मूल व्यंजक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
==उदाहरण==
==उदाहरण==


स्थिर प्रतीकों वाले [[हस्ताक्षर (गणितीय तर्क)]] पर [[प्रथम क्रम तर्क]] में निम्नलिखित अभिव्यक्तियों के रूप में विचार करें, <math>0</math> और <math>1</math> क्रमशः संख्या 0 और 1 के लिए एकअंगी फलन प्रतीक <math>s</math> उत्तराधिकारी फलन और द्विअंगी फलन प्रतीक के लिए <math>+</math> जोड़ने के रूप में होता है.
स्थिर प्रतीकों वाले [[हस्ताक्षर (गणितीय तर्क)|हस्ताक्षर गणितीय तर्क]] पर [[प्रथम क्रम तर्क]] में निम्नलिखित अभिव्यक्तियों के रूप में विचार करते है, <math>0</math> और <math>1</math> क्रमशः संख्या 0 और 1 के लिए एकअंगी फलन प्रतीक <math>s</math> उत्तराधिकारी फलन और द्विअंगी फलन प्रतीक के लिए <math>+</math> जोड़ने के रूप में होता है.
* <math>s(0), s(s(0)), s(s(s(0))), \ldots</math> मूल शर्तें हैं.
* <math>s(0), s(s(0)), s(s(s(0))), \ldots</math> मूल शर्तें हैं.
* <math>0 + 1, \; 0 + 1 + 1, \ldots</math> मूल शर्तें हैं.
* <math>0 + 1, \; 0 + 1 + 1, \ldots</math> मूल शर्तें हैं.

Revision as of 12:20, 14 July 2023

गणितीय तर्क में औपचारिक प्रणाली का आधार पद एक ऐसा पद है, जिसमें कोई चर के रूप में निहित नहीं होता है।इसी प्रकार ग्राउंड फॉर्मूला एक ऐसा फॉर्मूला है जिसमें कोई भी चर नहीं होता है।

प्रथम क्रम तर्क में समानता और उसके सिद्धांत के पहचान के साथ प्रथम क्रम तर्क वाक्य गणितीय तर्क के रूप में एक मूल फार्मूला है, और निरंतर प्रतीक के रूप में होने चाहिए। मूल अभिव्यक्ति एक मूल शब्द या मूल फॉर्मूला है।

उदाहरण

स्थिर प्रतीकों वाले हस्ताक्षर गणितीय तर्क पर प्रथम क्रम तर्क में निम्नलिखित अभिव्यक्तियों के रूप में विचार करते है, और क्रमशः संख्या 0 और 1 के लिए एकअंगी फलन प्रतीक उत्तराधिकारी फलन और द्विअंगी फलन प्रतीक के लिए जोड़ने के रूप में होता है.

  • मूल शर्तें हैं.
  • मूल शर्तें हैं.
  • मूल शर्तें हैं,
  • और शर्तें हैं, लेकिन मूल शर्तें नहीं हैं.
  • और मूल सूत्र हैं.

औपचारिक परिभाषाएँ

प्रथम क्रम भाषाओं के लिए एक औपचारिक परिभाषा इस प्रकार है। प्रथम क्रम की भाषा दी जाए साथ निरंतर प्रतीकों का सेट कार्यात्मक संचालक का सेट और विधेय प्रतीकों का सेट होता है.

ग्राउंड टर्म

ग्राउंड टर्म एक शब्द तर्क के रूप में है, जिसमें कोई चर नहीं है। ग्राउंड टर्म्स को तार्किक रिकर्सन सूत्र-रिकर्सन के रूप में परिभाषित किया जा सकता है:

  1. घटक मूल शर्तें हैं;
  2. यदि एक -एरी फलन प्रतीक और तो फिर ये मूल शर्तें हैं एक मूल शब्द के रूप में है.
  3. प्रत्येक मूल पद को उपरोक्त दो नियमों के सीमित अनुप्रयोग द्वारा दिया जा सकता है, कोई अन्य मूल शर्तें नहीं हैं, चूंकि विशेष रूप से विधेय मूल शब्द नहीं हो सकते हैं।

सामान्यतः कहें तो, हेरब्रांड ब्रह्मांड सभी मूल शब्दों का समूह है।

भूमि परमाणु

एक ग्राउंड विधेय ग्राउंड परमाणु या ग्राउंड शाब्दिक एक परमाणु सूत्र का रूप है, जिसके सभी तर्क पद मूल शर्तें हैं।

यदि एक -एरी विधेय प्रतीक और तो फिर ये मूल शर्तें हैं एक मूल विधेय या मूल परमाणु है।

सामान्यतः कहें तो, हेरब्रांड आधार सभी मूल परमाणुओं का समूह है,[1] जबकि हेरब्रांड व्याख्या आधार में प्रत्येक मूल परमाणु को एक सत्य मान के रूप में प्रदान करती है।

ग्राउंड फॉर्मूला

एक ग्राउंड फॉर्मूला या ग्राउंड क्लॉज चर के बिना एक सूत्र है।

ग्राउंड फ़ार्मुलों को वाक्यविन्यास पुनरावर्तन द्वारा निम्नानुसार परिभाषित किया जा सकता है:

  1. एक मूल परमाणु एक मूल सूत्र है।
  2. यदि और तो, ये मूल सूत्र हैं , , और मूल सूत्र हैं.

मूल सूत्र एक विशेष प्रकार के वाक्य गणितीय तर्क के रूप में होते हैं।

यह भी देखें

संदर्भ

  1. Alex Sakharov. "Ground Atom". MathWorld. Retrieved October 20, 2022.