बेट्टी संख्या: Difference between revisions

From Vigyanwiki
No edit summary
Line 6: Line 6:
''<sub>''
''<sub>''


"बेट्टी नंबर्स" शब्द एनरिको बेट्टी के बाद हेनरी पोनकारे द्वारा गढ़ा गया था। आधुनिक फॉर्मूलेशन एमी नोएदर के कारण है। बेट्टी नंबरों का उपयोग आज सरल गृहविज्ञान, [[कंप्यूटर विज्ञान]] और डिजिटल छवियों जैसे क्षेत्रों में किया जाता है।
"बेट्टी नंबर्स" शब्द एनरिको बेट्टी के बाद हेनरी पोनकारे द्वारा बनाया गया था। आधुनिक फॉर्मूलेशन एमी नोएदर के कारण है। बेट्टी नंबरों का उपयोग आज सरल गृहविज्ञान, [[कंप्यूटर विज्ञान]] और डिजिटल छवियों जैसे क्षेत्रों में किया जाता है।


==ज्यामितीय व्याख्या==
==ज्यामितीय व्याख्या==
[[File:Torus cycles.png|thumb|टोरस के लिए, पहला बेट्टी नंबर बी है<sub>1</sub> = 2, जिसे सहज रूप से गोलाकार छिद्रों की संख्या के रूप में सोचा जा सकता है]]अनौपचारिक रूप से, kवें बेट्टी नंबर टोपोलॉजिकल सतह पर k-आयामी छिद्रों की संख्या को संदर्भित करता है। एक "के-डायमेंशनल होल" एक के-डायमेंशनल चक्र है जो (k+1)-डायमेंशनल ऑब्जेक्ट की सीमा नहीं है।
[[File:Torus cycles.png|thumb|टोरस के लिए, पहला बेट्टी संख्या बी है<sub>1</sub> = 2, जिसे सहज रूप से गोलाकार छिद्रों की संख्या के रूप में सोचा जा सकता है]]अनौपचारिक रूप से, kवें बेट्टी संख्या टोपोलॉजिकल सतह पर k-आयामी छिद्रों की संख्या को संदर्भित करता है। "के-डायमेंशनल होल" एक के-डायमेंशनल चक्र है जो (k+1)-डायमेंशनल ऑब्जेक्ट की सीमा नहीं है।


पहले कुछ बेट्टी नंबरों में 0-आयामी, 1-आयामी और 2-आयामी सरलीकृत कॉम्प्लेक्स के लिए निम्नलिखित परिभाषाएँ हैं:
पहले कुछ बेट्टी नंबरों में 0-आयामी, 1-आयामी और 2-आयामी सरलीकृत कॉम्प्लेक्स के लिए निम्नलिखित परिभाषाएँ हैं:
Line 19: Line 19:
इस प्रकार, उदाहरण के लिए, एक टोरस में एक जुड़ा हुआ सतह घटक होता है इसलिए ''b''<sub>2</sub> = 1, दो गोलाकार छिद्र (एक भूमध्यरेखीय और एक आंचलिक और मध्याह्न रेखा) इसलिए ''b''<sub>1</sub> = 2, और सतह के भीतर एक एकल गुहा घिरा हुआ है इसलिए ''b''<sub>2</sub> = 1.
इस प्रकार, उदाहरण के लिए, एक टोरस में एक जुड़ा हुआ सतह घटक होता है इसलिए ''b''<sub>2</sub> = 1, दो गोलाकार छिद्र (एक भूमध्यरेखीय और एक आंचलिक और मध्याह्न रेखा) इसलिए ''b''<sub>1</sub> = 2, और सतह के भीतर एक एकल गुहा घिरा हुआ है इसलिए ''b''<sub>2</sub> = 1.


''b''<sub>k</sub> की एक अन्य व्याख्या ''k''-आयामी वक्रों की अधिकतम संख्या है जिन्हें ऑब्जेक्ट के जुड़े रहने के दौरान हटाया जा सकता है। उदाहरण के लिए, टोरस दो 1-आयामी वक्रों (भूमध्यरेखीय और मध्याह्न रेखा) को हटाने के बाद भी जुड़ा रहता है इसलिए ''b''<sub>1</sub> = 2.<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211212/XxFGokyYo6g Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20200829013025/https://www.youtube.com/watch?v=XxFGokyYo6g&gl=US&hl=en Wayback Machine]{{cbignore}}: {{Cite web|last=Albin|first=Pierre|date=2019|title=History of algebraic topology|website=[[YouTube]]|url=https://www.youtube.com/watch?v=XxFGokyYo6g}}{{cbignore}}</ref>
''b''<sub>k</sub> की एक अन्य व्याख्या ''k''-आयामी वक्रों की अधिकतम संख्या है जिन्हें ऑब्जेक्ट के जुड़े रहने के पर्यन्त हटाया जा सकता है। उदाहरण के लिए, टोरस दो 1-आयामी वक्रों (भूमध्यरेखीय और मध्याह्न रेखा) को हटाने के बाद भी जुड़ा रहता है इसलिए ''b''<sub>1</sub> = 2.<ref>Archived at [https://ghostarchive.org/varchive/youtube/20211212/XxFGokyYo6g Ghostarchive]{{cbignore}} and the [https://web.archive.org/web/20200829013025/https://www.youtube.com/watch?v=XxFGokyYo6g&gl=US&hl=en Wayback Machine]{{cbignore}}: {{Cite web|last=Albin|first=Pierre|date=2019|title=History of algebraic topology|website=[[YouTube]]|url=https://www.youtube.com/watch?v=XxFGokyYo6g}}{{cbignore}}</ref>


द्वि-आयामी बेट्टी संख्या को समझना आसान है क्योंकि हम दुनिया को 0, 1, 2 और 3 आयामों में देख सकते हैं।
द्वि-आयामी बेट्टी संख्या को समझना आसान है क्योंकि हम दुनिया को 0, 1, 2 और 3 आयामों में देख सकते हैं।
Line 26: Line 26:
एक गैर-नकारात्मक [[पूर्णांक]] ''k'' के लिए, kवें बेट्टी संख्या ''b<sub>k</sub>''(''X'') के ''X'' को [[एबेलियन समूह]] ''H<sub>k</sub>''(''X'') के एबेलियन समूह (रैखिक रूप से स्वतंत्र जनरेटर की संख्या) की रैंक के रूप में परिभाषित किया गया है, ''X'' का kवें होमोलॉजी समूह है। <math> H_{k} = \ker \delta_{k} / \mathrm{Im} \delta_{k+1} </math>kवें होमोलॉजी समूह है, <math> \delta_{k}</math>s सरल परिसर के सीमा मानचित्र और H<sub>k</sub> की रैंक हैं kवाँ बेट्टी संख्या है। समान रूप से, कोई इसे ''H<sub>k</sub>''(''X''; '''Q''') के सदिश समष्टि आयाम के रूप में परिभाषित कर सकता है चूँकि इस मामले में समरूपता समूह ''''Q'''<nowiki/>' के ऊपर एक सदिश समष्टि है। [[सार्वभौमिक गुणांक प्रमेय]], एक बहुत ही सरल मरोड़-मुक्त मामले में, दर्शाता है कि ये परिभाषाएँ समान हैं।
एक गैर-नकारात्मक [[पूर्णांक]] ''k'' के लिए, kवें बेट्टी संख्या ''b<sub>k</sub>''(''X'') के ''X'' को [[एबेलियन समूह]] ''H<sub>k</sub>''(''X'') के एबेलियन समूह (रैखिक रूप से स्वतंत्र जनरेटर की संख्या) की रैंक के रूप में परिभाषित किया गया है, ''X'' का kवें होमोलॉजी समूह है। <math> H_{k} = \ker \delta_{k} / \mathrm{Im} \delta_{k+1} </math>kवें होमोलॉजी समूह है, <math> \delta_{k}</math>s सरल परिसर के सीमा मानचित्र और H<sub>k</sub> की रैंक हैं kवाँ बेट्टी संख्या है। समान रूप से, कोई इसे ''H<sub>k</sub>''(''X''; '''Q''') के सदिश समष्टि आयाम के रूप में परिभाषित कर सकता है चूँकि इस मामले में समरूपता समूह ''''Q'''<nowiki/>' के ऊपर एक सदिश समष्टि है। [[सार्वभौमिक गुणांक प्रमेय]], एक बहुत ही सरल मरोड़-मुक्त मामले में, दर्शाता है कि ये परिभाषाएँ समान हैं।


अधिक सामान्यतः, [[फ़ील्ड (गणित)]] ''F'' दिए जाने पर ''b<sub>k</sub>''(''X'', ''F'') को परिभाषित कर सकता है, ''F'' में गुणांक के साथ kवें बेट्टी संख्या, ''H<sub>k</sub>''(''X'', ''F'') के वेक्टर स्पेस आयाम के रूप में परिभाषित कर सकता है।
अधिक सामान्यतः, [[फ़ील्ड (गणित)]] ''F'' दिए जाने पर ''b<sub>k</sub>''(''X'', ''F'') को परिभाषित कर सकता है, ''F'' में गुणांक के साथ kवें बेट्टी संख्या, ''H<sub>k</sub>''(''X'', ''F'') के सदिश स्पेस आयाम के रूप में परिभाषित कर सकता है।


== पोंकारे बहुपद ==
== पोंकारे बहुपद ==
Line 35: Line 35:
== उदाहरण ==
== उदाहरण ==


===''ग्राफ़ की बेट्टी संख्या''===
===ग्राफ़ की बेट्टी संख्या===
[[टोपोलॉजिकल ग्राफ सिद्धांत]] G पर विचार करें जिसमें शीर्षों का सेट V है, किनारों का सेट E है, और जुड़े हुए घटकों का सेट C है। जैसा कि [[ ग्राफ समरूपता ]] पर पेज में बताया गया है, इसके होमोलॉजी समूह इस प्रकार दिए गए हैं:
[[टोपोलॉजिकल ग्राफ सिद्धांत]] ''G'' पर विचार करें जिसमें शीर्षों का सेट ''V'' है, किनारों का सेट ''E'' है, और जुड़े हुए घटकों का सेट ''C'' है। जैसा कि [[ ग्राफ समरूपता |ग्राफ समरूपता]] पर पेज में बताया गया है, इसके होमोलॉजी समूह इस प्रकार दिए गए हैं:
: <math>H_k(G) = \begin{cases}  
: <math>H_k(G) = \begin{cases}  
   \mathbb Z^{|C|}        & k=0 \\
   \mathbb Z^{|C|}        & k=0 \\
Line 44: Line 44:
इसे किनारों की संख्या पर [[गणितीय प्रेरण]] द्वारा सीधे सिद्ध किया जा सकता है। एक नया किनारा या तो 1-चक्रों की संख्या बढ़ाता है या जुड़े हुए घटकों की संख्या घटाता है।
इसे किनारों की संख्या पर [[गणितीय प्रेरण]] द्वारा सीधे सिद्ध किया जा सकता है। एक नया किनारा या तो 1-चक्रों की संख्या बढ़ाता है या जुड़े हुए घटकों की संख्या घटाता है।


इसलिए, शून्य-वें बेट्टी संख्या बी<sub>0</sub>(जी) |सी| के बराबर है, जो कि केवल जुड़े हुए घटकों की संख्या है।<ref name="Hage1996">{{cite book|author=Per Hage|url=https://books.google.com/books?id=ZBdLknuP0BYC&pg=PA49|title=Island Networks: Communication, Kinship, and Classification Structures in Oceania|publisher=Cambridge University Press|year=1996|isbn=978-0-521-55232-5|page=49}}</ref>
इसलिए, शून्य-वें बेट्टी संख्या ''b''<sub>0</sub>(''G'') |''C''| के बराबर है, जो कि केवल जुड़े हुए घटकों की संख्या है।<ref name="Hage1996">{{cite book|author=Per Hage|url=https://books.google.com/books?id=ZBdLknuP0BYC&pg=PA49|title=Island Networks: Communication, Kinship, and Classification Structures in Oceania|publisher=Cambridge University Press|year=1996|isbn=978-0-521-55232-5|page=49}}</ref>
पहला बेट्टी नंबर बी<sub>1</sub>(जी) बराबर है || + |सी| - |वी|. इसे [[ चक्रीय संख्या ]] भी कहा जाता है - यह शब्द बेट्टी के पेपर से पहले [[गुस्ताव किरचॉफ]] द्वारा पेश किया गया था।<ref name="Kotiuga2010">{{cite book|author=Peter Robert Kotiuga|url=https://books.google.com/books?id=mqLXi0FRIZwC&pg=PA20|title=राउल बॉट की गणितीय विरासत का उत्सव|publisher=American Mathematical Soc.|year=2010|isbn=978-0-8218-8381-5|page=20}}</ref> [[सॉफ्टवेयर इंजीनियरिंग]] के अनुप्रयोग के लिए चक्रीय जटिलता देखें।
 
पहला बेट्टी संख्या ''b''<sub>1</sub>(''G'') |''E''| + |''C''| - |''V''|| बराबर है। इसे [[ चक्रीय संख्या |चक्रीय संख्या]] भी कहा जाता है - यह शब्द बेट्टी के पेपर से पहले [[गुस्ताव किरचॉफ]] द्वारा पेश किया गया था।<ref name="Kotiuga2010">{{cite book|author=Peter Robert Kotiuga|url=https://books.google.com/books?id=mqLXi0FRIZwC&pg=PA20|title=राउल बॉट की गणितीय विरासत का उत्सव|publisher=American Mathematical Soc.|year=2010|isbn=978-0-8218-8381-5|page=20}}</ref> [[सॉफ्टवेयर इंजीनियरिंग]] के अनुप्रयोग के लिए चक्रीय जटिलता देखें।


अन्य सभी बेट्टी संख्याएँ 0 हैं।
अन्य सभी बेट्टी संख्याएँ 0 हैं।


===सरल सम्मिश्र की बेट्टी संख्याएँ===
===सरल सम्मिश्र की बेट्टी संख्याएँ===
[[File:Simplicialexample.png|160x320px|alt=उदाहरण|दाएं]]0-सिंप्लेक्स के साथ एक सरल कॉम्प्लेक्स पर विचार करें: , बी, सी, और डी, 1-सिंप्लेक्स: , एफ, जी, एच और आई, और एकमात्र 2-सिंप्लेक्स जे है, जो चित्र में छायांकित क्षेत्र है। यह स्पष्ट है कि इस चित्र में एक जुड़ा हुआ घटक है (बी)।<sub>0</sub>); एक छेद, जो कि अछायांकित क्षेत्र है (बी<sub>1</sub>); और कोई रिक्त स्थान या गुहा नहीं (बी<sub>2</sub>).
[[File:Simplicialexample.png|160x320px|alt=उदाहरण|दाएं]]
 
0-सिम्पलेक्स के साथ एक सरल कॉम्प्लेक्स पर विचार करें: a, b, c, और d, 1-सिम्पलेक्स: E, F, G, H और I, और एकमात्र 2-सिंप्लेक्स J है, जो चित्र में छायांकित क्षेत्र है। यह स्पष्ट है कि इस आंकड़े में एक जुड़ा हुआ घटक है (''b''<sub>0</sub>); एक छेद, जो कि अछायांकित (''b''<sub>1</sub>) क्षेत्र है; और कोई (''b''<sub>2</sub>) "रिक्त स्थान" या  "गुहा" नहीं।


इसका मतलब है कि रैंक <math>H_0</math> 1 है, की रैंक <math>H_{1}</math> 1 है और रैंक है <math>H_2</math> 0 है.
इसका अर्थ यह है कि <math>H_0</math> की रैंक 1 है, <math>H_{1}</math> की रैंक 1 है और <math>H_2</math> की रैंक 0 है।


इस आंकड़े के लिए बेट्टी संख्या अनुक्रम 1, 1, 0, 0, ... है; पोंकारे बहुपद है <math>1 + x\,</math>.
इस आकृति के लिए बेट्टी संख्या अनुक्रम 1, 1, 0, 0, ... है; पोनकेरे बहुपद <math>1 + x\,</math>है।


===[[प्रक्षेप्य तल]] की बेट्टी संख्या ===
===[[प्रक्षेप्य तल]] की बेट्टी संख्या ===
Line 121: Line 124:


==अंतर रूपों के स्थानों के आयामों के साथ संबंध==
==अंतर रूपों के स्थानों के आयामों के साथ संबंध==
ज्यामितीय स्थितियों में जब <math>X</math> एक बंद मैनिफोल्ड है, बेट्टी संख्याओं का महत्व एक अलग दिशा से उत्पन्न हो सकता है, अर्थात् वे बंद अंतर रूपों [[मॉड्यूलर अंकगणित]]ीय सटीक अंतर रूपों के वेक्टर स्थानों के आयामों की भविष्यवाणी करते हैं। ऊपर दी गई परिभाषा के साथ संबंध तीन बुनियादी परिणामों, डी राम के प्रमेय और पोंकारे द्वैत (जब वे लागू होते हैं), और होमोलॉजी सिद्धांत के सार्वभौमिक गुणांक प्रमेय के माध्यम से है।
ज्यामितीय स्थितियों में जब <math>X</math> एक बंद मैनिफोल्ड है, बेट्टी संख्याओं का महत्व एक अलग दिशा से उत्पन्न हो सकता है, अर्थात् वे बंद अंतर रूपों [[मॉड्यूलर अंकगणित]]ीय सटीक अंतर रूपों के सदिश स्थानों के आयामों की भविष्यवाणी करते हैं। ऊपर दी गई परिभाषा के साथ संबंध तीन बुनियादी परिणामों, डी राम के प्रमेय और पोंकारे द्वैत (जब वे लागू होते हैं), और होमोलॉजी सिद्धांत के सार्वभौमिक गुणांक प्रमेय के माध्यम से है।


एक वैकल्पिक रीडिंग है, अर्थात् बेट्टी संख्याएं [[हार्मोनिक रूप]]ों के स्थानों के आयाम देती हैं। इसके लिए [[हॉज लाप्लासियन]] पर [[हॉज सिद्धांत]] के कुछ परिणामों के उपयोग की आवश्यकता है।
एक वैकल्पिक रीडिंग है, अर्थात् बेट्टी संख्याएं [[हार्मोनिक रूप]]ों के स्थानों के आयाम देती हैं। इसके लिए [[हॉज लाप्लासियन]] पर [[हॉज सिद्धांत]] के कुछ परिणामों के उपयोग की आवश्यकता है।

Revision as of 20:27, 9 July 2023

बीजगणितीय टोपोलॉजी में, n-आयामी सरलीकृत परिसरों की संयोजकता के आधार पर टोपोलॉजिकल रिक्त स्थान को अलग करने के लिए बेट्टी संख्याओं का उपयोग किया जाता है। सबसे उचित परिमित-आयामी स्थानों (जैसे कॉम्पैक्ट मैनिफोल्ड्स, परिमित सरल कॉम्प्लेक्स या सीडब्ल्यू कॉम्प्लेक्स) के लिए, बेट्टी संख्याओं का अनुक्रम कुछ बिंदु से 0 है (बेट्टी संख्याएं अंतरिक्ष के आयाम से ऊपर गायब हो जाती हैं), और वे सभी परिमित हैं।

nवीं बेट्टी संख्या nवें समरूपता समूह की रैंक का प्रतिनिधित्व करती है, जिसे Hn दर्शाया जाता है, जो हमें बताता है कि सतह को दो टुकड़ों या 0-चक्र, 1-चक्र, आदि में अलग करने से पहले अधिकतम निगमन की जा सकती है।[1] उदाहरण के लिए, यदि तो यदि फिर , यदि तो , आदि। ध्यान दें कि केवल अनंत समूहों की रैंक पर विचार किया जाता है, उदाहरण के लिए यदि , कहाँ तो, क्रम 2 का परिमित चक्रीय समूह है . समरूपता समूहों के ये सीमित घटक उनके टॉरशन उपसमूह हैं, और उन्हें मरोड़ गुणांक द्वारा दर्शाया जाता है।

"बेट्टी नंबर्स" शब्द एनरिको बेट्टी के बाद हेनरी पोनकारे द्वारा बनाया गया था। आधुनिक फॉर्मूलेशन एमी नोएदर के कारण है। बेट्टी नंबरों का उपयोग आज सरल गृहविज्ञान, कंप्यूटर विज्ञान और डिजिटल छवियों जैसे क्षेत्रों में किया जाता है।

ज्यामितीय व्याख्या

टोरस के लिए, पहला बेट्टी संख्या बी है1 = 2, जिसे सहज रूप से गोलाकार छिद्रों की संख्या के रूप में सोचा जा सकता है

अनौपचारिक रूप से, kवें बेट्टी संख्या टोपोलॉजिकल सतह पर k-आयामी छिद्रों की संख्या को संदर्भित करता है। "के-डायमेंशनल होल" एक के-डायमेंशनल चक्र है जो (k+1)-डायमेंशनल ऑब्जेक्ट की सीमा नहीं है।

पहले कुछ बेट्टी नंबरों में 0-आयामी, 1-आयामी और 2-आयामी सरलीकृत कॉम्प्लेक्स के लिए निम्नलिखित परिभाषाएँ हैं:

  • b0 जुड़े हुए घटकों की संख्या है;
  • b1 एक-आयामी या गोलाकार छिद्रों की संख्या है;
  • b2 द्वि-आयामी रिक्तियों या गुहाओं की संख्या है।

इस प्रकार, उदाहरण के लिए, एक टोरस में एक जुड़ा हुआ सतह घटक होता है इसलिए b2 = 1, दो गोलाकार छिद्र (एक भूमध्यरेखीय और एक आंचलिक और मध्याह्न रेखा) इसलिए b1 = 2, और सतह के भीतर एक एकल गुहा घिरा हुआ है इसलिए b2 = 1.

bk की एक अन्य व्याख्या k-आयामी वक्रों की अधिकतम संख्या है जिन्हें ऑब्जेक्ट के जुड़े रहने के पर्यन्त हटाया जा सकता है। उदाहरण के लिए, टोरस दो 1-आयामी वक्रों (भूमध्यरेखीय और मध्याह्न रेखा) को हटाने के बाद भी जुड़ा रहता है इसलिए b1 = 2.[2]

द्वि-आयामी बेट्टी संख्या को समझना आसान है क्योंकि हम दुनिया को 0, 1, 2 और 3 आयामों में देख सकते हैं।

औपचारिक परिभाषा

एक गैर-नकारात्मक पूर्णांक k के लिए, kवें बेट्टी संख्या bk(X) के X को एबेलियन समूह Hk(X) के एबेलियन समूह (रैखिक रूप से स्वतंत्र जनरेटर की संख्या) की रैंक के रूप में परिभाषित किया गया है, X का kवें होमोलॉजी समूह है। kवें होमोलॉजी समूह है, s सरल परिसर के सीमा मानचित्र और Hk की रैंक हैं kवाँ बेट्टी संख्या है। समान रूप से, कोई इसे Hk(X; Q) के सदिश समष्टि आयाम के रूप में परिभाषित कर सकता है चूँकि इस मामले में समरूपता समूह 'Q' के ऊपर एक सदिश समष्टि है। सार्वभौमिक गुणांक प्रमेय, एक बहुत ही सरल मरोड़-मुक्त मामले में, दर्शाता है कि ये परिभाषाएँ समान हैं।

अधिक सामान्यतः, फ़ील्ड (गणित) F दिए जाने पर bk(X, F) को परिभाषित कर सकता है, F में गुणांक के साथ kवें बेट्टी संख्या, Hk(X, F) के सदिश स्पेस आयाम के रूप में परिभाषित कर सकता है।

पोंकारे बहुपद

किसी सतह के पोंकारे बहुपद को उसकी बेट्टी संख्याओं का जनक फलन माना जाता है। उदाहरण के लिए, टोरस की बेट्टी संख्या 1, 2, और 1 है; इस प्रकार इसका पोनकेरे बहुपद है। यही परिभाषा किसी भी टोपोलॉजिकल स्पेस पर लागू होती है जिसमें एक सीमित रूप से उत्पन्न होमोलॉजी होती है।

एक टोपोलॉजिकल स्पेस को देखते हुए जिसमें एक परिमित रूप से उत्पन्न समरूपता है, पोंकारे बहुपद को बहुपद के माध्यम से, इसके बेट्टी संख्याओं के जनक फ़ंक्शन के रूप में परिभाषित किया गया है, जहां का गुणांक है।

उदाहरण

ग्राफ़ की बेट्टी संख्या

टोपोलॉजिकल ग्राफ सिद्धांत G पर विचार करें जिसमें शीर्षों का सेट V है, किनारों का सेट E है, और जुड़े हुए घटकों का सेट C है। जैसा कि ग्राफ समरूपता पर पेज में बताया गया है, इसके होमोलॉजी समूह इस प्रकार दिए गए हैं:

इसे किनारों की संख्या पर गणितीय प्रेरण द्वारा सीधे सिद्ध किया जा सकता है। एक नया किनारा या तो 1-चक्रों की संख्या बढ़ाता है या जुड़े हुए घटकों की संख्या घटाता है।

इसलिए, शून्य-वें बेट्टी संख्या b0(G) |C| के बराबर है, जो कि केवल जुड़े हुए घटकों की संख्या है।[3]

पहला बेट्टी संख्या b1(G) |E| + |C| - |V|| बराबर है। इसे चक्रीय संख्या भी कहा जाता है - यह शब्द बेट्टी के पेपर से पहले गुस्ताव किरचॉफ द्वारा पेश किया गया था।[4] सॉफ्टवेयर इंजीनियरिंग के अनुप्रयोग के लिए चक्रीय जटिलता देखें।

अन्य सभी बेट्टी संख्याएँ 0 हैं।

सरल सम्मिश्र की बेट्टी संख्याएँ

उदाहरण

0-सिम्पलेक्स के साथ एक सरल कॉम्प्लेक्स पर विचार करें: a, b, c, और d, 1-सिम्पलेक्स: E, F, G, H और I, और एकमात्र 2-सिंप्लेक्स J है, जो चित्र में छायांकित क्षेत्र है। यह स्पष्ट है कि इस आंकड़े में एक जुड़ा हुआ घटक है (b0); एक छेद, जो कि अछायांकित (b1) क्षेत्र है; और कोई (b2) "रिक्त स्थान" या "गुहा" नहीं।

इसका अर्थ यह है कि की रैंक 1 है, की रैंक 1 है और की रैंक 0 है।

इस आकृति के लिए बेट्टी संख्या अनुक्रम 1, 1, 0, 0, ... है; पोनकेरे बहुपद है।

प्रक्षेप्य तल की बेट्टी संख्या

प्रक्षेप्य तल P के समरूपता समूह हैं:[5]

यहाँ, ज़ेड2 क्रम 2 का चक्रीय समूह है। 0वीं बेट्टी संख्या फिर से 1 है। हालाँकि, पहली बेट्टी संख्या 0 है। ऐसा इसलिए है क्योंकि H1(पी) एक परिमित समूह है - इसका कोई अनंत घटक नहीं है। समूह के परिमित घटक को पी का 'मरोड़ गुणांक' कहा जाता है। (तर्कसंगत) बेट्टी संख्याएं बीk(एक्स) होमोलॉजी समूहों में किसी भी मरोड़ उपसमूह को ध्यान में नहीं रखते हैं, लेकिन वे बहुत उपयोगी बुनियादी टोपोलॉजिकल इनवेरिएंट हैं। सबसे सहज शब्दों में, वे किसी को विभिन्न आयामों के छिद्रों की संख्या गिनने की अनुमति देते हैं।

गुण

यूलर विशेषता

एक परिमित सीडब्ल्यू-कॉम्प्लेक्स K के लिए हमारे पास है

कहाँ K और किसी फ़ील्ड F की यूलर विशेषता को दर्शाता है।

कार्टेशियन उत्पाद

हमारे पास किन्हीं दो स्थानों X और Y के लिए है

कहाँ X के पोंकारे बहुपद को दर्शाता है, (आमतौर पर, अनंत-आयामी स्थानों के लिए हिल्बर्ट-पोंकारे श्रृंखला), यानी, X की बेट्टी संख्याओं का जनक कार्य:

कुनेथ प्रमेय देखें।

समरूपता

यदि X, n-आयामी मैनिफोल्ड है, तो समरूपता का आदान-प्रदान होता है और , किसी के लिए :

शर्तों के तहत (एक बंद और उन्मुख कई गुना); पोंकारे द्वंद्व देखें.

विभिन्न गुणांक

फ़ील्ड F पर निर्भरता केवल उसकी विशेषता (फ़ील्ड) के माध्यम से होती है। यदि समरूपता समूह मरोड़ (बीजगणित) | मरोड़ मुक्त हैं, तो बेट्टी संख्याएं एफ से स्वतंत्र हैं। एक अभाज्य संख्या के लिए विशेषता पी | विशेषता पी के लिए पी-मरोड़ और बेट्टी संख्या का कनेक्शन, द्वारा विस्तार से दिया गया है सार्वभौमिक गुणांक प्रमेय (टोर काम करता है पर आधारित, लेकिन एक साधारण मामले में)।

अधिक उदाहरण

  1. एक वृत्त के लिए बेट्टी संख्या अनुक्रम 1, 1, 0, 0, 0, ... है;
    पोंकारे बहुपद है
    .
  2. तीन-टोरस्र्स के लिए बेट्टी संख्या अनुक्रम 1, 3, 3, 1, 0, 0, 0, ... है।
    पोंकारे बहुपद है
    .
  3. इसी तरह, एक एन-टोरस के लिए,
    पोंकारे बहुपद है
    (कुनेथ प्रमेय के अनुसार), इसलिए बेट्टी संख्याएँ द्विपद गुणांक हैं।

उन स्थानों के लिए यह संभव है जो अनिवार्य रूप से अनंत-आयामी हैं, जिनमें गैर-शून्य बेट्टी संख्याओं का अनंत अनुक्रम हो। एक उदाहरण अनंत-आयामी जटिल प्रक्षेप्य स्थान है, जिसमें अनुक्रम 1, 0, 1, 0, 1, ... है, जो आवधिक है, अवधि की लंबाई 2 के साथ है। इस मामले में पोंकारे फ़ंक्शन एक बहुपद नहीं बल्कि एक अनंत श्रृंखला है

,

जो, एक ज्यामितीय श्रृंखला होने के नाते, तर्कसंगत कार्य के रूप में व्यक्त किया जा सकता है

अधिक आम तौर पर, कोई भी अनुक्रम जो आवधिक है, उपरोक्त को सामान्यीकृत करते हुए, ज्यामितीय श्रृंखला के योग के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए उत्पन्न करने का कार्य है

और अधिक आम तौर पर रैखिक पुनरावर्ती अनुक्रम वास्तव में तर्कसंगत कार्यों द्वारा उत्पन्न अनुक्रम होते हैं; इस प्रकार पोंकारे श्रृंखला एक तर्कसंगत फ़ंक्शन के रूप में व्यक्त की जा सकती है यदि और केवल तभी जब बेट्टी संख्याओं का अनुक्रम एक रैखिक पुनरावर्ती अनुक्रम हो।

सघन सरल लाई समूहों के पोंकारे बहुपद हैं:


अंतर रूपों के स्थानों के आयामों के साथ संबंध

ज्यामितीय स्थितियों में जब एक बंद मैनिफोल्ड है, बेट्टी संख्याओं का महत्व एक अलग दिशा से उत्पन्न हो सकता है, अर्थात् वे बंद अंतर रूपों मॉड्यूलर अंकगणितीय सटीक अंतर रूपों के सदिश स्थानों के आयामों की भविष्यवाणी करते हैं। ऊपर दी गई परिभाषा के साथ संबंध तीन बुनियादी परिणामों, डी राम के प्रमेय और पोंकारे द्वैत (जब वे लागू होते हैं), और होमोलॉजी सिद्धांत के सार्वभौमिक गुणांक प्रमेय के माध्यम से है।

एक वैकल्पिक रीडिंग है, अर्थात् बेट्टी संख्याएं हार्मोनिक रूपों के स्थानों के आयाम देती हैं। इसके लिए हॉज लाप्लासियन पर हॉज सिद्धांत के कुछ परिणामों के उपयोग की आवश्यकता है।

इस सेटिंग में, मोर्स सिद्धांत महत्वपूर्ण बिंदु (गणित) की संख्या के संगत वैकल्पिक योग के संदर्भ में बेट्टी संख्याओं के वैकल्पिक योग के लिए असमानताओं का एक सेट देता है। किसी दिए गए मोर्स सिद्धांत के मोर्स फ़ंक्शन का:

एडवर्ड विटेन ने राम परिसर का में बाहरी व्युत्पन्न को संशोधित करने के लिए मोर्स फ़ंक्शन का उपयोग करके इन असमानताओं का स्पष्टीकरण दिया।[6]


यह भी देखें

संदर्भ

  1. Barile, and Weisstein, Margherita and Eric. "बेटी नंबर". From MathWorld--A Wolfram Web Resource.
  2. Archived at Ghostarchive and the Wayback Machine: Albin, Pierre (2019). "History of algebraic topology". YouTube.
  3. Per Hage (1996). Island Networks: Communication, Kinship, and Classification Structures in Oceania. Cambridge University Press. p. 49. ISBN 978-0-521-55232-5.
  4. Peter Robert Kotiuga (2010). राउल बॉट की गणितीय विरासत का उत्सव. American Mathematical Soc. p. 20. ISBN 978-0-8218-8381-5.
  5. Archived at Ghostarchive and the Wayback Machine: Wildberger, Norman J. (2012). "Delta complexes, Betti numbers and torsion". YouTube.
  6. Witten, Edward (1982), "Supersymmetry and Morse theory", Journal of Differential Geometry, 17 (4): 661–692, doi:10.4310/jdg/1214437492open access
  • Warner, Frank Wilson (1983), Foundations of differentiable manifolds and Lie groups, New York: Springer, ISBN 0-387-90894-3.
  • Roe, John (1998), Elliptic Operators, Topology, and Asymptotic Methods, Research Notes in Mathematics Series, vol. 395 (Second ed.), Boca Raton, FL: Chapman and Hall, ISBN 0-582-32502-1.