दीर्घ वृत्ताकार सह-समरूपता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Algebraic invariant of topological spaces}} | {{short description|Algebraic invariant of topological spaces}} | ||
गणित में, अण्डाकार कोहोमोलॉजी [[बीजगणितीय टोपोलॉजी]] के अर्थ में एक कोहोमोलॉजी सिद्धांत है। यह [[अण्डाकार वक्रों]] और मॉड्यूलर आकृतियों से संबंधित है। | गणित में, अण्डाकार कोहोमोलॉजी [[बीजगणितीय टोपोलॉजी]] के अर्थ में एक कोहोमोलॉजी सिद्धांत है। यह [[अण्डाकार वक्रों]] और मॉड्यूलर आकृतियों से संबंधित है। | ||
Line 8: | Line 7: | ||
==परिभाषाएँ और निर्माण== | ==परिभाषाएँ और निर्माण== | ||
यदि <math>A^i = 0</math> के लिए विषम है तो सह-समरूपता सिद्धांत <math>A^*</math> को सम आवधिक भी कह सकते है और <math>u\in A^2</math> में एक व्युत्क्रमणीय तत्व है। इन सिद्धांतों में एक [[जटिल अभिविन्यास]] होता है, जो एक [[औपचारिक समूह कानून|औपचारिक समूह नियम]] देता है। औपचारिक समूह नियमों के लिए एक विशेष रूप से समृद्ध स्रोत अण्डाकार वक्र हैं। एक कोहोमोलोजी सिद्धांत <math>A</math> के साथ | |||
:<math>A^0 = R</math> | :<math>A^0 = R</math> | ||
इसे अण्डाकार कहा जाता है यदि यह सम आवधिक है और इसका औपचारिक समूह कानून | इसे अण्डाकार कहा जाता है यदि यह सम आवधिक है और इसका औपचारिक समूह कानून <math>R</math> पर अण्डाकार वक्र <math>E</math> के औपचारिक समूह कानून के समरूपी है। ऐसे अण्डाकार कोहोमोलॉजी सिद्धांतों का सामान्य निर्माण लैंडवेबर सटीक फ़ैक्टर प्रमेय का उपयोग करता है। यदि <math>E</math> का औपचारिक समूह कानून लैंडवेबर सटीक है, तो कोई अण्डाकार कोहोलॉजी सिद्धांत (परिमित परिसरों पर) को परिभाषित कर सकता है | ||
: <math>A^*(X) = MU^*(X)\otimes_{MU^*}R[u,u^{-1}]. \, </math> | : <math>A^*(X) = MU^*(X)\otimes_{MU^*}R[u,u^{-1}]. \, </math> | ||
फ्रांके ने लैंडवेबर की सटीकता को पूरा करने के लिए आवश्यक शर्त की पहचान की है: | फ्रांके ने लैंडवेबर की सटीकता को पूरा करने के लिए आवश्यक शर्त की पहचान की है: | ||
# <math>R</math> | # <math>R</math> को <math>\mathbb{Z}</math> के ऊपर समतल होना चाहिए। | ||
# | #<math>\text{Spec }R/pR</math>, का कोई अपरिवर्तनीय घटक <math>X</math> नहीं है, जहां फाइबर <math>E_x</math> प्रत्येक <math>x\in X</math> के लिए सुपरसिंगुलर है। | ||
अण्डाकार पीढ़ी से संबंधित कई मामलों में इन स्थितियों की जाँच की जा सकती है। इसके अलावा, शर्तें सार्वभौमिक मामले में इस अर्थ में पूरी होती हैं कि अण्डाकार वक्रों के मॉड्यूली स्टैक से [[औपचारिक | अण्डाकार पीढ़ी से संबंधित कई मामलों में इन स्थितियों की जाँच की जा सकती है। इसके अलावा, शर्तें सार्वभौमिक मामले में इस अर्थ में पूरी होती हैं कि अण्डाकार वक्रों के मॉड्यूली स्टैक से [[औपचारिक समूहों]] के मॉड्यूली स्टैक तक का नक्शा | ||
:<math>\mathcal{M}_{1,1}\to\mathcal{M}_{fg}</math> | :<math>\mathcal{M}_{1,1}\to\mathcal{M}_{fg}</math> | ||
सपाट है। इससे [[कोहोमोलोजी सिद्धांतों]] का एक सारांश मिलता है, | |||
<math>\mathcal{O}_{e\ell\ell}^{pre}: \text{Aff}/(\mathcal{M}_{1,1})_{flat} \to \textbf{Spectra}</math> | |||
अण्डाकार वक्रों के मॉड्यूली स्टैक के ऊपर समतल योजनाओं की साइट पर वैश्विक खंडों को लेकर एक सार्वभौमिक अण्डाकार कोहोमोलॉजी सिद्धांत प्राप्त करने की इच्छा ने [[टोपोलॉजिकल मॉड्यूलर फॉर्म]] के निर्माण को जन्म दिया है।<ref>{{cite arXiv|last=Goerss|first=Paul G.|date=2009-05-08|title=लैंडवेबर सटीक होमोलॉजी सिद्धांतों के परिवारों को साकार करना|class=math.AT|eprint=0905.1319}}</ref><sup>पृष्ठ 20</sup><blockquote><math>\mathbf{Tmf} = \underset{X \to \mathcal{M}_{1,1}}{\textbf{Holim}}\text{ } \mathcal{O}_{e\ell\ell}^{pre}(X)</math></blockquote>इसी प्रकार पिछली साइट की तुलना में इस प्रीशीफ की होमोटॉपी सीमा के रूप में निर्माण किया जाता है। | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 09:02, 14 July 2023
गणित में, अण्डाकार कोहोमोलॉजी बीजगणितीय टोपोलॉजी के अर्थ में एक कोहोमोलॉजी सिद्धांत है। यह अण्डाकार वक्रों और मॉड्यूलर आकृतियों से संबंधित है।
इतिहास और प्रेरणा
ऐतिहासिक रूप से, अण्डाकार कोहोमोलॉजी अण्डाकार जीनस के अध्ययन से उत्पन्न हुई है। यह अतियाह और हिरज़ेब्रुच को ज्ञात था कि यदि स्पिन मैनिफोल्ड पर सुचारू रूप से और नॉन-ट्रीविअली रूप से कार्य होता है, तो फिर डिराक ऑपरेटर का सूचकांक विलुप्त हो जाता है। 1983 में, एडवर्ड विटेन ने अनुमान लगाया कि इस स्थिति में एक निश्चित ट्विस्टेड डिराक ऑपरेटर का समतुल्य सूचकांक कम से कम स्थिर है। इससे संबंधित कुछ अन्य समस्याएं भी उत्पन्न हुईं, इसके अतिरिक्त -मैनिफोल्ड्स पर क्रियाएं, जिन्हें अण्डाकार जेनेरा के प्रारंभ में ओचेनिन द्वारा समाधान किया जा सकता है। बदले में, विटन ने इन्हें फ्री लूप समष्टि पर (अनुमानात्मक) सूचकांक सिद्धांत से संबंधित किया था। 1980 के दशक के अंत में लैंडवेबर, स्टॉन्ग और डगलस रेवेनेल द्वारा अपने मूल रूप में आविष्कार किए गए एलिप्टिक कोहोलॉजी को एलिप्टिक जेनेरा के साथ कुछ विषयों को स्पष्ट करने और फ्री लूप समष्टि पर अवकल ऑपरेटरों के परिवारों को (अनुमानित) सूचकांक सिद्धांत के लिए तथा एक संदर्भ प्रदान करने के लिए प्रस्तुत किया गया था। कुछ अर्थों में इसे फ्री लूप समष्टि के K-सिद्धांत के सन्निकटन के रूप में देखा जा सकता है।
परिभाषाएँ और निर्माण
यदि के लिए विषम है तो सह-समरूपता सिद्धांत को सम आवधिक भी कह सकते है और में एक व्युत्क्रमणीय तत्व है। इन सिद्धांतों में एक जटिल अभिविन्यास होता है, जो एक औपचारिक समूह नियम देता है। औपचारिक समूह नियमों के लिए एक विशेष रूप से समृद्ध स्रोत अण्डाकार वक्र हैं। एक कोहोमोलोजी सिद्धांत के साथ
इसे अण्डाकार कहा जाता है यदि यह सम आवधिक है और इसका औपचारिक समूह कानून पर अण्डाकार वक्र के औपचारिक समूह कानून के समरूपी है। ऐसे अण्डाकार कोहोमोलॉजी सिद्धांतों का सामान्य निर्माण लैंडवेबर सटीक फ़ैक्टर प्रमेय का उपयोग करता है। यदि का औपचारिक समूह कानून लैंडवेबर सटीक है, तो कोई अण्डाकार कोहोलॉजी सिद्धांत (परिमित परिसरों पर) को परिभाषित कर सकता है
फ्रांके ने लैंडवेबर की सटीकता को पूरा करने के लिए आवश्यक शर्त की पहचान की है:
- को के ऊपर समतल होना चाहिए।
- , का कोई अपरिवर्तनीय घटक नहीं है, जहां फाइबर प्रत्येक के लिए सुपरसिंगुलर है।
अण्डाकार पीढ़ी से संबंधित कई मामलों में इन स्थितियों की जाँच की जा सकती है। इसके अलावा, शर्तें सार्वभौमिक मामले में इस अर्थ में पूरी होती हैं कि अण्डाकार वक्रों के मॉड्यूली स्टैक से औपचारिक समूहों के मॉड्यूली स्टैक तक का नक्शा
सपाट है। इससे कोहोमोलोजी सिद्धांतों का एक सारांश मिलता है,
अण्डाकार वक्रों के मॉड्यूली स्टैक के ऊपर समतल योजनाओं की साइट पर वैश्विक खंडों को लेकर एक सार्वभौमिक अण्डाकार कोहोमोलॉजी सिद्धांत प्राप्त करने की इच्छा ने टोपोलॉजिकल मॉड्यूलर फॉर्म के निर्माण को जन्म दिया है।[1]पृष्ठ 20
इसी प्रकार पिछली साइट की तुलना में इस प्रीशीफ की होमोटॉपी सीमा के रूप में निर्माण किया जाता है।
यह भी देखें
- वर्णक्रमीय बीजगणितीय ज्यामिति
- इंटरमीडिएट जैकोबियन
- रंगीन समरूपता सिद्धांत
संदर्भ
- Franke, Jens (1992), "On the construction of elliptic cohomology", Mathematische Nachrichten, 158 (1): 43–65, doi:10.1002/mana.19921580104.
- Landweber, Peter S. (1988), "Elliptic genera: An introductory overview", in Landweber, P. S. (ed.), Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Mathematics, vol. 1326, Berlin: Springer, pp. 1–10, ISBN 3-540-19490-8.
- Landweber, Peter S. (1988), "Elliptic cohomology and modular forms", in Landweber, P. S. (ed.), Elliptic Curves and Modular Forms in Algebraic Topology, Lecture Notes in Mathematics, vol. 1326, Berlin: Springer, pp. 55–68, ISBN 3-540-19490-8.
- Landweber, P. S.; Ravenel, D. & Stong, R. (1995), "Periodic cohomology theories defined by elliptic curves", in Cenkl, M. & Miller, H. (eds.), The Čech Centennial 1993, Contemp. Math., vol. 181, Boston: Amer. Math. Soc., pp. 317–338, ISBN 0-8218-0296-8.
- Lurie, Jacob (2009), "A Survey of Elliptic Cohomology", in Baas, Nils; Friedlander, Eric M.; Jahren, Björn; et al. (eds.), Algebraic Topology: The Abel Symposium 2007, Berlin: Springer, pp. 219–277, doi:10.1007/978-3-642-01200-6, hdl:2158/373831, ISBN 978-3-642-01199-3.
संस्थापक लेख
कैलाबी-यौ मैनिफोल्ड्स का विस्तार
- आर्क्सिव:2002.04879
- आर्क्सिव:1810.08953
- arxiv:hep-th/0511087|गेज सिद्धांत, स्ट्रिंग सिद्धांत और कोहोमोलॉजी में अण्डाकार वक्र
श्रेणी:कोहोमोलॉजी सिद्धांत श्रेणी:अण्डाकार वक्र श्रेणी:मॉड्यूलर फॉर्म