ऑल-पास फ़िल्टर: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{short description|Signal processing filter}} | {{short description|Signal processing filter}} | ||
{{More citations needed|date=March 2009}} | {{More citations needed|date=March 2009}} | ||
एक ऑल-पास | एक ऑल-पास निस्पंदन एक निस्पंदन संकेत प्रसंस्करण है जो सभी फ़्रिक्वेंसी को समान रूप से लाभ में पास करता है, लेकिन विभिन्न [[ आवृत्ति ]]यों के बीच चरण (तरंगों) के संबंध को बदलता है। अधिकांश प्रकार के फिल्टर आवृत्ति के कुछ मूल्यों के लिए उस पर लागू संकेत के आयाम (यानी परिमाण) को कम करते हैं, जबकि ऑल-पास फिल्टर सभी आवृत्तियों को स्तर में बदलाव के बिना अनुमति देता है। | ||
== सामान्य अनुप्रयोग == | == सामान्य अनुप्रयोग == | ||
[[ इलेक्ट्रॉनिक संगीत ]] उत्पादन में एक सामान्य अनुप्रयोग एक प्रभाव इकाई के डिजाइन में होता है जिसे [[ फेजर (प्रभाव) ]] के रूप में जाना जाता है, जहां कई ऑल-पास फिल्टर अनुक्रम में जुड़े होते हैं और आउटपुट कच्चे | [[ इलेक्ट्रॉनिक संगीत ]] उत्पादन में एक सामान्य अनुप्रयोग एक प्रभाव इकाई के डिजाइन में होता है जिसे [[ फेजर (प्रभाव) ]] के रूप में जाना जाता है, जहां कई ऑल-पास फिल्टर अनुक्रम में जुड़े होते हैं और आउटपुट कच्चे संकेत के साथ मिश्रित होता है। | ||
यह आवृत्ति के एक कार्य के रूप में अपने चरण (तरंगों) बदलाव को बदलकर ऐसा करता है। आम तौर पर, | यह आवृत्ति के एक कार्य के रूप में अपने चरण (तरंगों) बदलाव को बदलकर ऐसा करता है। आम तौर पर, निस्पंदन का वर्णन उस आवृत्ति द्वारा किया जाता है जिस पर [[ चरण स्थानांतरण ]] 90 डिग्री को पार कर जाता है (यानी, जब इनपुट और आउटपुट संकेत [[ चतुर्भुज चरण ]] में जाते हैं - जब उनके बीच देरी की एक चौथाई [[ तरंग दैर्ध्य ]] होती है)। | ||
वे आम तौर पर सिस्टम में उत्पन्न होने वाले अन्य अवांछित चरण बदलावों के लिए क्षतिपूर्ति करने के लिए उपयोग किए जाते हैं, या एक पायदान कंघी | वे आम तौर पर सिस्टम में उत्पन्न होने वाले अन्य अवांछित चरण बदलावों के लिए क्षतिपूर्ति करने के लिए उपयोग किए जाते हैं, या एक पायदान कंघी निस्पंदन को लागू करने के लिए मूल के एक अपरिवर्तित संस्करण के साथ मिश्रण करने के लिए उपयोग किया जाता है। | ||
उनका उपयोग [[ न्यूनतम चरण ]] # मिश्रित चरण | उनका उपयोग [[ न्यूनतम चरण ]] # मिश्रित चरण निस्पंदन को एक समान परिमाण प्रतिक्रिया के साथ न्यूनतम चरण निस्पंदन में या एक स्थिर निस्पंदन में एक समान परिमाण प्रतिक्रिया के साथ एक अस्थिर निस्पंदन में परिवर्तित करने के लिए भी किया जा सकता है। | ||
== सक्रिय एनालॉग कार्यान्वयन == | == सक्रिय एनालॉग कार्यान्वयन == | ||
Line 17: | Line 17: | ||
=== कम-पास | === कम-पास निस्पंदन का उपयोग करके कार्यान्वयन === | ||
[[File:Schem All-Pass Filter Producing Lag.png|thumb|एक कम-पास | [[File:Schem All-Pass Filter Producing Lag.png|thumb|एक कम-पास निस्पंदन को शामिल करने वाला एक ऑप-एम्प बेस ऑल-पास निस्पंदन।]] | ||
आसन्न आकृति में दिखाया गया [[ ऑपरेशनल एंप्लीफायर ]] परिपथ एक सिंगल-पोल पैसिविटी (इंजीनियरिंग) ऑल-पास फिल्टर को लागू करता है जिसमें ओपैंप के नॉन-इनवर्टिंग इनपुट पर एक [[ लो पास फिल्टर ]] होता है। | आसन्न आकृति में दिखाया गया [[ ऑपरेशनल एंप्लीफायर ]] परिपथ एक सिंगल-पोल पैसिविटी (इंजीनियरिंग) ऑल-पास फिल्टर को लागू करता है जिसमें ओपैंप के नॉन-इनवर्टिंग इनपुट पर एक [[ लो पास फिल्टर ]] होता है। निस्पंदन का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है: | ||
:<math>H(s) = - \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} } = \frac {1-sRC} {1+sRC}, \,</math> | :<math>H(s) = - \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} } = \frac {1-sRC} {1+sRC}, \,</math> | ||
जिसमें -1/आरसी पर एक ध्रुव (जटिल विश्लेषण) और 1/आरसी पर एक [[ शून्य (जटिल विश्लेषण) ]] है (यानी, वे [[ जटिल विमान ]] की [[ काल्पनिक संख्या ]] अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ [[ कोणीय आवृत्ति ]] के लिए H(iω) का जटिल तल हैं | जिसमें -1/आरसी पर एक ध्रुव (जटिल विश्लेषण) और 1/आरसी पर एक [[ शून्य (जटिल विश्लेषण) ]] है (यानी, वे [[ जटिल विमान ]] की [[ काल्पनिक संख्या ]] अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ [[ कोणीय आवृत्ति ]] के लिए H(iω) का जटिल तल हैं | ||
:<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = - 2\arctan( \omega RC ). \,</math> | :<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = - 2\arctan( \omega RC ). \,</math> | ||
निस्पंदन में सभी के लिए [[ एकता (गणित) ]] -गेन (इलेक्ट्रॉनिक्स) परिमाण है। निस्पंदन प्रत्येक आवृत्ति पर एक अलग देरी का परिचय देता है और ω = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण बदलाव 90 डिग्री है)।<ref>Maheswari, L.K.; Anand, M.M.S., ''Analog Electronics'', [https://books.google.co.uk/books?id=1NcSBP2OA-QC&pg=PA214 pp. 213-214], PHI Learning, 2009 {{ISBN|9788120327221}}.</ref> | |||
यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए ऑपरेशनल एम्पलीफायर # परिपथ नोटेशन | गैर-इनवर्टिंग इनपुट पर कम-पास | यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए ऑपरेशनल एम्पलीफायर # परिपथ नोटेशन | गैर-इनवर्टिंग इनपुट पर कम-पास निस्पंदन का उपयोग करता है। | ||
* उच्च आवृत्ति पर, [[ संधारित्र ]] एक [[ शार्ट सर्किट | शार्ट परिपथ]] है, जो एक ऑपरेशनल एम्पलीफायर अनुप्रयोगों का निर्माण करता है # एकता लाभ के साथ एम्पलीफायर (यानी, 180 ° चरण शिफ्ट) को उलटना। | * उच्च आवृत्ति पर, [[ संधारित्र ]] एक [[ शार्ट सर्किट | शार्ट परिपथ]] है, जो एक ऑपरेशनल एम्पलीफायर अनुप्रयोगों का निर्माण करता है # एकता लाभ के साथ एम्पलीफायर (यानी, 180 ° चरण शिफ्ट) को उलटना। | ||
* कम आवृत्तियों और [[ डीसी ऑफसेट ]] पर, संधारित्र एक विकट है: ओपन परिपथ, एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) ऑपरेशनल एम्पलीफायर अनुप्रयोगों का निर्माण # वोल्टेज अनुयायी (यानी, कोई चरण बदलाव नहीं)। | * कम आवृत्तियों और [[ डीसी ऑफसेट ]] पर, संधारित्र एक विकट है: ओपन परिपथ, एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) ऑपरेशनल एम्पलीफायर अनुप्रयोगों का निर्माण # वोल्टेज अनुयायी (यानी, कोई चरण बदलाव नहीं)। | ||
Line 38: | Line 38: | ||
जहां अंतिम चरण अंश और हर के पहले क्रम [[ टेलर श्रृंखला ]] के विस्तार के माध्यम से प्राप्त किया गया था। व्यवस्थित करके <math>RC = T/2</math> हम ठीक हो जाते हैं <math>H(s)</math> ऊपर से। | जहां अंतिम चरण अंश और हर के पहले क्रम [[ टेलर श्रृंखला ]] के विस्तार के माध्यम से प्राप्त किया गया था। व्यवस्थित करके <math>RC = T/2</math> हम ठीक हो जाते हैं <math>H(s)</math> ऊपर से। | ||
=== उच्च-पास | === उच्च-पास निस्पंदन का उपयोग करके कार्यान्वयन === | ||
[[Image:Active Allpass Filter.svg|thumb|एक उच्च-पास | [[Image:Active Allpass Filter.svg|thumb|एक उच्च-पास निस्पंदन को शामिल करते हुए एक ऑप-एम्प बेस ऑल-पास निस्पंदन।]] | ||
आसन्न आकृति में दिखाया गया ऑपरेशनल एम्पलीफायर परिपथ एक सिंगल-पोल पैसिविटी (इंजीनियरिंग) ऑल-पास फिल्टर को लागू करता है जिसमें ओपैंप के नॉन-इनवर्टिंग इनपुट पर एक [[ उच्च पास फिल्टर ]] होता है। | आसन्न आकृति में दिखाया गया ऑपरेशनल एम्पलीफायर परिपथ एक सिंगल-पोल पैसिविटी (इंजीनियरिंग) ऑल-पास फिल्टर को लागू करता है जिसमें ओपैंप के नॉन-इनवर्टिंग इनपुट पर एक [[ उच्च पास फिल्टर ]] होता है। निस्पंदन का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है: | ||
:<math>H(s) = \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} }, \,</math><ref>Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook'', McGraw-Hill, 1995 {{ISBN|0070704414}}, p. 10.7.</ref> | :<math>H(s) = \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} }, \,</math><ref>Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook'', McGraw-Hill, 1995 {{ISBN|0070704414}}, p. 10.7.</ref> | ||
जिसमें -1/आरसी पर एक ध्रुव (जटिल विश्लेषण) और 1/आरसी पर एक शून्य (जटिल विश्लेषण) है (यानी, वे जटिल विमान की काल्पनिक संख्या अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का जटिल तल हैं | जिसमें -1/आरसी पर एक ध्रुव (जटिल विश्लेषण) और 1/आरसी पर एक शून्य (जटिल विश्लेषण) है (यानी, वे जटिल विमान की काल्पनिक संख्या अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का जटिल तल हैं | ||
:<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = \pi - 2\arctan( \omega RC ). \,</math> | :<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = \pi - 2\arctan( \omega RC ). \,</math> | ||
निस्पंदन में सभी के लिए एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) परिमाण है। निस्पंदन प्रत्येक आवृत्ति पर एक अलग देरी का परिचय देता है और = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण लीड 90 डिग्री है)। | |||
यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए ऑपरेशनल एम्पलीफायर # परिपथ नोटेशन | गैर-इनवर्टिंग इनपुट पर एक उच्च-पास | यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए ऑपरेशनल एम्पलीफायर # परिपथ नोटेशन | गैर-इनवर्टिंग इनपुट पर एक उच्च-पास निस्पंदन का उपयोग करता है। | ||
* उच्च आवृत्ति पर, कैपेसिटर एक शॉर्ट परिपथ होता है, जिससे एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) ऑपरेशनल एम्पलीफायर एप्लिकेशन # वोल्टेज फॉलोअर (यानी, नो फेज लीड) का निर्माण होता है। | * उच्च आवृत्ति पर, कैपेसिटर एक शॉर्ट परिपथ होता है, जिससे एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) ऑपरेशनल एम्पलीफायर एप्लिकेशन # वोल्टेज फॉलोअर (यानी, नो फेज लीड) का निर्माण होता है। | ||
* कम आवृत्तियों और डीसी ऑफसेट पर, संधारित्र एक विकट है: ओपन परिपथ और परिपथ एक ऑपरेशनल एम्पलीफायर अनुप्रयोग है # एकता लाभ के साथ एम्पलीफायर (यानी, 180 डिग्री चरण लीड) को बदलना। | * कम आवृत्तियों और डीसी ऑफसेट पर, संधारित्र एक विकट है: ओपन परिपथ और परिपथ एक ऑपरेशनल एम्पलीफायर अनुप्रयोग है # एकता लाभ के साथ एम्पलीफायर (यानी, 180 डिग्री चरण लीड) को बदलना। | ||
Line 61: | Line 61: | ||
=== जाली फिल्टर === | === जाली फिल्टर === | ||
[[Image:Lattice filter, low end correction.svg|thumb|200px|जाली टोपोलॉजी का उपयोग कर एक ऑल-पास | [[Image:Lattice filter, low end correction.svg|thumb|200px|जाली टोपोलॉजी का उपयोग कर एक ऑल-पास निस्पंदन]] | ||
{{main|Lattice phase equaliser}} | {{main|Lattice phase equaliser}} | ||
जाली चरण तुल्यकारक, या | जाली चरण तुल्यकारक, या निस्पंदन, जाली, या एक्स-सेक्शन से बना एक निस्पंदन है। एकल तत्व शाखाओं के साथ यह 180 ° तक एक चरण बदलाव का उत्पादन कर सकता है, और गुंजयमान शाखाओं के साथ यह 360 ° तक चरण बदलाव कर सकता है। निस्पंदन एक स्थिर-प्रतिरोध नेटवर्क का एक उदाहरण है (अर्थात, इसकी [[ छवि प्रतिबाधा ]] सभी आवृत्तियों पर स्थिर है)। | ||
=== टी-सेक्शन | === टी-सेक्शन निस्पंदन === | ||
टी टोपोलॉजी पर आधारित फेज इक्वलाइजर जाली फिल्टर के असंतुलित समतुल्य है और इसकी फेज प्रतिक्रिया समान है। जबकि परिपथ आरेख दिख सकता है | टी टोपोलॉजी पर आधारित फेज इक्वलाइजर जाली फिल्टर के असंतुलित समतुल्य है और इसकी फेज प्रतिक्रिया समान है। जबकि परिपथ आरेख दिख सकता है | ||
एक कम पास फिल्टर की तरह यह अलग है कि दो प्रारंभ करनेवाला शाखाएं परस्पर युग्मित हैं। इसके परिणामस्वरूप दो इंडक्टर्स के बीच ट्रांसफॉर्मर कार्रवाई होती है और उच्च आवृत्ति पर भी एक ऑल-पास प्रतिक्रिया होती है। | एक कम पास फिल्टर की तरह यह अलग है कि दो प्रारंभ करनेवाला शाखाएं परस्पर युग्मित हैं। इसके परिणामस्वरूप दो इंडक्टर्स के बीच ट्रांसफॉर्मर कार्रवाई होती है और उच्च आवृत्ति पर भी एक ऑल-पास प्रतिक्रिया होती है। | ||
=== ब्रिज टी-सेक्शन | === ब्रिज टी-सेक्शन निस्पंदन === | ||
{{main|Bridged T delay equaliser}} | {{main|Bridged T delay equaliser}} | ||
ब्रिज किए गए टी टोपोलॉजी का उपयोग विलंब समानता के लिए किया जाता है, विशेष रूप से [[ स्टीरियोफोनिक ध्वनि ]] प्रसारण के लिए उपयोग किए जा रहे दो [[ लैंडलाइन ]] के बीच अंतर विलंब। इस एप्लिकेशन के लिए आवश्यक है कि | ब्रिज किए गए टी टोपोलॉजी का उपयोग विलंब समानता के लिए किया जाता है, विशेष रूप से [[ स्टीरियोफोनिक ध्वनि ]] प्रसारण के लिए उपयोग किए जा रहे दो [[ लैंडलाइन ]] के बीच अंतर विलंब। इस एप्लिकेशन के लिए आवश्यक है कि निस्पंदन में व्यापक बैंडविड्थ पर आवृत्ति (यानी, निरंतर [[ समूह विलंब ]]) के साथ एक [[ रैखिक चरण ]] प्रतिक्रिया हो और इस टोपोलॉजी को चुनने का कारण हो। | ||
== डिजिटल कार्यान्वयन == | == डिजिटल कार्यान्वयन == | ||
एक जटिल ध्रुव के साथ एक ऑल-पास | एक जटिल ध्रुव के साथ एक ऑल-पास निस्पंदन का एक [[ जेड को बदलने ]] कार्यान्वयन <math>z_0</math> है | ||
:<math>H(z) = \frac{z^{-1}-\overline{z_0}}{1-z_0z^{-1}} \ </math> | :<math>H(z) = \frac{z^{-1}-\overline{z_0}}{1-z_0z^{-1}} \ </math> | ||
जिसका शून्य है <math>1/\overline{z_0}</math>, कहाँ पे <math>\overline{z}</math> जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति <math>z_0</math> जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। ऑल-पास फिल्टर में जटिल पोल-शून्य जोड़े उस आवृत्ति को नियंत्रित करने में मदद करते हैं जहां चरण बदलाव होते हैं। | जिसका शून्य है <math>1/\overline{z_0}</math>, कहाँ पे <math>\overline{z}</math> जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति <math>z_0</math> जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। ऑल-पास फिल्टर में जटिल पोल-शून्य जोड़े उस आवृत्ति को नियंत्रित करने में मदद करते हैं जहां चरण बदलाव होते हैं। | ||
वास्तविक गुणांक के साथ एक ऑल-पास कार्यान्वयन बनाने के लिए, जटिल ऑल-पास | वास्तविक गुणांक के साथ एक ऑल-पास कार्यान्वयन बनाने के लिए, जटिल ऑल-पास निस्पंदन को एक ऑल-पास के साथ कैस्केड किया जा सकता है जो प्रतिस्थापित करता है <math>\overline{z_0}</math> के लिये <math>z_0</math>, जेड-ट्रांसफॉर्म कार्यान्वयन के लिए अग्रणी | ||
:<math>H(z) | :<math>H(z) | ||
= | = | ||
Line 91: | Line 91: | ||
कहाँ पे <math>y[k]</math> आउटपुट है और <math>x[k]</math> असतत समय चरण पर इनपुट है <math>k</math>. | कहाँ पे <math>y[k]</math> आउटपुट है और <math>x[k]</math> असतत समय चरण पर इनपुट है <math>k</math>. | ||
सिस्टम की परिमाण प्रतिक्रिया को बदले बिना एक स्थिर या न्यूनतम-चरण | सिस्टम की परिमाण प्रतिक्रिया को बदले बिना एक स्थिर या न्यूनतम-चरण निस्पंदन बनाने के लिए उपरोक्त जैसे निस्पंदन को नियंत्रण सिद्धांत # स्थिरता या मिश्रित-चरण निस्पंदन के साथ कैस्केड किया जा सकता है। उदाहरण के लिए, के उचित चयन से <math>z_0</math>, एक अस्थिर प्रणाली का एक ध्रुव जो यूनिट सर्कल के बाहर है, रद्द किया जा सकता है और यूनिट सर्कल के अंदर परिलक्षित हो सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 100: | Line 100: | ||
* उच्च पास फिल्टर | * उच्च पास फिल्टर | ||
* लो पास फिल्टर | * लो पास फिल्टर | ||
* [[ बैंड-स्टॉप फ़िल्टर ]] | * [[ बैंड-स्टॉप फ़िल्टर | बैंड-स्टॉप निस्पंदन]] | ||
* [[ बंदपास छननी ]] | * [[ बंदपास छननी ]] | ||
* [[ जाली विलंब नेटवर्क ]] | * [[ जाली विलंब नेटवर्क ]] | ||
Line 114: | Line 114: | ||
*करणीय | *करणीय | ||
*खास समय | *खास समय | ||
* | *संकेत (इलेक्ट्रॉनिक्स) | ||
*लगातार कश्मीर फिल्टर | *लगातार कश्मीर फिल्टर | ||
*चरण विलंब | *चरण विलंब | ||
*एम-व्युत्पन्न | *एम-व्युत्पन्न निस्पंदन | ||
*स्थानांतरण प्रकार्य | *स्थानांतरण प्रकार्य | ||
*बहुपदीय फलन | *बहुपदीय फलन | ||
*लो पास फिल्टर | *लो पास फिल्टर | ||
*अंतःप्रतीक हस्तक्षेप | *अंतःप्रतीक हस्तक्षेप | ||
* | *निस्पंदन (प्रकाशिकी) | ||
*युग्मित उपकरण को चार्ज करें | *युग्मित उपकरण को चार्ज करें | ||
*गांठदार तत्व | *गांठदार तत्व | ||
Line 129: | Line 129: | ||
*परमाणु घड़ी | *परमाणु घड़ी | ||
*फुरियर रूपांतरण | *फुरियर रूपांतरण | ||
*लहर ( | *लहर (निस्पंदन) | ||
*कार्तीय समन्वय प्रणाली | *कार्तीय समन्वय प्रणाली | ||
*अंक शास्त्र | *अंक शास्त्र | ||
Line 227: | Line 227: | ||
*निरंतर संकेत | *निरंतर संकेत | ||
*मिड-रेंज स्पीकर | *मिड-रेंज स्पीकर | ||
* | *निस्पंदन (संकेत प्रसंस्करण ) | ||
*उष्ण ऊर्जा | *उष्ण ऊर्जा | ||
*विद्युतीय प्रतिरोध | *विद्युतीय प्रतिरोध | ||
Line 236: | Line 236: | ||
*प्रत्यावर्ती धारा | *प्रत्यावर्ती धारा | ||
*आवृत्ति विभाजन बहुसंकेतन | *आवृत्ति विभाजन बहुसंकेतन | ||
*छवि | *छवि निस्पंदन | ||
*वाहक लहर | *वाहक लहर | ||
*ऊष्मा समीकरण | *ऊष्मा समीकरण | ||
Line 252: | Line 252: | ||
*तर्कसंगत कार्य | *तर्कसंगत कार्य | ||
*शोर अनुपात का संकेत | *शोर अनुपात का संकेत | ||
*मिलान | *मिलान निस्पंदन | ||
*रैखिक-द्विघात-गाऊसी नियंत्रण | *रैखिक-द्विघात-गाऊसी नियंत्रण | ||
*राज्य स्थान (नियंत्रण) | *राज्य स्थान (नियंत्रण) | ||
Line 259: | Line 259: | ||
*विशिष्ट एकीकृत परिपथ आवेदन | *विशिष्ट एकीकृत परिपथ आवेदन | ||
*सतत समय | *सतत समय | ||
*एंटी - एलियासिंग | *एंटी - एलियासिंग निस्पंदन | ||
*भाजक | *भाजक | ||
*निश्चित बिंदु अंकगणित | *निश्चित बिंदु अंकगणित | ||
*फ्लोटिंग-पॉइंट अंकगणित | *फ्लोटिंग-पॉइंट अंकगणित | ||
*डिजिटल बाइकैड | *डिजिटल बाइकैड निस्पंदन | ||
*अनुकूली फिल्टर | *अनुकूली फिल्टर | ||
*अध्यारोपण सिद्धांत | *अध्यारोपण सिद्धांत | ||
Line 320: | Line 320: | ||
*पीआईडी नियंत्रक | *पीआईडी नियंत्रक | ||
*यौगिक | *यौगिक | ||
*फिल्टर ( | *फिल्टर (संकेत प्रसंस्करण ) | ||
*वितरित कोटा पद्धति | *वितरित कोटा पद्धति | ||
*महाकाव्यों | *महाकाव्यों | ||
Line 383: | Line 383: | ||
*स्पेकट्रूम विशेष्यग्य | *स्पेकट्रूम विशेष्यग्य | ||
*रेंज अस्पष्टता संकल्प | *रेंज अस्पष्टता संकल्प | ||
*मिलान | *मिलान निस्पंदन | ||
*रोटेशन | *रोटेशन | ||
*चरणबद्ध व्यूह रचना | *चरणबद्ध व्यूह रचना | ||
Line 437: | Line 437: | ||
*फोरियर श्रेणी | *फोरियर श्रेणी | ||
*दोषी | *दोषी | ||
*दशमलव ( | *दशमलव (संकेत प्रसंस्करण ) | ||
*असतत फूरियर रूपांतरण | *असतत फूरियर रूपांतरण | ||
*एफआईआर ट्रांसफर फंक्शन | *एफआईआर ट्रांसफर फंक्शन | ||
Line 486: | Line 486: | ||
*नक्शा टक्कर | *नक्शा टक्कर | ||
*चुम्बकीय अनुनाद इमेजिंग | *चुम्बकीय अनुनाद इमेजिंग | ||
*नमूनाकरण ( | *नमूनाकरण (संकेत प्रसंस्करण ) | ||
*sculpting | *sculpting | ||
*आधुनिक कला का संग्रहालय | *आधुनिक कला का संग्रहालय | ||
Line 496: | Line 496: | ||
*सीरिज़ परिपथ) | *सीरिज़ परिपथ) | ||
*मिलान जेड-ट्रांसफॉर्म विधि | *मिलान जेड-ट्रांसफॉर्म विधि | ||
*कंघी | *कंघी निस्पंदन | ||
*समूह देरी | *समूह देरी | ||
*सप्टक | *सप्टक | ||
Line 540: | Line 540: | ||
*आपूर्ती बंद करने की आवृत्ति | *आपूर्ती बंद करने की आवृत्ति | ||
*उच्च मार्ग | *उच्च मार्ग | ||
*रैखिक | *रैखिक निस्पंदन | ||
*प्रतिक दर | *प्रतिक दर | ||
*घेरा | *घेरा | ||
Line 559: | Line 559: | ||
*नमूना दर | *नमूना दर | ||
*प्रक्षेप | *प्रक्षेप | ||
*ऑडियो | *ऑडियो संकेत प्रसंस्करण | ||
*खगोल-कंघी | *खगोल-कंघी | ||
*खास समय | *खास समय |
Revision as of 00:44, 30 October 2022
This article needs additional citations for verification. (March 2009) (Learn how and when to remove this template message) |
एक ऑल-पास निस्पंदन एक निस्पंदन संकेत प्रसंस्करण है जो सभी फ़्रिक्वेंसी को समान रूप से लाभ में पास करता है, लेकिन विभिन्न आवृत्ति यों के बीच चरण (तरंगों) के संबंध को बदलता है। अधिकांश प्रकार के फिल्टर आवृत्ति के कुछ मूल्यों के लिए उस पर लागू संकेत के आयाम (यानी परिमाण) को कम करते हैं, जबकि ऑल-पास फिल्टर सभी आवृत्तियों को स्तर में बदलाव के बिना अनुमति देता है।
सामान्य अनुप्रयोग
इलेक्ट्रॉनिक संगीत उत्पादन में एक सामान्य अनुप्रयोग एक प्रभाव इकाई के डिजाइन में होता है जिसे फेजर (प्रभाव) के रूप में जाना जाता है, जहां कई ऑल-पास फिल्टर अनुक्रम में जुड़े होते हैं और आउटपुट कच्चे संकेत के साथ मिश्रित होता है।
यह आवृत्ति के एक कार्य के रूप में अपने चरण (तरंगों) बदलाव को बदलकर ऐसा करता है। आम तौर पर, निस्पंदन का वर्णन उस आवृत्ति द्वारा किया जाता है जिस पर चरण स्थानांतरण 90 डिग्री को पार कर जाता है (यानी, जब इनपुट और आउटपुट संकेत चतुर्भुज चरण में जाते हैं - जब उनके बीच देरी की एक चौथाई तरंग दैर्ध्य होती है)।
वे आम तौर पर सिस्टम में उत्पन्न होने वाले अन्य अवांछित चरण बदलावों के लिए क्षतिपूर्ति करने के लिए उपयोग किए जाते हैं, या एक पायदान कंघी निस्पंदन को लागू करने के लिए मूल के एक अपरिवर्तित संस्करण के साथ मिश्रण करने के लिए उपयोग किया जाता है।
उनका उपयोग न्यूनतम चरण # मिश्रित चरण निस्पंदन को एक समान परिमाण प्रतिक्रिया के साथ न्यूनतम चरण निस्पंदन में या एक स्थिर निस्पंदन में एक समान परिमाण प्रतिक्रिया के साथ एक अस्थिर निस्पंदन में परिवर्तित करने के लिए भी किया जा सकता है।
सक्रिय एनालॉग कार्यान्वयन
कम-पास निस्पंदन का उपयोग करके कार्यान्वयन
आसन्न आकृति में दिखाया गया ऑपरेशनल एंप्लीफायर परिपथ एक सिंगल-पोल पैसिविटी (इंजीनियरिंग) ऑल-पास फिल्टर को लागू करता है जिसमें ओपैंप के नॉन-इनवर्टिंग इनपुट पर एक लो पास फिल्टर होता है। निस्पंदन का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है:
जिसमें -1/आरसी पर एक ध्रुव (जटिल विश्लेषण) और 1/आरसी पर एक शून्य (जटिल विश्लेषण) है (यानी, वे जटिल विमान की काल्पनिक संख्या अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का जटिल तल हैं
निस्पंदन में सभी के लिए एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) परिमाण है। निस्पंदन प्रत्येक आवृत्ति पर एक अलग देरी का परिचय देता है और ω = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण बदलाव 90 डिग्री है)।[2] यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए ऑपरेशनल एम्पलीफायर # परिपथ नोटेशन | गैर-इनवर्टिंग इनपुट पर कम-पास निस्पंदन का उपयोग करता है।
- उच्च आवृत्ति पर, संधारित्र एक शार्ट परिपथ है, जो एक ऑपरेशनल एम्पलीफायर अनुप्रयोगों का निर्माण करता है # एकता लाभ के साथ एम्पलीफायर (यानी, 180 ° चरण शिफ्ट) को उलटना।
- कम आवृत्तियों और डीसी ऑफसेट पर, संधारित्र एक विकट है: ओपन परिपथ, एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) ऑपरेशनल एम्पलीफायर अनुप्रयोगों का निर्माण # वोल्टेज अनुयायी (यानी, कोई चरण बदलाव नहीं)।
- कम-पास फिल्टर के कोने आवृत्ति ω = 1 / आरसी पर (यानी, जब इनपुट आवृत्ति 1/(2πRC) है), परिपथ 90 डिग्री शिफ्ट पेश करता है (यानी, आउटपुट इनपुट के साथ चतुर्भुज में है; आउटपुट प्रकट होता है इनपुट से एक चौथाई आवृत्ति द्वारा विलंबित होने के लिए)।
वास्तव में, ऑल-पास फिल्टर का फेज शिफ्ट अपने नॉन-इनवर्टिंग इनपुट पर लो-पास फिल्टर के फेज शिफ्ट का दोगुना है।
एक शुद्ध देरी के लिए एक पद सन्निकटन के रूप में व्याख्या
शुद्ध विलंब का लाप्लास रूपांतरण किसके द्वारा दिया जाता है
कहाँ पे देरी है (सेकंड में) और जटिल आवृत्ति है। यह एक Padé सन्निकटन का उपयोग करके अनुमानित किया जा सकता है, जो इस प्रकार है:
जहां अंतिम चरण अंश और हर के पहले क्रम टेलर श्रृंखला के विस्तार के माध्यम से प्राप्त किया गया था। व्यवस्थित करके हम ठीक हो जाते हैं ऊपर से।
उच्च-पास निस्पंदन का उपयोग करके कार्यान्वयन
आसन्न आकृति में दिखाया गया ऑपरेशनल एम्पलीफायर परिपथ एक सिंगल-पोल पैसिविटी (इंजीनियरिंग) ऑल-पास फिल्टर को लागू करता है जिसमें ओपैंप के नॉन-इनवर्टिंग इनपुट पर एक उच्च पास फिल्टर होता है। निस्पंदन का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है:
जिसमें -1/आरसी पर एक ध्रुव (जटिल विश्लेषण) और 1/आरसी पर एक शून्य (जटिल विश्लेषण) है (यानी, वे जटिल विमान की काल्पनिक संख्या अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का जटिल तल हैं
निस्पंदन में सभी के लिए एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) परिमाण है। निस्पंदन प्रत्येक आवृत्ति पर एक अलग देरी का परिचय देता है और = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण लीड 90 डिग्री है)।
यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए ऑपरेशनल एम्पलीफायर # परिपथ नोटेशन | गैर-इनवर्टिंग इनपुट पर एक उच्च-पास निस्पंदन का उपयोग करता है।
- उच्च आवृत्ति पर, कैपेसिटर एक शॉर्ट परिपथ होता है, जिससे एकता (गणित) -गेन (इलेक्ट्रॉनिक्स) ऑपरेशनल एम्पलीफायर एप्लिकेशन # वोल्टेज फॉलोअर (यानी, नो फेज लीड) का निर्माण होता है।
- कम आवृत्तियों और डीसी ऑफसेट पर, संधारित्र एक विकट है: ओपन परिपथ और परिपथ एक ऑपरेशनल एम्पलीफायर अनुप्रयोग है # एकता लाभ के साथ एम्पलीफायर (यानी, 180 डिग्री चरण लीड) को बदलना।
- हाई-पास फिल्टर के कोने की आवृत्ति ω=1/RC पर (अर्थात, जब इनपुट आवृत्ति 1/(2πRC) होती है), परिपथ 90° फेज लीड का परिचय देता है (अर्थात, आउटपुट इनपुट के साथ चतुर्भुज में होता है; आउटपुट इनपुट से एक चौथाई आवृत्ति द्वारा उन्नत प्रतीत होता है)।
वास्तव में, ऑल-पास फिल्टर का फेज शिफ्ट अपने नॉन-इनवर्टिंग इनपुट पर हाई-पास फिल्टर के फेज शिफ्ट से दोगुना है।
वोल्टेज नियंत्रित कार्यान्वयन
वोल्टेज-नियंत्रित चरण शिफ्टर को लागू करने के लिए प्रतिरोधी को अपने ओमिक मोड में क्षेत्र-प्रभाव ट्रांजिस्टर से बदला जा सकता है; गेट पर वोल्टेज चरण बदलाव को समायोजित करता है। इलेक्ट्रॉनिक संगीत में, एक फेजर (प्रभाव) में आमतौर पर दो, चार या छह चरण-स्थानांतरण खंड होते हैं जो अग्रानुक्रम में जुड़े होते हैं और मूल के साथ अभिव्यक्त होते हैं। एक कम-आवृत्ति थरथरानवाला (कम-आवृत्ति दोलन) विशेषता झपट्टा ध्वनि उत्पन्न करने के लिए नियंत्रण वोल्टेज को रैंप करता है।
निष्क्रिय अनुरूप कार्यान्वयन
परिचालन एम्पलीफायरों की तरह पैसिविटी (इंजीनियरिंग) के साथ ऑल-पास फिल्टर को लागू करने का लाभ यह है कि उन्हें प्रारंभ करनेवाला ्स की आवश्यकता नहीं होती है, जो एकीकृत परिपथ डिजाइन में भारी और महंगे होते हैं। अन्य अनुप्रयोगों में जहां इंडक्टर्स आसानी से उपलब्ध हैं, ऑल-पास फिल्टर पूरी तरह से सक्रिय घटकों के बिना लागू किए जा सकते हैं। इसके लिए कई परिपथ टोपोलॉजी (इलेक्ट्रॉनिक्स) का उपयोग किया जा सकता है। निम्नलिखित सबसे अधिक उपयोग किए जाने वाले परिपथ हैं।
जाली फिल्टर
जाली चरण तुल्यकारक, या निस्पंदन, जाली, या एक्स-सेक्शन से बना एक निस्पंदन है। एकल तत्व शाखाओं के साथ यह 180 ° तक एक चरण बदलाव का उत्पादन कर सकता है, और गुंजयमान शाखाओं के साथ यह 360 ° तक चरण बदलाव कर सकता है। निस्पंदन एक स्थिर-प्रतिरोध नेटवर्क का एक उदाहरण है (अर्थात, इसकी छवि प्रतिबाधा सभी आवृत्तियों पर स्थिर है)।
टी-सेक्शन निस्पंदन
टी टोपोलॉजी पर आधारित फेज इक्वलाइजर जाली फिल्टर के असंतुलित समतुल्य है और इसकी फेज प्रतिक्रिया समान है। जबकि परिपथ आरेख दिख सकता है एक कम पास फिल्टर की तरह यह अलग है कि दो प्रारंभ करनेवाला शाखाएं परस्पर युग्मित हैं। इसके परिणामस्वरूप दो इंडक्टर्स के बीच ट्रांसफॉर्मर कार्रवाई होती है और उच्च आवृत्ति पर भी एक ऑल-पास प्रतिक्रिया होती है।
ब्रिज टी-सेक्शन निस्पंदन
ब्रिज किए गए टी टोपोलॉजी का उपयोग विलंब समानता के लिए किया जाता है, विशेष रूप से स्टीरियोफोनिक ध्वनि प्रसारण के लिए उपयोग किए जा रहे दो लैंडलाइन के बीच अंतर विलंब। इस एप्लिकेशन के लिए आवश्यक है कि निस्पंदन में व्यापक बैंडविड्थ पर आवृत्ति (यानी, निरंतर समूह विलंब ) के साथ एक रैखिक चरण प्रतिक्रिया हो और इस टोपोलॉजी को चुनने का कारण हो।
डिजिटल कार्यान्वयन
एक जटिल ध्रुव के साथ एक ऑल-पास निस्पंदन का एक जेड को बदलने कार्यान्वयन है
जिसका शून्य है , कहाँ पे जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। ऑल-पास फिल्टर में जटिल पोल-शून्य जोड़े उस आवृत्ति को नियंत्रित करने में मदद करते हैं जहां चरण बदलाव होते हैं।
वास्तविक गुणांक के साथ एक ऑल-पास कार्यान्वयन बनाने के लिए, जटिल ऑल-पास निस्पंदन को एक ऑल-पास के साथ कैस्केड किया जा सकता है जो प्रतिस्थापित करता है के लिये , जेड-ट्रांसफॉर्म कार्यान्वयन के लिए अग्रणी
जो पुनरावृत्ति संबंध के बराबर है
कहाँ पे आउटपुट है और असतत समय चरण पर इनपुट है .
सिस्टम की परिमाण प्रतिक्रिया को बदले बिना एक स्थिर या न्यूनतम-चरण निस्पंदन बनाने के लिए उपरोक्त जैसे निस्पंदन को नियंत्रण सिद्धांत # स्थिरता या मिश्रित-चरण निस्पंदन के साथ कैस्केड किया जा सकता है। उदाहरण के लिए, के उचित चयन से , एक अस्थिर प्रणाली का एक ध्रुव जो यूनिट सर्कल के बाहर है, रद्द किया जा सकता है और यूनिट सर्कल के अंदर परिलक्षित हो सकता है।
यह भी देखें
- ब्रिजेड टी देरी तुल्यकारक
- जाली चरण तुल्यकारक
- न्यूनतम चरण
- हिल्बर्ट ट्रांसफॉर्म
- उच्च पास फिल्टर
- लो पास फिल्टर
- बैंड-स्टॉप निस्पंदन
- बंदपास छननी
- जाली विलंब नेटवर्क
संदर्भ
- ↑ Op Amps for Everyone, Ron Mancini, Newnes 780750677011
- ↑ Maheswari, L.K.; Anand, M.M.S., Analog Electronics, pp. 213-214, PHI Learning, 2009 ISBN 9788120327221.
- ↑ Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook, McGraw-Hill, 1995 ISBN 0070704414, p. 10.7.
इस पृष्ठ में अनुपलब्ध आंतरिक लिंक की सूची
- रैखिक फिल्टर
- मूर्ति प्रोद्योगिकी
- करणीय
- खास समय
- संकेत (इलेक्ट्रॉनिक्स)
- लगातार कश्मीर फिल्टर
- चरण विलंब
- एम-व्युत्पन्न निस्पंदन
- स्थानांतरण प्रकार्य
- बहुपदीय फलन
- लो पास फिल्टर
- अंतःप्रतीक हस्तक्षेप
- निस्पंदन (प्रकाशिकी)
- युग्मित उपकरण को चार्ज करें
- गांठदार तत्व
- पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र
- लोहा
- परमाणु घड़ी
- फुरियर रूपांतरण
- लहर (निस्पंदन)
- कार्तीय समन्वय प्रणाली
- अंक शास्त्र
- यूक्लिडियन स्पेस
- मामला
- ब्रम्हांड
- कद
- द्वि-आयामी अंतरिक्ष
- निर्देशांक तरीका
- अदिश (गणित)
- शास्त्रीय हैमिल्टनियन quaternions
- quaternions
- पार उत्पाद
- उत्पत्ति (गणित)
- दो प्रतिच्छेद रेखाएँ
- तिरछी रेखाएं
- समानांतर पंक्ति
- रेखीय समीकरण
- समानांतर चतुर्भुज
- वृत्त
- शंकु खंड
- विकृति (गणित)
- निर्देशांक वेक्टर
- लीनियर अलजेब्रा
- सीधा
- भौतिक विज्ञान
- लेट बीजगणित
- एक क्षेत्र पर बीजगणित
- जोड़नेवाला
- समाकृतिकता
- कार्तीय गुणन
- अंदरूनी प्रोडक्ट
- आइंस्टीन योग सम्मेलन
- इकाई वेक्टर
- टुकड़े-टुकड़े चिकना
- द्विभाजित
- आंशिक व्युत्पन्न
- आयतन तत्व
- समारोह (गणित)
- रेखा समाकलन का मौलिक प्रमेय
- खंड अनुसार
- सौम्य सतह
- फ़ानो विमान
- प्रक्षेप्य स्थान
- प्रक्षेप्य ज्यामिति
- चार आयामी अंतरिक्ष
- विद्युत प्रवाह
- उच्च लाभ एंटीना
- सर्वदिशात्मक एंटीना
- गामा किरणें
- विद्युत संकेत
- वाहक लहर
- आयाम अधिमिश्रण
- चैनल क्षमता
- आर्थिक अच्छा
- आधार - सामग्री संकोचन
- शोर उन्मुक्ति
- कॉल चिह्न
- शिशु की देखरेख करने वाला
- आईएसएम बैंड
- लंबी लहर
- एफएम प्रसारण
- सत्य के प्रति निष्ठा
- जमीनी लहर
- कम आवृत्ति
- श्रव्य विकृति
- वह-एएसी
- एमपीईजी-4
- संशोधित असतत कोसाइन परिवर्तन
- भू-स्थिर
- प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
- माध्यमिक आवृत्ति
- परमाणु घड़ी
- बीपीसी (समय संकेत)
- फुल डुप्लेक्स
- बिट प्रति सेकंड
- पहला प्रतिसादकर्ता
- हवाई गलियारा
- नागरिक बंद
- विविधता स्वागत
- शून्य (रेडियो)
- बिजली का मीटर
- जमीन (बिजली)
- हवाई अड्डे की निगरानी रडार
- altimeter
- समुद्री रडार
- देशान्तर
- तोपखाने का खोल
- बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
- अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
- संरक्षण जीवविज्ञान
- हवाई आलोक चित्र विद्या
- गैराज का दरवाज़ा
- मुख्य जेब
- अंतरिक्ष-विज्ञान
- ध्वनि-विज्ञान
- निरंतर संकेत
- मिड-रेंज स्पीकर
- निस्पंदन (संकेत प्रसंस्करण )
- उष्ण ऊर्जा
- विद्युतीय प्रतिरोध
- लंबी लाइन (दूरसंचार)
- इलास्टेंस
- गूंज
- ध्वनिक प्रतिध्वनि
- प्रत्यावर्ती धारा
- आवृत्ति विभाजन बहुसंकेतन
- छवि निस्पंदन
- वाहक लहर
- ऊष्मा समीकरण
- प्रतिक दर
- विद्युत चालकता
- आवृति का उतार - चढ़ाव
- निरंतर कश्मीर फिल्टर
- जटिल विमान
- फासर (साइन वेव्स)
- पोर्ट (परिपथ सिद्धांत)
- लग्रांगियन यांत्रिकी
- जाल विश्लेषण
- पॉइसन इंटीग्रल
- affine परिवर्तन
- तर्कसंगत कार्य
- शोर अनुपात का संकेत
- मिलान निस्पंदन
- रैखिक-द्विघात-गाऊसी नियंत्रण
- राज्य स्थान (नियंत्रण)
- ऑपरेशनल एंप्लीफायर
- एलटीआई प्रणाली सिद्धांत
- विशिष्ट एकीकृत परिपथ आवेदन
- सतत समय
- एंटी - एलियासिंग निस्पंदन
- भाजक
- निश्चित बिंदु अंकगणित
- फ्लोटिंग-पॉइंट अंकगणित
- डिजिटल बाइकैड निस्पंदन
- अनुकूली फिल्टर
- अध्यारोपण सिद्धांत
- कदम की प्रतिक्रिया
- राज्य स्थान (नियंत्रण)
- नियंत्रण प्रणाली
- वोल्टेज नियंत्रित थरथरानवाला
- कंपंडोर
- नमूना और पकड़
- संगणक
- अनेक संभावनाओं में से चुनी हूई प्रक्रिया
- प्रायिकता वितरण
- वर्तमान परिपथ
- गूंज रद्दीकरण
- सुविधा निकासी
- छवि उन्नीतकरण
- एक प्रकार की प्रोग्रामिंग की पर्त
- ओ एस आई मॉडल
- समानता (संचार)
- आंकड़ा अधिग्रहण
- रूपांतरण सिद्धांत
- लीनियर अलजेब्रा
- स्टचास्तिक प्रोसेसेज़
- संभावना
- गैर-स्थानीय साधन
- घटना (सिंक्रनाइज़ेशन आदिम)
- एंटीलोक ब्रेक
- उद्यम प्रणाली
- सुरक्षा-महत्वपूर्ण प्रणाली
- डेटा सामान्य
- आर टी -11
- डंब टर्मिनल
- समय बताना
- सेब II
- जल्द से जल्द समय सीमा पहले शेड्यूलिंग
- अनुकूली विभाजन अनुसूचक
- वीडियो गेम कंसोल की चौथी पीढ़ी
- वीडियो गेम कंसोल की तीसरी पीढ़ी
- नमूनाकरण दर
- अंकगणित औसत
- उच्च प्रदर्शन कंप्यूटिंग
- भयावह विफलता
- हुड विधि
- प्रणाली विश्लेषण
- समय अपरिवर्तनीय
- औद्योगिक नियंत्रण प्रणाली
- निर्देशयोग्य तर्क नियंत्रक
- प्रक्रिया अभियंता)
- नियंत्रण पाश
- संयंत्र (नियंत्रण सिद्धांत)
- क्रूज नियंत्रण
- अनुक्रमिक कार्य चार्ट
- नकारात्मक प्रतिपुष्टि
- अन्देंप्त
- नियंत्रण वॉल्व
- पीआईडी नियंत्रक
- यौगिक
- फिल्टर (संकेत प्रसंस्करण )
- वितरित कोटा पद्धति
- महाकाव्यों
- डूप गति नियंत्रण
- हवाई जहाज
- संक्षिप्त और प्रारंभिकवाद
- मोटर गाड़ी
- संयुक्त राज्य नौसेना
- निर्देशित मिसाइलें
- भूभाग-निम्नलिखित रडार
- अवरक्त किरणे
- प्रेसिजन-निर्देशित युद्धपोत
- विमान भेदी युद्ध
- शाही रूसी नौसेना
- हस्तक्षेप हरा
- सेंट पीटर्सबर्ग
- योण क्षेत्र
- आकाशीय बिजली
- द्वितीय विश्वयुद्ध
- संयुक्त राज्य सेना
- डेथ रे
- पर्ल हार्बर पर हमला
- ओबाउ (नेविगेशन)
- जमीन नियंत्रित दृष्टिकोण
- भूविज्ञानी
- आंधी तूफान
- मौसम पूर्वानुमान
- बहुत बुरा मौसम
- सर्दियों का तूफान
- संकेत पहचान
- बिखरने
- इलेक्ट्रिकल कंडक्टीविटी
- पराबैगनी प्रकाश
- खालीपन
- भूसा (प्रतिमाप)
- पारद्युतिक स्थिरांक
- विद्युत चुम्बकीय विकिरण
- विद्युतीय प्रतिरोध
- प्रतिचुम्बकत्व
- बहुपथ प्रसार
- तरंग दैर्ध्य
- अर्ध-सक्रिय रडार होमिंग
- Nyquist आवृत्ति
- ध्रुवीकरण (लहरें)
- अपवर्तक सूचकांक
- नाड़ी पुनरावृत्ति आवृत्ति
- शोर मचाने वाला फ़र्श
- प्रकाश गूंज
- रेत का तूफान
- स्वत: नियंत्रण प्राप्त करें
- जय स्पाइक
- घबराना
- आयनमंडलीय परावर्तन
- वायुमंडलीय वाहिनी
- व्युत्क्रम वर्ग नियम
- इलेक्ट्रानिक युद्ध
- उड़ान का समय
- प्रकाश कि गति
- पूर्व चेतावनी रडार
- रफ़्तार
- निरंतर-लहर रडार
- स्पेकट्रूम विशेष्यग्य
- रेंज अस्पष्टता संकल्प
- मिलान निस्पंदन
- रोटेशन
- चरणबद्ध व्यूह रचना
- मैमथ राडार
- निगरानी करना
- स्क्रीन
- पतला सरणी अभिशाप
- हवाई रडार प्रणाली
- परिमाणक्रम
- इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
- क्षितिज राडार के ऊपर
- पल्स बनाने वाला नेटवर्क
- अमेरिका में प्रदूषण की रोकथाम
- आईटी रेडियो विनियम
- रडार संकेत विशेषताएं
- हैस (रडार)
- एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
- समय की इकाई
- गुणात्मक प्रतिलोम
- रोशनी
- दिल की आवाज
- हिलाना
- सरल आवर्त गति
- नहीं (पत्र)
- एसआई व्युत्पन्न इकाई
- इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
- प्रति मिनट धूर्णन
- हवा की लहर
- एक समारोह का तर्क
- चरण (लहरें)
- आयामहीन मात्रा
- असतत समय संकेत
- विशेष मामला
- मध्यम (प्रकाशिकी)
- कोई भी त्रुटि
- ध्वनि की तरंग
- दृश्यमान प्रतिबिम्ब
- लय
- सुनवाई की दहलीज
- प्रजातियाँ
- मुख्य विधुत
- नाबालिग तीसरा
- माप की इकाइयां
- आवधिकता (बहुविकल्पी)
- परिमाण के आदेश (आवृत्ति)
- वर्णक्रमीय घटक
- रैखिक समय-अपरिवर्तनीय प्रणाली
- असतत समय फिल्टर
- ऑटोरेग्रेसिव मॉडल
- डिजिटल डाटा
- डिजिटल देरी लाइन
- बीआईबीओ स्थिरता
- फोरियर श्रेणी
- दोषी
- दशमलव (संकेत प्रसंस्करण )
- असतत फूरियर रूपांतरण
- एफआईआर ट्रांसफर फंक्शन
- 3डी परीक्षण मॉडल
- ब्लेंडर (सॉफ्टवेयर)
- वैज्ञानिक दृश्य
- प्रतिपादन (कंप्यूटर ग्राफिक्स)
- विज्ञापन देना
- चलचित्र
- अनुभूति
- निहित सतह
- विमानन
- भूतपूर्व छात्र
- छिपी सतह निर्धारण
- अंतरिक्ष आक्रमणकारी
- लकीर खींचने की क्रिया
- एनएमओएस तर्क
- उच्च संकल्प
- एमओएस मेमोरी
- पूरक राज्य मंत्री
- नक्षत्र-भवन
- वैश्विक चमक
- मैकिंटोश कंप्यूटर
- प्रथम व्यक्ति शूटर
- साधारण मानचित्रण
- हिमयुग (2002 फ़िल्म)
- मेडागास्कर (2005 फ़िल्म)
- बायोइनफॉरमैटिक्स
- शारीरिक रूप से आधारित प्रतिपादन
- हीरे की थाली
- प्रतिबिंब (कंप्यूटर ग्राफिक्स)
- 2010 की एनिमेटेड फीचर फिल्मों की सूची
- परिवेशी बाधा
- वास्तविक समय (मीडिया)
- जानकारी
- कंकाल एनिमेशन
- भीड़ अनुकरण
- प्रक्रियात्मक एनिमेशन
- अणु प्रणाली
- कैमरा
- माइक्रोस्कोप
- इंजीनियरिंग के चित्र
- रेखापुंज छवि
- नक्शा
- हार्डवेयर एक्सिलरेशन
- अंधेरा
- गैर-समान तर्कसंगत बी-तख़्ता
- नक्शा टक्कर
- चुम्बकीय अनुनाद इमेजिंग
- नमूनाकरण (संकेत प्रसंस्करण )
- sculpting
- आधुनिक कला का संग्रहालय
- गेम डेवलपर्स कांफ्रेंस
- शैक्षिक
- आपूर्ती बंद करने की आवृत्ति
- प्रतिक्रिया (इलेक्ट्रॉनिक्स)
- अण्डाकार फिल्टर
- सीरिज़ परिपथ)
- मिलान जेड-ट्रांसफॉर्म विधि
- कंघी निस्पंदन
- समूह देरी
- सप्टक
- दूसरों से अलग
- लो पास फिल्टर
- निर्देश प्रति सेकंड
- अंकगणित अतिप्रवाह
- चरण (लहरें)
- हस्तक्षेप (लहर प्रसार)
- बीट (ध्वनिक)
- अण्डाकार तर्कसंगत कार्य
- जैकोबी अण्डाकार कार्य
- क्यू कारक
- यूनिट सर्कल
- फी (पत्र)
- सुनहरा अनुपात
- मोनोटोनिक
- Immittance
- ऑप एंप
- आवेग invariance
- बेसेल फ़ंक्शन
- जटिल सन्युग्म
- संकेत प्रतिबिंब
- विद्युतीय ऊर्जा
- इनपुट उपस्थिति
- एकदिश धारा
- जटिल संख्या
- भार प्रतिबाधा
- विद्युतचुंबकीय व्यवधान
- बिजली की आपूर्ति
- आम-कैथोड
- अवमन्दन कारक
- ध्वनिरोधन
- गूंज (घटना)
- फ्रेस्नेल समीकरण
- रोड़ी
- लोडिंग कॉइल
- आर एस होयतो
- लोड हो रहा है कॉइल
- चेबीशेव बहुपद
- एक बंदरगाह
- सकारात्मक-वास्तविक कार्य
- आपूर्ती बंद करने की आवृत्ति
- उच्च मार्ग
- रैखिक निस्पंदन
- प्रतिक दर
- घेरा
- नॉन-रिटर्न-टू-जीरो
- अनियमित चर
- संघ बाध्य
- एकाधिक आवृत्ति-शिफ्ट कुंजीयन
- COMPARATOR
- द्विआधारी जोड़
- असंबद्ध संचरण
- त्रुटि समारोह
- आपसी जानकारी
- बिखरा हुआ1
- डिजिटल मॉडुलन
- डिमॉड्युलेटर
- कंघा
- खड़ी तरंगें
- नमूना दर
- प्रक्षेप
- ऑडियो संकेत प्रसंस्करण
- खगोल-कंघी
- खास समय
- पोल (जटिल विश्लेषण)
- दुर्लभ
- आरसी परिपथ
- अवरोध
- स्थिर समय
- एक घोड़ा
- पुनरावृत्ति संबंध
- निष्क्रिय फिल्टर
- श्रव्य सीमा
- मिक्सिंग कंसोल
- एसी कपलिंग
- क्यूएससी ऑडियो
- संकट
- दूसरों से अलग
- डीएसएल मॉडम
- फाइबर ऑप्टिक संचार
- व्यावर्तित जोड़ी
- बातचीत का माध्यम
- समाक्षीय तार
- लंबी दूरी का टेलीफोन कनेक्शन
- डाउनस्ट्रीम (कंप्यूटर विज्ञान)
- आवृत्ति द्वैध
- आवृत्ति प्रतिक्रिया
- आकड़ों की योग्यता
- परीक्षण के अंतर्गत उपकरण
- कंघी फिल्टर
- निष्क्रियता (इंजीनियरिंग)
- लाभ (इलेक्ट्रॉनिक्स)
- कोने की आवृत्ति
- फील्ड इफ़ेक्ट ट्रांजिस्टर
- कम आवृत्ति दोलन
- एकीकृत परिपथ
- निरंतर-प्रतिरोध नेटवर्क
- यूनिट सर्कल
बाहरी संबंध
- JOS@Stanford on all-pass filters
- ECE 209 Phase-Shifter Circuit, analysis steps for a common analog phase-shifter circuit.
- filter-solutions.com: All-pass filters