सतत फलन (समुच्चय सिद्धांत): Difference between revisions
From Vigyanwiki
(Created page with "सेट सिद्धांत में, एक सतत फ़ंक्शन क्रमिक संख्याओं का एक क्रम है जैसे...") |
No edit summary |
||
Line 1: | Line 1: | ||
सेट सिद्धांत में, एक सतत | सेट सिद्धांत में, एक सतत फलन क्रमिक संख्याओं का एक क्रम है, जैसे कि सीमा चरणों में ग्रहण किए गए मान पिछले चरणों में सभी मानों की सीमा (सीमा श्रेष्ठ और सीमा इन्फिमा) हैं। अधिक औपचारिक रूप से, मान लीजिए कि γ एक क्रमसूचक है, और <math>s := \langle s_{\alpha}| \alpha < \gamma\rangle</math> अध्यादेशों का γ-अनुक्रम है। तब s सतत है यदि प्रत्येक सीमा पर क्रमसूचक β < γ, | ||
:<math>s_{\beta} = \limsup\{s_{\alpha}: \alpha < \beta\} = \inf \{ \sup\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} </math> | :<math>s_{\beta} = \limsup\{s_{\alpha}: \alpha < \beta\} = \inf \{ \sup\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} </math> | ||
और | और | ||
:<math>s_{\beta} = \liminf\{s_{\alpha}: \alpha < \beta\} = \sup \{ \inf\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} \,.</math> | :<math>s_{\beta} = \liminf\{s_{\alpha}: \alpha < \beta\} = \sup \{ \inf\{s_{\alpha}: \delta \leq \alpha < \beta\} : \delta < \beta\} \,.</math> | ||
वैकल्पिक रूप से, यदि s एक बढ़ता हुआ | वैकल्पिक रूप से, यदि s एक बढ़ता हुआ फलन है, तो s निरंतर है यदि s: γ → रेंज एक सतत (टोपोलॉजी) है, जब सेट प्रत्येक [[ऑर्डर टोपोलॉजी]] से सुसज्जित होते हैं। इन निरंतर फलनों का उपयोग अधिकांशतः [[सह-अंतिमता]] और [[कार्डिनल संख्या|कार्डिनल संख्याओं]] में किया जाता है। | ||
एक | एक साधारण फलन एक ऐसा फलन है, जो निरंतर और [[मोनोटोनिक फ़ंक्शन|मोनोटोनिक फलन]] दोनों है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 18:05, 12 July 2023
सेट सिद्धांत में, एक सतत फलन क्रमिक संख्याओं का एक क्रम है, जैसे कि सीमा चरणों में ग्रहण किए गए मान पिछले चरणों में सभी मानों की सीमा (सीमा श्रेष्ठ और सीमा इन्फिमा) हैं। अधिक औपचारिक रूप से, मान लीजिए कि γ एक क्रमसूचक है, और अध्यादेशों का γ-अनुक्रम है। तब s सतत है यदि प्रत्येक सीमा पर क्रमसूचक β < γ,
और
वैकल्पिक रूप से, यदि s एक बढ़ता हुआ फलन है, तो s निरंतर है यदि s: γ → रेंज एक सतत (टोपोलॉजी) है, जब सेट प्रत्येक ऑर्डर टोपोलॉजी से सुसज्जित होते हैं। इन निरंतर फलनों का उपयोग अधिकांशतः सह-अंतिमता और कार्डिनल संख्याओं में किया जाता है।
एक साधारण फलन एक ऐसा फलन है, जो निरंतर और मोनोटोनिक फलन दोनों है।
संदर्भ
- Thomas Jech. Set Theory, 3rd millennium ed., 2002, Springer Monographs in Mathematics,Springer, ISBN 3-540-44085-2