तो A वैज्ञानिक होता है।

अपरिवर्तनीय उप-स्थान अपघटन

n × n मैट्रिक्स A का जॉर्डन रूप खंडगदीय होता है, और इसलिए n आयामी यूक्लिडीय स्थान का स्वतंत्र उपविभाजन देता है। प्रत्येक जॉर्डन खंड Ji का प्रतिनिधित्व करने वाला अविभाज्य उपस्थान Xi होता है। चिह्नित रूप में, हम लिखते हैं

जहां प्रत्येक Xi, संबंधित जॉर्डन श्रृंखला के तारक के अंक की स्पैन होता है, और k जॉर्डन श्रृंखलाओं की संख्या होती है।

जॉर्डन रूप के माध्यम से हम थोड़ा अलग उपविभाजन भी प्राप्त कर सकते हैं। इजनमान λi के के लिए , उसके सबसे बड़े संबंधित जॉर्डन ब्लॉक का आकार si को उसकी सूची कहते हैं और v(λi) के लिए चिह्नित किया जाता है। (इसलिए, न्यूनतम बहुपद का डिग्री सभी सूचकों के योग होता है.) Yi के लिए उपस्थान Yi की परिभाषा कीजिए

इससे यह उपविभाजन देता है

जहां l, A के विभिन्न इजनमानों की संख्या होती है। अवचित्र रूप से, हम समान इजनमान के लिए जॉर्डन खंड अविभाज्य उपस्थानों को एकत्रित करते हैं। चरम स्थितियों में जब A पहचान मात्रिका का गुणक होता है, तब हमें k = n और l = 1 होता है।

Yi पर परावर्तन को और सभी अन्य Yj (j ≠ i) के अलावा के रूप में विधायक प्रोजेक्शन कहा जाता है, जिसे vi पर A का आधारभूत विधायक प्रोजेक्शन के रूप में चिह्नित किया जाता है। स्पेक्ट्रल प्रोजेक्शन एक-दूसरे के साथ अपरस्पष्टता करते हैं, जिसका अर्थ है कि P(λi ; A) P(vj ; A) = 0 यदि i ≠ j है। इसके अलावा, वे A के साथ संघात करते हैं और उनका योग पहचान मात्रिका होता है। J में हर vi को में बदलते हैं और अन्य सभी प्रविष्टियों को शून्य करते हैं, फिर P(vi ; J) मिलता है, और यदि U J U−1 समानता परिवर्तन है जिसके लिए A = U J U−1 होता है, तब P(λi ; A) = U P(λi ; J) होता है। यह सीमित आयामसे बाहर नहीं होते हैं। कॉम्पैक्ट ऑपरेटर्स के लिए उनके इस्पाती उपयोग के लिए नीचे देखें, और और सामान्य चर्चा के लिए होलोमोर्फिक कार्यात्मक कैलकुलस में नीचे देखें।

दो उपविभाजनों को तुलना करते हुए, ध्यान दें कि सामान्य रूप में, l ≤ k होता है। जब A सामान्य होता है, तो प्रथम उपविभाजन में Xi's उपस्थान एक-आयामी होते हैं और एक-दूसरे के लिए संघाती होते हैं। यह सामान्य ऑपरेटर्स के लिए स्पेक्ट्रल सिद्धांत है। दूसरा उपविभाजन आयामीय उपविभाजनों के लिए अधिक सरलतापूर्ण रूप से सामान्य संकुचित ऑपरेटर्स पर बढ़ता है।

यहां नुकताचीन सूचकांक की कुछ गुणधर्मों का उल्लेख करना दिलचस्प हो सकता है। अधिक सामान्यतः, समान्य संख्या λ के लिए, उसकी सूचकांक को उस नकारात्मक अथवा नानात्विक संख्या ν(λ) की अल्पतम अगतिशाखा के रूप में परिभाषित किया जा सकता है, जो यह साबित करता है कि

इसलिए ν(v) > 0 अगर और एकमात्र अगर λ A का इजनमान है। सीमित आयामी स्थितियों में, ν(λ) ≤ वैज्ञानिक अनुपात है।

समतल (सपाट) सामान्य रूप

जॉर्डन रूप का उपयोग मात्रिकाओं की समकोण तक समरूपता के लिए साधारण रूप खोजने के लिए किया जाता है, जिसके परिणामस्वरूप साधारण मात्रिकाएँ मूल मात्रिका स्थान में न्यूनतम स्थानिकीय डिग्री की बीजगणित संख्याओं का समूह होता है।

जॉर्डन रूप के लिए मात्रिका समरूपता के प्रतिनिधित्वकों के सेट, या विशाल मात्रिका स्थान में राष्ट्रीय गणितिक रूप में विभाजन के लिए, सामान्य रूप से रेखांकित या एफ़ाइन सबस्थान नहीं बनाते हैं।

व्लादिमीर अर्नोल्ड ने पोज़ दियाने समस्या पूछी[14] क्षेत्र में मात्रिका समरूपता वर्गों के प्रतिनिधित्वकों का सेट एफाइन रैखिक उपस्थिति (फ्लैट) के संयोजन की समान्तर रूप हो। दूसरे शब्दों में, मात्रिका समरूपता वर्गों के सेट को प्रारंभिक मात्रिका सेट में सुरक्षित रूप से एक-विद्यमान करें ताकि इस संबद्धन की छवि - सभी साधारण मात्रिकाओं का सेट, सबसे कम संभावित डिग्री होता है - यह खिसे हुए रेखांकित उपविभाजनों का संयोजन होता है।

यह बीजगणितिक बंद क्षेत्रों के लिए पीटरिस डौगुलिस ने बीजगणित बंदों के निर्माण को समस्या का हल किया। मात्रिका के अद्वितीय निर्धारित विमान निरूपण का निर्माण जॉर्डन रूप को विचार करके शुरू होता है।[15]

मैट्रिक्स फ़ंक्शंस

जॉर्डन श्रृंखला का अनुक्रमणिका विविध और प्रयोजनों के लिए विस्तार को प्रेरित करता है। संख्यात्मक मैट्रिक्सों के लिए, मैट्रिक्स फ़ंक्शन मिलता है; इसे संकुचित ऑपरेटरों और होलोमोर्फिक कार्यात्मक विश्लेषण में विस्तारित किया जा सकता है, जैसा नीचे विवरण दिया गया है।

जॉर्डन साधारण रूप सबसे आसान है मैट्रिक्स फ़ंक्शनों की गणना के लिए (हालांकि यह कंप्यूटर की गणना के लिए सबसे अच्छा चयन नहीं हो सकता है)। f(z) संज्ञात्मकीय तार्किक चर का विश्लेषण हो। n×n जॉर्डन ब्लॉक J पर फ़ंक्शन का लागू होना, जिसमें इजीनमान λ होता है, ऊपरी त्रिकोणीय मैट्रिक्स देता है।

ताकि परिणामी मैट्रिक्स के k-th सुपरडायागोनल के तत्व हों। सामान्य जॉर्डन नियमित रूप की मैट्रिक्स के लिए उपरोक्त संवेदनशीलता को प्रत्येक जॉर्डन ब्लॉक पर लागू किया जाना चाहिए।

निम्नलिखित उदाहरण पावर फ़ंक्शन f(z)=zn के अनुप्रयोग को दिखाता है:

यहां बाइनोमियल संख्याओं की परिभाषा है यहां n के लिए पूर्णांक पॉजिटिव है, तो इसका मान आम परिभाषा के समान होता है। n के लिए नकारात्मक मान के लिए पहचान का उपयोग किया जा सकता है।

कॉम्पैक्ट ऑपरेटर

जॉर्डन सामान्य फॉर्म के अनुरूप परिणाम बनच स्थान पर कॉम्पैक्ट ऑपरेटरों के लिए होता है। इसलिए कॉम्पैक्ट ऑपरेटरों पर प्रतिबंधित होता है क्योंकि हर बिंदु x को कॉम्पैक्ट ऑपरेटर T के स्पेक्ट्रम का अवधारणीय बिंदु कहा जाता है; एकमात्र अपवाद यह है जब x स्पेक्ट्रम का सीमा बिंदु है। यह सामान्यतः बाध्य ऑपरेटरों के लिए सत्य नहीं है। इस सामान्यीकरण की विचार देने के लिए, हम पहले कार्यकला विश्लेषण को कार्यात्मक विश्लेषण की भाषा में पुनः रचते हैं।

होलोमोर्फिक कार्यात्मक कैलकुलस

X बैनाक स्थान हो, L(X) X पर सीमित ऑपरेटर्स हों, और σ(T) T ∈ L(X) का स्पेक्ट्रम हो। होलोमोर्फिक कार्यात्मक विश्लेषण निम्न रूप में परिभाषित होता है:

सीमित ऑपरेटर T को ठीक करें। σ(T) को शामिल करने वाले किसी खुले सेट G पर होलोमोर्फिक फ़ंक्शनका परिवार Hol(T) को विचार करें। Γ = {γi} संख्यात्मक जॉर्डन परिसंचय हो जिसमें σ(T) Γ के भीतर होता है, हम f(T) को निम्न रूप में परिभाषित करते हैं।

खुला सेट G, f के साथ भिन्न हो सकता है और इसे कनेक्ट करने की आवश्यकता नहीं है। इंटीग्रल को रीमैन योग की सीमा के रूप में परिभाषित किया गया है, जैसा कि अदिश स्थितियों में होता है। यद्यपि इंटीग्रल निरंतर एफ के लिए समझ में आता है, हम शास्त्रीय फ़ंक्शन सिद्धांत (उदाहरण के लिए, कॉची इंटीग्रल फॉर्मूला) से मशीनरी को लागू करने के लिए होलोमोर्फिक फ़ंक्शंस तक सीमित रखते हैं। यह धारणा कि σ(T) Γ के अंदर स्थित है, यह सुनिश्चित करता है कि f(T) अच्छी तरह से परिभाषित है; यह Γ की पसंद पर निर्भर नहीं है। कार्यात्मक कैलकुलस, Hol(T) से L(X) तक की मैपिंग Φ है

हमें इस कार्यात्मक कैलकुलस के निम्नलिखित गुणों की आवश्यकता होगी:

  1. Φ बहुपद कार्यात्मक कलन का विस्तार करता है।
  2. स्पेक्ट्रल मैपिंग सिद्धांत सत्य होता है: σ(f(T)) = f(σ(T))।.
  3. Φ बीजगणित मानक होता है।

परिमित-आयामी मामला

परिमित-आयामी स्थितियों में, σ(T) = {λi} कंप्लेक्स समतल में सीमित अस्पष्ट समूह होता है। लेट ei ऐसा फ़ंक्शन हो जो λi के कुछ खुले पड़ोस में 1 होता है और अन्यथा 0 होता है। कार्यकलाप की गुणधर्म 3 के के लिए ,

प्रक्षेपण होता है। इसके अलावा, νi λi का सूचकांक होता है और

विद्युतमान अनुक्रमणिका के अनुसार हमें बताता है

का स्पेक्ट्रम {0} होता है। गुणधर्म 1 के के लिए , f(T) को सीधे जॉर्डन रूप में निर्धारित किया जा सकता है, और निरीक्षण से, हम देखते हैं कि ऑपरेटर f(T)ei(टी) शून्य मैट्रिक्स है.

गुणधर्म 3 के के लिए , f(T) ei(T) = ei(T) f(T)। इसलिए ei(T) सीधे उन उपस्थिति पर प्रक्षेपण होता है

संबंध

से हमें मिलता है

जहां सूचकांक I, T के विशिष्ट इगनवैल्यूज ​​​​के माध्यम से चलता है। यह अपरिवर्तनीय उप-स्थान अपघटन है

यह पिछले अनुभाग में दिए गए अविचलित उपस्थिति विभाजन है। प्रत्येक e_i(T) λi के लिए जोर्डन श्रृंखलाओं के उपस्थिति के के लिए निर्धारित सशर्त पर्यायों की ओर प्रक्षेपण होता है। अन्य शब्दों में, e_i(T) = P(λi;T)। ऑपरेटर e_i(T) की इस स्पष्ट पहचान के लिए पटलिका के लिए स्पष्ट रूप दिया जाता है।

मैट्रिक्स के लिए लौरेंट श्रृंखला प्रतिस्थापन का स्पष्ट रूप भी देता है:

सभी f ∈ Hol(T) के लिए,

ध्यान दें कि f(T) का व्यक्तिगतीकरण सीमित योग है क्योंकि, हर प्रदेश में, हमने f की टेलर श्रृंखला को vi के लिए केंद्रित चुना है।

ऑपरेटर के ध्रुव

T सीमित ऑपरेटर हो, λ T के σ(T) का अलगावित बिंदु हों। (जैसा कि पहले कहा गया है, जब T संकुचित होता है, तो उसके स्पेक्ट्रम में हर बिंदु अलगावित बिंदु होता है, एकमात्र सीमा बिंदु 0 का सीमा बिंदु हो सकता है।)

ऑपरेटर T का बिंदु λ अग्रेय अवधि ν के साथ पोल कहलाता है अगर अग्निस्थापना समारेखी RT के लिए परिभाषित होती है

जो λ पर ν का ध्रुव (जटिल विश्लेषण) होता है।

हम दिखाएंगेकि, सीमित आयाम स्थितियों में, इजीनमान की आदेश उसके सूचकांक के साथ मेल खाती है। परिणाम संकुचित ऑपरेटर के लिए भी सत्य होता है।

λ के केंद्रित चक्र के पास आयामी इलाके A की विचार करें जिसमें ऐसा पर्याप्त छोटा त्रिज्या ε हो कि खुले वर्तुल Bε(λ) और σ(T) के प्राप्ति का छेद {λ} हों। आयामी RT A पर होलोमोर्फिक होती है। गणितीय कार्यकला से परिणाम का विस्तार करके, RT के पास A पर लॉरेंट श्रृंखला का प्रतिनिधित्व होती है:

जहां

और C छोटा चक्र λ को केंद्रित है।
पिछले चर्चा के आधार पर, हमने दिखाया है
जहाँ 1 पर है और अन्यत्र 0.

लेकिन हमने देखा है कि सबसे छोटा सकारात्मक पूर्णांक m ऐसा होता है

और

जहां ν(λ) इसके सबसे छोटा सकारात्मक पूर्णांक होता है। दूसरे शब्दों में, फ़ंक्शन RT के पास λ पर ν(λ) की पूर्णांक का पोल होता है।

संख्यात्मक विश्लेषण

यदि मैट्रिक्स A में कई इगनवैल्यूज ​​​​हैं, या कई इगनवैल्यूज ​​​​वाले मैट्रिक्स के करीब है, तो इसका जॉर्डन सामान्य रूप गड़बड़ी के प्रति बहुत संवेदनशील है। उदाहरण के लिए मैट्रिक्स पर विचार करें

यदि ε = 0, तो जॉर्डन सामान्य रूप सरल है

हालाँकि, ε ≠ 0 के लिए, जॉर्डन सामान्य रूप है

यह शर्त संख्या के कारण, जॉर्डन मानक रूप के लिए मजबूत संख्यात्मक एल्गोरिदम विकसित करना बहुत मुश्किल हो जाता है, क्योंकि परिणाम में निर्धारित किया जाता है कि क्या दो इजीनमान को समान माना जाता है या नहीं। इसी कारण संख्यात्मक विश्लेषण में जॉर्डन मानक रूप आमतौर पर टाल दिया जाता है; स्थिर शूर अपघटन[16] या छद्म छद्मस्पेक्ट्रम[17] सके बेहतर विकल्प हैं।

यह भी देखें

टिप्पणियाँ

  1. Shilov defines the term Jordan canonical form and in a footnote says that Jordan normal form is synonymous. These terms are sometimes shortened to Jordan form. (Shilov) The term Classical canonical form is also sometimes used in the sense of this article. (James & James, 1976)
  2. 2.0 2.1 Holt & Rumynin (2009, p. 9)
  3. 3.0 3.1 Golub & Van Loan (1996, p. 355)
  4. Beauregard & Fraleigh (1973, pp. 270–274)
  5. Golub & Van Loan (1996, p. 353)
  6. Nering (1970, pp. 113–118)
  7. Brechenmacher, "Histoire du théorème de Jordan de la décomposition matricielle (1870-1930). Formes de représentation et méthodes de décomposition", Thesis, 2007
  8. Cullen (1966, p. 114)
  9. Franklin (1968, p. 122)
  10. 10.0 10.1 Horn & Johnson (1985, §3.2.1)
  11. Bronson (1970, pp. 189, 194)
  12. Roe Goodman and Nolan R. Wallach, Representations and Invariants of Classical Groups, Cambridge UP 1998, Appendix B.1.
  13. Horn & Johnson (1985, Theorem 3.4.5)
  14. Arnold, Vladimir I, ed. (2004). Arnold's problems. Springer-Verlag Berlin Heidelberg. p. 127. doi:10.1007/b138219. ISBN 978-3-540-20748-1.
  15. Peteris Daugulis (2012). "मैट्रिक्स संयुग्मन कक्षा का एक पैरामीट्रिजेशन एफ़िन विमानों के संघ के रूप में सेट होता है". Linear Algebra and Its Applications. 436 (3): 709–721. arXiv:1110.0907. doi:10.1016/j.laa.2011.07.032. S2CID 119649768.
  16. See Golub & Van Loan (2014), §7.6.5; or Golub & Wilkinson (1976) for details.
  17. See Golub & Van Loan (2014), §7.9

संदर्भ