मिन्कोव्स्की-बौलीगैंड आयाम: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 72: Line 72:
* FracLac: online user guide and software [http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Fractals.htm ImageJ and FracLac box counting plugin; free user-friendly open source software for digital image analysis in biology]
* FracLac: online user guide and software [http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Fractals.htm ImageJ and FracLac box counting plugin; free user-friendly open source software for digital image analysis in biology]


{{DEFAULTSORT:Minkowski-Bouligand dimension}}[[Category: भग्न]] [[Category: आयाम सिद्धांत]] [[Category: हरमन मिन्कोव्स्की]]
{{DEFAULTSORT:Minkowski-Bouligand dimension}}


 
[[Category:Created On 04/07/2023|Minkowski-Bouligand dimension]]
 
[[Category:Lua-based templates|Minkowski-Bouligand dimension]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Minkowski-Bouligand dimension]]
[[Category:Created On 04/07/2023]]
[[Category:Pages with script errors|Minkowski-Bouligand dimension]]
[[Category:Vigyan Ready]]
[[Category:Templates Vigyan Ready|Minkowski-Bouligand dimension]]
[[Category:Templates that add a tracking category|Minkowski-Bouligand dimension]]
[[Category:Templates that generate short descriptions|Minkowski-Bouligand dimension]]
[[Category:Templates using TemplateData|Minkowski-Bouligand dimension]]
[[Category:आयाम सिद्धांत|Minkowski-Bouligand dimension]]
[[Category:भग्न|Minkowski-Bouligand dimension]]
[[Category:हरमन मिन्कोव्स्की|Minkowski-Bouligand dimension]]

Latest revision as of 10:34, 15 July 2023

फ्रैक्टल ज्यामिति में, मिन्कोव्स्की-बौलीगैंड आयाम, जिसे मिन्कोव्स्की आयाम या बॉक्स-गिनती आयाम के रूप में भी जाना जाता है, किसी समुच्चय के फ्रैक्टल आयाम को निर्धारित करने की विधि यूक्लिडियन समिष्ट में है, या सामान्यतः मीट्रिक समिष्ट में है। इसका नाम पोलिश गणितज्ञ हरमन मिन्कोव्स्की और फ्रांसीसी गणितज्ञ जॉर्जेस बाउलीगैंड के नाम पर रखा गया है।

फ्रैक्टल के लिए इस आयाम की गणना करता है, समान दूरी वाले ग्रिड पर पड़े इस फ्रैक्टल की कल्पना करें और गिनें कि समुच्चय को कवर करने के लिए कितने बक्सों की आवश्यकता होती है। बॉक्स-गिनती आयाम की गणना यह देखकर की जाती है कि जब हम बॉक्स गिनती एल्गोरिथ्म को प्रारम्भ करके ग्रिड को उत्तम बनाते हैं तो यह संख्या कैसे परिवर्तित होती है।

मान लीजिये कि भुजा की लंबाई वाले बक्सों की संख्या है समुच्चय को कवर करने के लिए की आवश्यकता होती है। फिर बॉक्स-गिनती आयाम को इस प्रकार परिभाषित किया गया है:

सामान्यतः इसका अर्थ यह है कि आयाम ही प्रतिपादक है जैसे कि , जो कि सामान्य स्थिति में कोई भी अपेक्षा कर सकता है पूर्णांक आयाम का सरल समिष्ट (मैनिफोल्ड) है।

यदि किसी फलन की उपरोक्त सीमा उपस्थित नहीं है, तब भी कोई ऊपरी सीमा और निचली सीमा प्राप्त कर सकता है, जो क्रमशः ऊपरी बॉक्स आयाम और निचले बॉक्स आयाम को परिभाषित करते हैं। ऊपरी बॉक्स आयाम को कभी-कभी एन्ट्रॉपी आयाम, कोलमोगोरोव आयाम, कोलमोगोरोव क्षमता, सीमा क्षमता या ऊपरी मिन्कोव्स्की आयाम कहा जाता है, जबकि निचले बॉक्स आयाम को निचला मिन्कोव्स्की आयाम भी कहा जाता है।

ऊपरी और निचले बॉक्स आयाम दृढ़ता से अधिक लोकप्रिय हॉसडॉर्फ आयाम से संबंधित हैं। केवल विशेष अनुप्रयोगों में ही तीनों के मध्य अंतर करना महत्वपूर्ण है (देखें हॉसडॉर्फ आयाम से संबंध)। फ्रैक्टल आयाम का अन्य माप सहसंबंध आयाम है।

वैकल्पिक परिभाषाएँ

कवरिंग संख्या या पैकिंग संख्या के साथ गेंदों का उपयोग करके बॉक्स आयामों को परिभाषित करना संभव है। कवरिंग संख्या फ्रैक्टल को कवर करने के लिए आवश्यक त्रिज्या ε की विवृत गेंदों की न्यूनतम संख्या है, या दूसरे शब्दों में, जैसे कि उनके संघ में फ्रैक्टल होता है। हम आंतरिक आवरण संख्या पर भी विचार कर सकते हैं , जिसे उसी प्रकार परिभाषित किया गया है किन्तु अतिरिक्त आवश्यकता के साथ कि विवृत गेंदों के केंद्र समुच्चय S के अंदर हों। पैकिंग संख्या त्रिज्या ε की असंयुक्त विवृत गेंदों की अधिकतम संख्या है जिसे इस प्रकार स्थित किया जा सकता है कि उनके केंद्र फ्रैक्टल के अंदर होंगे। जबकि N, Ncovering, N'covering और npacking समान नहीं हैं, वे निकटता से संबंधित हैं और ऊपरी और निचले बॉक्स आयामों की समान परिभाषाओं को उत्पन्न करते हैं। निम्नलिखित असमानताएँ सिद्ध हो जाने पर इसे सिद्ध करना सरल है:

ये, विपरीत में, त्रिभुज असमानता के थोड़े से प्रयास से अनुसरण करते हैं।

वर्गों के अतिरिक्त गेंदों का उपयोग करने का लाभ यह है कि यह परिभाषा किसी भी मीट्रिक समिष्ट को सामान्यीकृत करती है। दूसरे शब्दों में, बॉक्स की परिभाषा बाहरी है - माना कि फ्रैक्टल समिष्ट S यूक्लिडियन समिष्ट में समाहित है, और बॉक्स को युक्त समिष्ट की बाहरी ज्यामिति के अनुसार परिभाषित करता है। चूँकि, S का आयाम आंतरिक होना चाहिए, यह उस वातावरण से स्वतंत्र होना चाहिए जिसमें S को रखा गया है, और बॉल की परिभाषा आंतरिक रूप से प्रस्तुत की जा सकती है। आंतरिक गेंद को चयन किये गए केंद्र की निश्चित दूरी के अंदर S के सभी बिंदुओं के रूप में परिभाषित करता है, और कोई आयाम प्राप्त करने के लिए ऐसी गेंदों को गिनता है। (अधिक त्रुटिहीन रूप से, Ncovering परिभाषा बाह्य है, किन्तु अन्य दो आंतरिक हैं।)

बक्से का उपयोग करने का लाभ यह है कि कई स्थितियों में N(ε) की गणना सरलता से स्पष्ट रूप से की जा सकती है, और बक्से के लिए कवरिंग और पैकिंग संख्या (समकक्ष प्रकार से परिभाषित) समान होती है।

पैकिंग और कवरिंग संख्याओं के लघुगणक को कभी-कभी एन्ट्रापी संख्या के रूप में संदर्भित किया जाता है और ये कुछ सीमा तक थर्मोडायनामिक एन्ट्रापी और सूचना-सैद्धांतिक एन्ट्रापी की अवधारणाओं के अनुरूप होते हैं, जिसमें वे मीट्रिक समिष्ट या फ्रैक्टल में विकार की मात्रा को मापते हैं। स्तर पर ε और यह भी मापें कि त्रुटिहीनता ε के लिए समिष्ट के बिंदु को निर्दिष्ट करने के लिए कितने बिट्स या अंकों की आवश्यकता होगी।

बॉक्स-गिनती आयाम के लिए और समकक्ष (बाहरी) परिभाषा सूत्र द्वारा दी गई है:

जहां प्रत्येक r > 0 के लिए, समुच्चय इसे S के r-निकट के रूप में परिभाषित किया गया है, अर्थात इसमें सभी बिंदुओं का समुच्चय जो S से r से कम दूरी पर हैं (या समकक्ष, S) में बिंदु पर केन्द्रित त्रिज्या r की सभी विवृत गेंदों का मिलन है।

गुण

दोनों बॉक्स आयाम परिमित रूप से योगात्मक हैं, अर्थात यदि {A1, ..., An} समुच्चय का सीमित संग्रह है, तो

चूँकि, वे गणनीय समुच्चय योगात्मक नहीं हैं, अर्थात यह समानता समुच्चयों के अनंत अनुक्रम के लिए मान्य नहीं है। उदाहरण के लिए, बिंदु का बॉक्स आयाम 0 है, किन्तु अंतराल [0, 1] में तर्कसंगत संख्याओं के संग्रह के बॉक्स आयाम का आयाम 1 है। तुलनात्मक रूप से हॉसडॉर्फ माप, गणनीय रूप से योगात्मक है।

ऊपरी बॉक्स आयाम की रोचक संपत्ति जो निचले बॉक्स आयाम या हॉसडॉर्फ आयाम के साथ साझा नहीं की जाती है, वह जोड़ समुच्चय करने का सम्बन्ध है। यदि A और B यूक्लिडियन समिष्ट में दो समुच्चय हैं, तो A + B सभी बिंदुओं a, b को लेने से बनता है, जहां a A से है और b B से है और a + b जोड़ रहा है। किसी के निकट;

हॉसडॉर्फ आयाम से संबंध

बॉक्स-गिनती आयाम की कई परिभाषाओं में से है जिसे फ्रैक्टल पर प्रारम्भ किया जा सकता है। कई अच्छे व्यवहार वाले फ्रैक्टल्स के लिए ये सभी आयाम समान हैं; विशेष रूप से, ये आयाम तब युग्मित होते हैं जब भी फ्रैक्टल ओपन समुच्चय स्थिति (ओएससी) को संतुष्ट करता है।[1] उदाहरण के लिए, हॉसडॉर्फ आयाम, निचला बॉक्स आयाम, और कैंटर समुच्चय का ऊपरी बॉक्स आयाम सभी log(2)/log(3) के समान हैं। चूँकि, परिभाषाएँ समकक्ष नहीं हैं।

बॉक्स आयाम और हॉसडॉर्फ आयाम असमानता से संबंधित हैं:

सामान्यतः, दोनों असमानताएँ जटिल हो सकती हैं। यदि भिन्न स्तर पर फ्रैक्टल का व्यवहार भिन्न-भिन्न हो तो ऊपरी बॉक्स का आयाम निचले बॉक्स के आयाम से बड़ा हो सकता है। उदाहरण के लिए, स्थिति को संतुष्ट करने वाले अंतराल [0, 1] में संख्याओं के समुच्चय का परीक्षण करता है।

किसी भी n के लिए, 22n-वें अंक और (22n+1 - 1)-वें अंक के मध्य के सभी अंक शून्य है।

विषम समिष्ट-अंतराल में अंक, अर्थात अंक 22n+1 और 22n+2- 1 के मध्य प्रतिबंधित नहीं हैं और इसका कोई भी मान प्राप्त कर सकता हैं। इस फ्रैक्टल में ऊपरी बॉक्स आयाम 2/3 और निचले बॉक्स आयाम 1/3 है, तथ्य जिसे N(ε) की गणना करके सरलता से सत्यापित किया जा सकता है और ध्यान दें कि उनके मान n सम और विषम के लिए भिन्न-भिन्न व्यवहार करते हैं।

अन्य उदाहरण: परिमेय संख्याओं का समुच्चय , के साथ गणनीय समुच्चय , है क्योंकि यह संवृत है, , का आयाम 1 है। वास्तव में,

ये उदाहरण दिखाते हैं कि गणनीय समुच्चय जोड़ने से बॉक्स आयाम परिवर्तित हो सकता है, जो इस आयाम की प्रकार की अस्थिरता को प्रदर्शित करता है।

यह भी देखें

संदर्भ

  1. Wagon, Stan (2010). Mathematica in Action: Problem Solving Through Visualization and Computation. Springer-Verlag. p. 214. ISBN 0-387-75477-6.

बाहरी संबंध