गैलोइस विस्तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Algebraic field extension}}
{{Short description|Algebraic field extension}}
गणित में, '''गैलोइस विस्तार''' एक बीजीय विस्तार [[फ़ील्ड विस्तार]] ''ई''/''एफ'' है जो [[सामान्य विस्तार]] और अलग करने योग्य विस्तार है;{{sfn|Lang|2002|p=262}} या समकक्ष, ई/एफ बीजगणितीय है, और [[ऑटोमोर्फिज्म समूह]] ऑट (ई/एफ) द्वारा निश्चित क्षेत्र बिल्कुल आधार क्षेत्र (गणित) एफ है। गैलोज़ एक्सटेंशन होने का महत्व यह है कि एक्सटेंशन में गैलोज़ समूह है और गैलोज़ सिद्धांत के मौलिक प्रमेय का पालन करता है।{{efn|See the article [[Galois group]] for definitions of some of these terms and some examples.}}
गणित में, '''गैलोइस विस्तार''' एक बीजीय विस्तार [[फ़ील्ड विस्तार]] ''ई''/''एफ'' है जो [[सामान्य विस्तार]] और भिन्न करने योग्य विस्तार है;{{sfn|Lang|2002|p=262}} या समकक्ष, ई/एफ बीजगणितीय है, और [[ऑटोमोर्फिज्म समूह]] ऑट (ई/एफ) द्वारा निश्चित क्षेत्र बिल्कुल आधार क्षेत्र (गणित) एफ है। गैलोज़ एक्सटेंशन होने का महत्व यह है कि एक्सटेंशन में गैलोज़ समूह है और गैलोज़ सिद्धांत के मौलिक प्रमेय का पालन करता है।{{efn|See the article [[Galois group]] for definitions of some of these terms and some examples.}}


[[एमिल आर्टिन]] का परिणाम निम्नानुसार गैलोज़ एक्सटेंशन का निर्माण करने की अनुमति देता है: यदि ई एक दिया गया फ़ील्ड है, और जी निश्चित फ़ील्ड एफ के साथ ई के ऑटोमोर्फिज्म का एक सीमित समूह है, तो ई/एफ एक गैलोज़ एक्सटेंशन है।{{sfn|Lang|2002|p=264|loc=Theorem 1.8}}
[[एमिल आर्टिन]] का परिणाम निम्नानुसार गैलोज़ एक्सटेंशन का निर्माण करने की अनुमति देता है: यदि ई एक दिया गया फ़ील्ड है, और जी निश्चित फ़ील्ड एफ के साथ ई के ऑटोमोर्फिज्म का एक सीमित समूह है, तब ई/एफ एक गैलोज़ एक्सटेंशन है।{{sfn|Lang|2002|p=264|loc=Theorem 1.8}}


==गैलोइस एक्सटेंशन की विशेषता==
==गैलोइस एक्सटेंशन की विशेषता==
एमिल आर्टिन का एक महत्वपूर्ण प्रमेय बताता है कि एक सीमित विस्तार के लिए <math>E/F,</math> निम्नलिखित में से प्रत्येक कथन उस कथन के समतुल्य है <math>E/F</math> गैलोज़ है:
एमिल आर्टिन का एक महत्वपूर्ण प्रमेय बताता है कि एक सीमित विस्तार के लिए <math>E/F,</math> निम्नलिखित में से प्रत्येक कथन उस कथन के समतुल्य है <math>E/F</math> गैलोज़ है:


*<math>E/F</math> एक सामान्य विस्तार और एक अलग करने योग्य विस्तार है।
*<math>E/F</math> एक सामान्य विस्तार और एक भिन्न करने योग्य विस्तार है।
*<math>E</math> गुणांकों के साथ एक पृथक्करणीय बहुपद का [[विभाजन क्षेत्र]] है <math>F.</math>
*<math>E</math> गुणांकों के साथ एक पृथक्करणीय बहुपद का [[विभाजन क्षेत्र]] है <math>F.</math>
*<math>|\!\operatorname{Aut}(E/F)| = [E:F],</math> अर्थात्, ऑटोमोर्फिज्म की संख्या विस्तार की [[डिग्री (क्षेत्र सिद्धांत)]] के बराबर होती है।
*<math>|\!\operatorname{Aut}(E/F)| = [E:F],</math> अर्थात्, ऑटोमोर्फिज्म की संख्या विस्तार की [[डिग्री (क्षेत्र सिद्धांत)]] के सामान्तर होती है।


अन्य समकक्ष कथन हैं:
अन्य समकक्ष कथन हैं:
Line 17: Line 17:
*<math>F</math> के एक उपसमूह का निश्चित क्षेत्र है <math>\operatorname{Aut}(E).</math>
*<math>F</math> के एक उपसमूह का निश्चित क्षेत्र है <math>\operatorname{Aut}(E).</math>
*<math>F</math> का निश्चित क्षेत्र है <math>\operatorname{Aut}(E/F).</math>
*<math>F</math> का निश्चित क्षेत्र है <math>\operatorname{Aut}(E/F).</math>
*गैलोइस सिद्धांत का एक-से-एक मौलिक प्रमेय है#उपक्षेत्रों के बीच पत्राचार का स्पष्ट विवरण <math>E/F</math> और के उपसमूह <math>\operatorname{Aut}(E/F).</math>
*गैलोइस सिद्धांत का एक-से-एक मौलिक प्रमेय है#उपक्षेत्रों के मध्य पत्राचार का स्पष्ट विवरण <math>E/F</math> और के उपसमूह <math>\operatorname{Aut}(E/F).</math>
==उदाहरण==
==उदाहरण==
गैलोज़ एक्सटेंशन के उदाहरण बनाने के दो बुनियादी तरीके हैं।
गैलोज़ एक्सटेंशन के उदाहरण बनाने के दो मूलभूततरीके हैं।


* कोई भी फ़ील्ड लें <math>E</math>, का कोई भी परिमित उपसमूह <math>\operatorname{Aut}(E)</math>, और जाने <math>F</math> निश्चित फ़ील्ड हो.
* कोई भी फ़ील्ड लें <math>E</math>, का कोई भी परिमित उपसमूह <math>\operatorname{Aut}(E)</math>, और जाने <math>F</math> निश्चित फ़ील्ड हो.
* कोई भी फ़ील्ड लें <math>F</math>, कोई भी वियोज्य बहुपद <math>F[x]</math>, और जाने <math>E</math> इसका विभाजन क्षेत्र हो.
* कोई भी फ़ील्ड लें <math>F</math>, कोई भी वियोज्य बहुपद <math>F[x]</math>, और जाने <math>E</math> इसका विभाजन क्षेत्र हो.


परिमेय संख्या क्षेत्र के साथ संयोजन (क्षेत्र सिद्धांत) [[2 का वर्गमूल]] एक गैलोज़ विस्तार देता है, जबकि 2 का घनमूल एक गैर-गैलोइस विस्तार देता है। ये दोनों एक्सटेंशन अलग-अलग हैं, क्योंकि इनमें [[विशेषता शून्य]] है। उनमें से पहला विभाजन क्षेत्र है <math>x^2 -2</math>; दूसरे में सामान्य एक्सटेंशन है जिसमें जटिल एकता_की_जड़ शामिल है, और इसलिए यह एक विभाजन क्षेत्र नहीं है। वास्तव में, इसमें पहचान के अलावा कोई ऑटोमोर्फिज्म नहीं है, क्योंकि यह वास्तविक संख्याओं में निहित है <math>x^3 -2</math> केवल एक ही वास्तविक जड़ है. अधिक विस्तृत उदाहरणों के लिए, गैलोज़ सिद्धांत के मौलिक प्रमेय पर पृष्ठ देखें।
परिमेय संख्या क्षेत्र के साथ संयोजन (क्षेत्र सिद्धांत) [[2 का वर्गमूल]] एक गैलोज़ विस्तार देता है, जबकि 2 का घनमूल एक गैर-गैलोइस विस्तार देता है। यह दोनों एक्सटेंशन भिन्न-भिन्न हैं, क्योंकि इनमें [[विशेषता शून्य]] है। उनमें से पहला विभाजन क्षेत्र है <math>x^2 -2</math>; दूसरे में सामान्य एक्सटेंशन है जिसमें जटिल एकता_की_जड़ सम्मिलित है, और इसलिए यह एक विभाजन क्षेत्र नहीं है। वास्तव में, इसमें पहचान के अतिरिक्त कोई ऑटोमोर्फिज्म नहीं है, क्योंकि यह वास्तविक संख्याओं में निहित है <math>x^3 -2</math> केवल एक ही वास्तविक जड़ है. अधिक विस्तृत उदाहरणों के लिए, गैलोज़ सिद्धांत के मौलिक प्रमेय पर पृष्ठ देखें।


एक [[बीजगणितीय समापन]] <math>\bar K</math> एक मनमाने क्षेत्र का <math>K</math> गैलोइस खत्म हो गया है <math>K</math> अगर और केवल अगर <math>K</math> एक आदर्श क्षेत्र है.
एक [[बीजगणितीय समापन]] <math>\bar K</math> एक मनमाने क्षेत्र का <math>K</math> गैलोइस खत्म हो गया है <math>K</math> यदि और केवल यदि <math>K</math> एक आदर्श क्षेत्र है.


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 20:43, 11 July 2023

गणित में, गैलोइस विस्तार एक बीजीय विस्तार फ़ील्ड विस्तार /एफ है जो सामान्य विस्तार और भिन्न करने योग्य विस्तार है;[1] या समकक्ष, ई/एफ बीजगणितीय है, और ऑटोमोर्फिज्म समूह ऑट (ई/एफ) द्वारा निश्चित क्षेत्र बिल्कुल आधार क्षेत्र (गणित) एफ है। गैलोज़ एक्सटेंशन होने का महत्व यह है कि एक्सटेंशन में गैलोज़ समूह है और गैलोज़ सिद्धांत के मौलिक प्रमेय का पालन करता है।[lower-alpha 1]

एमिल आर्टिन का परिणाम निम्नानुसार गैलोज़ एक्सटेंशन का निर्माण करने की अनुमति देता है: यदि ई एक दिया गया फ़ील्ड है, और जी निश्चित फ़ील्ड एफ के साथ ई के ऑटोमोर्फिज्म का एक सीमित समूह है, तब ई/एफ एक गैलोज़ एक्सटेंशन है।[2]

गैलोइस एक्सटेंशन की विशेषता

एमिल आर्टिन का एक महत्वपूर्ण प्रमेय बताता है कि एक सीमित विस्तार के लिए निम्नलिखित में से प्रत्येक कथन उस कथन के समतुल्य है गैलोज़ है:

  • एक सामान्य विस्तार और एक भिन्न करने योग्य विस्तार है।
  • गुणांकों के साथ एक पृथक्करणीय बहुपद का विभाजन क्षेत्र है
  • अर्थात्, ऑटोमोर्फिज्म की संख्या विस्तार की डिग्री (क्षेत्र सिद्धांत) के सामान्तर होती है।

अन्य समकक्ष कथन हैं:

  • प्रत्येक अघुलनशील बहुपद में कम से कम एक जड़ के साथ विभाजित हो जाता है और वियोज्य है.
  • अर्थात्, ऑटोमोर्फिज्म की संख्या कम से कम विस्तार की डिग्री है।
  • के एक उपसमूह का निश्चित क्षेत्र है
  • का निश्चित क्षेत्र है
  • गैलोइस सिद्धांत का एक-से-एक मौलिक प्रमेय है#उपक्षेत्रों के मध्य पत्राचार का स्पष्ट विवरण और के उपसमूह

उदाहरण

गैलोज़ एक्सटेंशन के उदाहरण बनाने के दो मूलभूततरीके हैं।

  • कोई भी फ़ील्ड लें , का कोई भी परिमित उपसमूह , और जाने निश्चित फ़ील्ड हो.
  • कोई भी फ़ील्ड लें , कोई भी वियोज्य बहुपद , और जाने इसका विभाजन क्षेत्र हो.

परिमेय संख्या क्षेत्र के साथ संयोजन (क्षेत्र सिद्धांत) 2 का वर्गमूल एक गैलोज़ विस्तार देता है, जबकि 2 का घनमूल एक गैर-गैलोइस विस्तार देता है। यह दोनों एक्सटेंशन भिन्न-भिन्न हैं, क्योंकि इनमें विशेषता शून्य है। उनमें से पहला विभाजन क्षेत्र है ; दूसरे में सामान्य एक्सटेंशन है जिसमें जटिल एकता_की_जड़ सम्मिलित है, और इसलिए यह एक विभाजन क्षेत्र नहीं है। वास्तव में, इसमें पहचान के अतिरिक्त कोई ऑटोमोर्फिज्म नहीं है, क्योंकि यह वास्तविक संख्याओं में निहित है केवल एक ही वास्तविक जड़ है. अधिक विस्तृत उदाहरणों के लिए, गैलोज़ सिद्धांत के मौलिक प्रमेय पर पृष्ठ देखें।

एक बीजगणितीय समापन एक मनमाने क्षेत्र का गैलोइस खत्म हो गया है यदि और केवल यदि एक आदर्श क्षेत्र है.

टिप्पणियाँ

  1. See the article Galois group for definitions of some of these terms and some examples.

उद्धरण

  1. Lang 2002, p. 262.
  2. Lang 2002, p. 264, Theorem 1.8.


संदर्भ

  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556


अग्रिम पठन