विशेषता वर्ग: Difference between revisions
(Created page with "{{Use American English|date=January 2019}}{{Short description|Association of cohomology classes to principal bundles }} गणित में, एक विशिष्ट...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Use American English|date=January 2019}}{{Short description|Association of cohomology classes to principal bundles | {{Use American English|date=January 2019}}{{Short description|Association of cohomology classes to principal bundles | ||
}} | }} | ||
गणित में, एक विशिष्ट वर्ग '' | गणित में, एक विशिष्ट वर्ग ''X'' के प्रत्येक [[प्रमुख बंडल]] को ''X'' के सह-समरूपता वर्ग के साथ जोड़ने का एक तरीका है। [[ सह-समरूपता |सह-समरूपता]] वर्ग मापता है कि बंडल किस सीमा तक "मुड़ा हुआ" है और क्या इसमें [[अनुभाग (फाइबर बंडल)|अनुभाग]] हैं। चारित्रिक वर्ग वैश्विक अपरिवर्तनीय हैं जो वैश्विक उत्पाद संरचना से स्थानीय उत्पाद संरचना के विचलन को मापते हैं। वे बीजीय टोपोलॉजी, अंतर ज्यामिति और बीजगणितीय ज्यामिति में एकीकृत ज्यामितीय अवधारणाओं में से एक हैं। | ||
विशेषता वर्ग की धारणा 1935 में मैनिफोल्ड्स पर वेक्टर फ़ील्ड के बारे में | विशेषता वर्ग की धारणा 1935 में मैनिफोल्ड्स पर वेक्टर फ़ील्ड के बारे में एडुआर्ड स्टिफ़ेल और [[हस्लर व्हिटनी]] के काम में उत्पन्न हुई। | ||
==परिभाषा== | ==परिभाषा== | ||
मान लीजिए G एक [[टोपोलॉजिकल समूह]] है, और एक टोपोलॉजिकल स्पेस | मान लीजिए कि G एक [[टोपोलॉजिकल समूह]] है, और एक टोपोलॉजिकल स्पेस <math>X</math> के लिए, <math>X</math> के ऊपर प्रमुख G-बंडलों के समरूपता वर्गों के सेट के लिए <math>b_G(X)</math> लिखें। यह <math>b_G</math> टॉप (टोपोलॉजिकल स्पेस और निरंतर कार्यों की श्रेणी) से सेट तक एक कंट्रावेरिएंट गुणक है (सेट और फ़ंक्शंस की श्रेणी), पुलबैक ऑपरेशन <math>f^*\colon b_G(Y)\to b_G(X)</math> के लिए एक मानचित्र <math>f\colon X\to Y</math> भेज रहा है। | ||
प्रिंसिपल '' | प्रिंसिपल ''G''-बंडलों का एक '''विशिष्ट वर्ग ''c''''' तब <math>b_G</math> से एक कोहोमोलॉजी गुणक <math>H^*</math> में एक [[प्राकृतिक परिवर्तन]] होता है, जिसे सेट के लिए एक गुणक के रूप में भी माना जाता है। | ||
दूसरे शब्दों में, एक विशिष्ट वर्ग प्रत्येक | दूसरे शब्दों में, एक विशिष्ट वर्ग प्रत्येक प्रिंसिपल ''G''-बंडल <math>P\to X</math> <math>b_G(X)</math> के साथ ''H''*(''X'') में एक तत्व ''c''(''P'') को जोड़ता है, जैसे कि, अगर f : Y → X एक सतत मानचित्र है, तो ''c(f*P) = f*c(P)'' बाईं ओर ''P'' से ''Y'' तक के पुलबैक का वर्ग है; दाईं ओर कोहोमोलॉजी में प्रेरित मानचित्र के अंतर्गत ''P'' के वर्ग की छवि है। | ||
==विशेषता संख्या== | ==विशेषता संख्या== |
Revision as of 00:06, 9 July 2023
गणित में, एक विशिष्ट वर्ग X के प्रत्येक प्रमुख बंडल को X के सह-समरूपता वर्ग के साथ जोड़ने का एक तरीका है। सह-समरूपता वर्ग मापता है कि बंडल किस सीमा तक "मुड़ा हुआ" है और क्या इसमें अनुभाग हैं। चारित्रिक वर्ग वैश्विक अपरिवर्तनीय हैं जो वैश्विक उत्पाद संरचना से स्थानीय उत्पाद संरचना के विचलन को मापते हैं। वे बीजीय टोपोलॉजी, अंतर ज्यामिति और बीजगणितीय ज्यामिति में एकीकृत ज्यामितीय अवधारणाओं में से एक हैं।
विशेषता वर्ग की धारणा 1935 में मैनिफोल्ड्स पर वेक्टर फ़ील्ड के बारे में एडुआर्ड स्टिफ़ेल और हस्लर व्हिटनी के काम में उत्पन्न हुई।
परिभाषा
मान लीजिए कि G एक टोपोलॉजिकल समूह है, और एक टोपोलॉजिकल स्पेस के लिए, के ऊपर प्रमुख G-बंडलों के समरूपता वर्गों के सेट के लिए लिखें। यह टॉप (टोपोलॉजिकल स्पेस और निरंतर कार्यों की श्रेणी) से सेट तक एक कंट्रावेरिएंट गुणक है (सेट और फ़ंक्शंस की श्रेणी), पुलबैक ऑपरेशन के लिए एक मानचित्र भेज रहा है।
प्रिंसिपल G-बंडलों का एक विशिष्ट वर्ग c तब से एक कोहोमोलॉजी गुणक में एक प्राकृतिक परिवर्तन होता है, जिसे सेट के लिए एक गुणक के रूप में भी माना जाता है।
दूसरे शब्दों में, एक विशिष्ट वर्ग प्रत्येक प्रिंसिपल G-बंडल के साथ H*(X) में एक तत्व c(P) को जोड़ता है, जैसे कि, अगर f : Y → X एक सतत मानचित्र है, तो c(f*P) = f*c(P) बाईं ओर P से Y तक के पुलबैक का वर्ग है; दाईं ओर कोहोमोलॉजी में प्रेरित मानचित्र के अंतर्गत P के वर्ग की छवि है।
विशेषता संख्या
विशेषता वर्ग कोहॉमोलॉजी समूहों के तत्व हैं;[1] कोई व्यक्ति विशिष्ट वर्गों से पूर्णांक प्राप्त कर सकता है, जिन्हें विशिष्ट संख्याएँ कहा जाता है। विशिष्ट संख्याओं के कुछ महत्वपूर्ण उदाहरण हैं स्टिफ़ेल-व्हिटनी वर्ग#स्टीफ़ेल-व्हिटनी संख्याएँ|स्टीफ़ेल-व्हिटनी संख्याएँ, चेर्न वर्ग#चेर्न संख्याएँ, पोंट्रीगिन वर्ग#पोंट्रीगिन संख्याएँ, और यूलर वर्ग#अन्य अपरिवर्तनीयों से संबंध।
मौलिक वर्ग के साथ आयाम एन का एक उन्मुख कई गुना एम दिया गया है , और विशिष्ट वर्गों वाला एक जी-बंडल , कोई कुल डिग्री n के विशिष्ट वर्गों के उत्पाद को मूल वर्ग के साथ जोड़ सकता है। विशिष्ट विशिष्ट संख्याओं की संख्या विशिष्ट वर्गों में डिग्री n के एकपदी की संख्या है, या समकक्ष रूप से n के विभाजनों की संख्या है .
औपचारिक रूप से, दिया गया ऐसा है कि , संगत विशेषता संख्या है:
कहाँ कोहोमोलॉजी कक्षाओं के कप उत्पाद को दर्शाता है। इन्हें विभिन्न प्रकार से या तो विशिष्ट वर्गों के उत्पाद के रूप में जाना जाता है, जैसे , या कुछ वैकल्पिक संकेतन द्वारा, जैसे पोंट्रीगिन वर्ग के लिए#पोंट्रीगिन संख्याओं के अनुरूप , या यूलर विशेषता के लिए.
डॉ कहलमज गर्भाशय के दृष्टिकोण से, कोई विशिष्ट वर्गों का प्रतिनिधित्व करने वाले भिन्न रूप ले सकता है,[2] एक वेज उत्पाद लें ताकि एक शीर्ष आयामी रूप प्राप्त हो, फिर मैनिफोल्ड पर एकीकृत हो; यह उत्पाद को कोहोमोलॉजी में लेने और मौलिक वर्ग के साथ जोड़ने के समान है।
यह नॉन-ओरिएंटेबल मैनिफ़ोल्ड्स के लिए भी काम करता है, जिनमें a -अभिविन्यास, जिस स्थिति में कोई प्राप्त करता है -मूल्यवान विशेषता संख्याएँ, जैसे कि स्टिफ़ेल-व्हिटनी संख्याएँ।
अभिलक्षणिक संख्याएँ उन्मुख और अउन्मुख कोबॉर्डिज्म को हल करती हैं#कोबॉर्डिज़्म वर्ग: दो मैनिफ़ोल्ड (क्रमशः उन्मुख या अउन्मुख) कोबॉर्डेंट होते हैं यदि और केवल तभी जब उनकी विशेषता संख्याएँ समान हों।
प्रेरणा
विशेषता वर्ग एक आवश्यक तरीके से कोहोमोलॉजी सिद्धांत की घटनाएं हैं - वे फ़ैक्टर्स निर्माणों के सहप्रसरण और विरोधाभास हैं, जिस तरह से एक खंड (श्रेणी सिद्धांत) एक स्थान पर एक प्रकार का कार्य है, और अस्तित्व से विरोधाभास का कारण बनता है एक अनुभाग में हमें उस भिन्नता की आवश्यकता है। वास्तव में कोहोमोलॉजी सिद्धांत होमोलॉजी (गणित) और होमोटॉपी सिद्धांत के बाद बड़ा हुआ, जो दोनों एक अंतरिक्ष में मानचित्रण पर आधारित सहप्रसरण सिद्धांत हैं; और 1930 के दशक में अपनी प्रारंभिक अवस्था में विशेषता वर्ग सिद्धांत (बाधा सिद्धांत के भाग के रूप में) एक प्रमुख कारण था कि समरूपता के लिए एक 'दोहरे' सिद्धांत की मांग की गई थी। सामान्य गॉस-बोनट प्रमेय को साबित करने के लिए, वक्रता अपरिवर्तनीयों के लिए विशिष्ट वर्ग दृष्टिकोण एक सिद्धांत बनाने का एक विशेष कारण था।
जब सिद्धांत को 1950 के आसपास एक संगठित आधार पर रखा गया था (परिभाषाओं को होमोटॉपी सिद्धांत में घटाकर) यह स्पष्ट हो गया कि उस समय ज्ञात सबसे मौलिक विशेषता वर्ग (स्टीफेल-व्हिटनी वर्ग, चेर्न वर्ग और पोंट्रीगिन वर्ग) थे शास्त्रीय रैखिक समूहों और उनकी अधिकतम टोरस संरचना के प्रतिबिंब। इससे भी अधिक, चेर्न वर्ग स्वयं इतना नया नहीं था, जो ग्रासमैनियन्स पर शुबर्ट कैलकुलस और बीजगणितीय ज्यामिति के इतालवी स्कूल के काम में परिलक्षित होता था। दूसरी ओर अब एक ऐसा ढाँचा था जो वर्गों के परिवारों का निर्माण करता था, जब भी कोई वेक्टर बंडल शामिल होता था।
मुख्य तंत्र तब इस प्रकार दिखाई दिया: एक वेक्टर बंडल ले जाने वाले स्पेस एक्स को देखते हुए, सीडब्ल्यू कॉम्प्लेक्स में प्रासंगिक रैखिक समूह जी के लिए एक्स से वर्गीकृत स्पेस बीजी तक मैपिंग निहित है। होमोटॉपी सिद्धांत के लिए प्रासंगिक जानकारी ली जाती है कॉम्पैक्ट उपसमूहों द्वारा जैसे कि ऑर्थोगोनल समूह और जी के एकात्मक समूह। एक बार कोहोमोलॉजी गणना की गई, एक बार और सभी के लिए, कोहोलॉजी की विरोधाभासी संपत्ति का मतलब था कि बंडल के लिए विशिष्ट वर्गों को परिभाषित किया जाएगा समान आयामों में. उदाहरण के लिए चेर्न वर्ग वास्तव में प्रत्येक सम आयाम में श्रेणीबद्ध घटकों वाला एक वर्ग है।
यह अभी भी क्लासिक व्याख्या है, हालांकि किसी दिए गए ज्यामितीय सिद्धांत में अतिरिक्त संरचना को ध्यान में रखना लाभदायक है। जब 1955 के बाद से के-सिद्धांत और कोबॉर्डिज्म सिद्धांत के आगमन के साथ कोहोलॉजी 'असाधारण' हो गई, तो यह कहने के लिए कि विशिष्ट वर्ग क्या थे, वास्तव में हर जगह एच अक्षर को बदलना आवश्यक था।
बाद में कई गुना ्स के पत्तों के लिए विशिष्ट वर्ग पाए गए; उनके पास (संशोधित अर्थ में, कुछ अनुमत विलक्षणताओं वाले पत्तों के लिए) होमोटॉपी सिद्धांत में एक वर्गीकृत अंतरिक्ष सिद्धांत है।
गणित और भौतिकी के मेल-मिलाप के बाद बाद के काम में, साइमन डोनाल्डसन और डाइटर कोट्सचिक द्वारा एक पल सिद्धांत में नए विशिष्ट वर्ग पाए गए। शिंग-शेन चेर्न का कार्य और दृष्टिकोण भी महत्वपूर्ण साबित हुआ है: चेर्न-साइमन्स|चेर्न-साइमन्स सिद्धांत देखें।
स्थिरता
स्थिर समरूपता सिद्धांत की भाषा में, चेर्न वर्ग, स्टिफ़ेल-व्हिटनी वर्ग और पोंट्रीगिन वर्ग स्थिर हैं, जबकि यूलर वर्ग अस्थिर है।
सीधे तौर पर, एक स्थिर वर्ग वह है जो एक तुच्छ बंडल जोड़ने पर नहीं बदलता है: . अधिक संक्षेप में, इसका मतलब है कि वर्गीकरण स्थान में कोहोलॉजी वर्ग कोहोमोलॉजी कक्षा से वापस खींच लिया जाता है समावेशन के अंतर्गत (जो समावेशन से मेल खाता है और समान)। समान रूप से, सभी परिमित विशेषता वर्ग एक स्थिर वर्ग से पीछे की ओर खींचते हैं .
यह यूलर वर्ग के मामले में नहीं है, जैसा कि वहां विस्तृत है, कम से कम इसलिए नहीं क्योंकि के-आयामी बंडल का यूलर वर्ग रहता है (इसलिए से पीछे खींचता है , इसलिए यह कक्षा से पीछे नहीं हट सकता , क्योंकि आयाम भिन्न हैं।
यह भी देखें
- अलग वर्ग
- यूलर विशेषता
- चेर्न क्लास
टिप्पणियाँ
- ↑ Informally, characteristic classes "live" in cohomology.
- ↑ By Chern–Weil theory, these are polynomials in the curvature; by Hodge theory, one can take harmonic form.
संदर्भ
- Chern, Shiing-Shen (1995). Complex manifolds without potential theory. Springer-Verlag Press. ISBN 0-387-90422-0. ISBN 3-540-90422-0.
- The appendix of this book: "Geometry of characteristic classes" is a very neat and profound introduction to the development of the ideas of characteristic classes.
- Hatcher, Allen, Vector bundles & K-theory
- Husemoller, Dale (1966). Fibre bundles (3rd Edition, Springer 1993 ed.). McGraw Hill. ISBN 0387940871.
- Milnor, John W.; Stasheff, Jim (1974). Characteristic classes. Annals of Mathematics Studies. Vol. 76. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo. ISBN 0-691-08122-0.