मूल व्यंजक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:
==औपचारिक परिभाषाएँ==
==औपचारिक परिभाषाएँ==


प्रथम क्रम भाषाओं के लिए एक औपचारिक परिभाषा इस प्रकार है। प्रथम क्रम की भाषा दी जाए साथ <math>C</math> निरंतर प्रतीकों का सेट, <math>F</math> कार्यात्मक संचालक का सेट और <math>P</math> [[विधेय प्रतीक|विधेय प्रतीकों]] का सेट होता है.
प्रथम क्रम भाषाओं के लिए एक औपचारिक परिभाषा इस प्रकार है। प्रथम क्रम की भाषा दी जाए साथ <math>C</math> निरंतर प्रतीकों का सेट <math>F</math> कार्यात्मक संचालक का सेट और <math>P</math> [[विधेय प्रतीक|विधेय प्रतीकों]] का सेट होता है.


===ग्राउंड टर्म===
===ग्राउंड टर्म===
Line 21: Line 21:
ग्राउंड टर्म एक शब्द तर्क के रूप में है, जिसमें कोई चर नहीं है। ग्राउंड टर्म्स को तार्किक रिकर्सन सूत्र-रिकर्सन के रूप में परिभाषित किया जा सकता है:
ग्राउंड टर्म एक शब्द तर्क के रूप में है, जिसमें कोई चर नहीं है। ग्राउंड टर्म्स को तार्किक रिकर्सन सूत्र-रिकर्सन के रूप में परिभाषित किया जा सकता है:
# घटक <math>C</math> जमीनी शर्तें हैं;
# घटक <math>C</math> जमीनी शर्तें हैं;
# यदि <math>f \in F</math> एक <math>n</math>-एरी फलन प्रतीक और <math>\alpha_1, \alpha_2, \ldots, \alpha_n</math> तो फिर ये जमीनी शर्तें हैं <math>f\left(\alpha_1, \alpha_2, \ldots, \alpha_n\right)</math> एक जमीनी शब्द है.
# यदि <math>f \in F</math> एक <math>n</math>-एरी फलन प्रतीक और <math>\alpha_1, \alpha_2, \ldots, \alpha_n</math> तो फिर ये जमीनी शर्तें हैं <math>f\left(\alpha_1, \alpha_2, \ldots, \alpha_n\right)</math> एक जमीनी शब्द के रूप में है.
# प्रत्येक मूल पद को उपरोक्त दो नियमों के सीमित अनुप्रयोग द्वारा दिया जा सकता है (कोई अन्य आधार पद नहीं हैं; विशेष रूप से, विधेय आधार पद नहीं हो सकते हैं)।
# प्रत्येक मूल पद को उपरोक्त दो नियमों के सीमित अनुप्रयोग द्वारा दिया जा सकता है, कोई अन्य जमीनी शर्तें नहीं हैं, चूंकि विशेष रूप से विधेय जमीनी शब्द नहीं हो सकते हैं।


सामान्यतः कहें तो, [[हेरब्रांड ब्रह्मांड]] सभी जमीनी शब्दों का समूह है।
सामान्यतः कहें तो, [[हेरब्रांड ब्रह्मांड]] सभी जमीनी शब्दों का समूह है।

Revision as of 01:23, 14 July 2023

गणितीय तर्क में औपचारिक प्रणाली का एक जमीनी शब्द एक ऐसा शब्द होता है जिसमें कोई चर के रूप में नहीं होता है। इसी प्रकार, एक जमीनी सूत्र एक ऐसा फॉर्मूला है जिसमें कोई चर नहीं होता है।

प्रथम क्रम तर्क में समानता और उसके सिद्धांत के पहचान के साथ प्रथम क्रम तर्क वाक्य गणितीय तर्क के रूप में एक जमीनी फार्मूला है, और निरंतर प्रतीक के रूप में होने चाहिए। जमीनी अभिव्यक्ति एक जमीनी शब्द या जमीनी सूत्र है।

उदाहरण

स्थिर प्रतीकों वाले हस्ताक्षर (गणितीय तर्क) पर प्रथम क्रम तर्क में निम्नलिखित अभिव्यक्तियों के रूप में विचार करें, और क्रमशः संख्या 0 और 1 के लिए एकअंगी फलन प्रतीक उत्तराधिकारी फलन और द्विअंगी फलन प्रतीक के लिए जोड़ने के रूप में होता है.

  • जमीनी शर्तें हैं.
  • जमीनी शर्तें हैं.
  • जमीनी शर्तें हैं,
  • और शर्तें हैं, लेकिन जमीनी शर्तें नहीं हैं.
  • और जमीनी सूत्र हैं.

औपचारिक परिभाषाएँ

प्रथम क्रम भाषाओं के लिए एक औपचारिक परिभाषा इस प्रकार है। प्रथम क्रम की भाषा दी जाए साथ निरंतर प्रतीकों का सेट कार्यात्मक संचालक का सेट और विधेय प्रतीकों का सेट होता है.

ग्राउंड टर्म

ग्राउंड टर्म एक शब्द तर्क के रूप में है, जिसमें कोई चर नहीं है। ग्राउंड टर्म्स को तार्किक रिकर्सन सूत्र-रिकर्सन के रूप में परिभाषित किया जा सकता है:

  1. घटक जमीनी शर्तें हैं;
  2. यदि एक -एरी फलन प्रतीक और तो फिर ये जमीनी शर्तें हैं एक जमीनी शब्द के रूप में है.
  3. प्रत्येक मूल पद को उपरोक्त दो नियमों के सीमित अनुप्रयोग द्वारा दिया जा सकता है, कोई अन्य जमीनी शर्तें नहीं हैं, चूंकि विशेष रूप से विधेय जमीनी शब्द नहीं हो सकते हैं।

सामान्यतः कहें तो, हेरब्रांड ब्रह्मांड सभी जमीनी शब्दों का समूह है।

भूमि परमाणु

ground predicate,ground atom याground literal एक परमाणु सूत्र है जिसके सभी तर्क पद जमीनी पद हैं।

यदि एक -एरी विधेय प्रतीक और तो फिर ये जमीनी शर्तें हैं एक जमीनी विधेय या जमीनी परमाणु है।

सामान्यतः कहें तो, हेरब्रांड आधार सभी जमीनी परमाणुओं का समूह है,[1] जबकि हेरब्रांड व्याख्या आधार में प्रत्येक जमीनी परमाणु को एक सत्य मान प्रदान करती है।

ग्राउंड फॉर्मूला

ground formula याground clause चर रहित एक सूत्र है।

ग्राउंड फ़ार्मुलों को सिंटैक्टिक रिकर्सन द्वारा निम्नानुसार परिभाषित किया जा सकता है:

  1. एक जमीनी परमाणु एक जमीनी सूत्र है।
  2. यदि और तो, ये जमीनी सूत्र हैं , , और जमीनी सूत्र हैं.

जमीनी सूत्र एक विशेष प्रकार के वाक्य (गणितीय तर्क) होते हैं।

यह भी देखें

संदर्भ

  1. Alex Sakharov. "Ground Atom". MathWorld. Retrieved October 20, 2022.