स्वर्णिम अनुपात आधार: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Positional numeral system}} {{no footnotes|date=August 2018}} {{numeral systems}} स्वर्णिम अनुपात आधार एक गै...")
 
No edit summary
Line 1: Line 1:
{{short description|Positional numeral system}}
{{short description|Positional numeral system}}
{{no footnotes|date=August 2018}}
{{numeral systems}}
{{numeral systems}}
स्वर्णिम अनुपात आधार एक [[गैर-पूर्णांक प्रतिनिधित्व]] | गैर-पूर्णांक स्थितीय अंक प्रणाली है जो स्वर्णिम अनुपात (अपरिमेय संख्या) का उपयोग करता है {{Sfrac|1 + {{sqrt|5}}|2}} ≈ 1.61803399 को इसके [[आधार (घातांक)]] के रूप में [[ग्रीक वर्णमाला]] phi|φ) द्वारा दर्शाया गया है। इसे कभी-कभी बेस-φ, गोल्डन मीन बेस, फी-बेस, या, बोलचाल की भाषा में, फ़िनरी कहा जाता है। किसी भी गैर-नकारात्मक [[वास्तविक संख्या]] को केवल अंक 0 और 1 का उपयोग करके आधार-φ अंक के रूप में दर्शाया जा सकता है, और अंक अनुक्रम 11 से बचा जा सकता है - इसे ''मानक रूप'' कहा जाता है। एक आधार-φ अंक जिसमें अंक अनुक्रम 11 शामिल है, उसे हमेशा आधार φ के बीजगणितीय गुणों का उपयोग करके मानक रूप में फिर से लिखा जा सकता है - सबसे विशेष रूप से φ<sup>1</sup>+ एफ<sup>0 = एफ<sup>2</sup>. उदाहरण के लिए, 11<sub>φ</sub> = 100<sub>φ</sub>.
स्वर्णिम अनुपात आधार [[गैर-पूर्णांक प्रतिनिधित्व]] | गैर-पूर्णांक स्थितीय अंक प्रणाली है जो स्वर्णिम अनुपात (अपरिमेय संख्या) का उपयोग करता है {{Sfrac|1 + {{sqrt|5}}|2}} ≈ 1.61803399 को इसके [[आधार (घातांक)]] के रूप में [[ग्रीक वर्णमाला]] phi|φ) द्वारा दर्शाया गया है। इसे कभी-कभी बेस-φ, गोल्डन मीन बेस, फी-बेस, या, बोलचाल की भाषा में, फ़िनरी कहा जाता है। किसी भी गैर-नकारात्मक [[वास्तविक संख्या]] को केवल अंक 0 और 1 का उपयोग करके आधार-φ अंक के रूप में दर्शाया जा सकता है, और अंक अनुक्रम 11 से बचा जा सकता है - इसे ''मानक रूप'' कहा जाता है। आधार-φ अंक जिसमें अंक अनुक्रम 11 शामिल है, उसे हमेशा आधार φ के बीजगणितीय गुणों का उपयोग करके मानक रूप में फिर से लिखा जा सकता है - सबसे विशेष रूप से φ<sup>1</sup>+ एफ<sup>0 = एफ<sup>2</sup>. उदाहरण के लिए, 11<sub>φ</sub> = 100<sub>φ</sub>.


एक [[अपरिमेय संख्या]] आधार का उपयोग करने के बावजूद, मानक रूप का उपयोग करते समय, सभी गैर-नकारात्मक [[पूर्णांक]]ों का एक समाप्ति (परिमित) आधार-φ विस्तार के रूप में एक अद्वितीय प्रतिनिधित्व होता है। संख्याओं का समूह जिसमें एक परिमित आधार-φ निरूपण होता है, वलय (बीजगणित) द्विघात पूर्णांक है|Z[{{sfrac|1 + {{sqrt|5}}|2}}]; यह इस अंक प्रणाली में वही भूमिका निभाता है जो द्विआधारी संख्याओं में द्विआधारी परिमेय निभाता है, जिससे गुणन की संभावना मिलती है।
एक [[अपरिमेय संख्या]] आधार का उपयोग करने के बावजूद, मानक रूप का उपयोग करते समय, सभी गैर-नकारात्मक [[पूर्णांक]]ों का समाप्ति (परिमित) आधार-φ विस्तार के रूप में अद्वितीय प्रतिनिधित्व होता है। संख्याओं का समूह जिसमें परिमित आधार-φ निरूपण होता है, वलय (बीजगणित) द्विघात पूर्णांक है|Z[{{sfrac|1 + {{sqrt|5}}|2}}]; यह इस अंक प्रणाली में वही भूमिका निभाता है जो द्विआधारी संख्याओं में द्विआधारी परिमेय निभाता है, जिससे गुणन की संभावना मिलती है।


अन्य संख्याओं का आधार-φ में मानक प्रतिनिधित्व होता है, [[तर्कसंगत संख्या]]ओं का आवर्ती प्रतिनिधित्व होता है। ये निरूपण अद्वितीय हैं, सिवाय इसके कि समाप्ति विस्तार वाली संख्याओं का गैर-समाप्ति विस्तार भी होता है। उदाहरण के लिए, आधार-φ में 1 = 0.1010101… ठीक वैसे ही जैसे [[दशमलव]]|आधार-10 में 0.999…|1 = 0.99999…।
अन्य संख्याओं का आधार-φ में मानक प्रतिनिधित्व होता है, [[तर्कसंगत संख्या]]ओं का आवर्ती प्रतिनिधित्व होता है। ये निरूपण अद्वितीय हैं, सिवाय इसके कि समाप्ति विस्तार वाली संख्याओं का गैर-समाप्ति विस्तार भी होता है। उदाहरण के लिए, आधार-φ में 1 = 0.1010101… ठीक वैसे ही जैसे [[दशमलव]]|आधार-10 में 0.999…|1 = 0.99999…।
Line 60: Line 59:
गैर-मानक से मानक रूप में रूपांतरण के निम्नलिखित उदाहरण में, हस्ताक्षरित-अंक प्रतिनिधित्व -1 का प्रतिनिधित्व करने के लिए नोटेशन <u>1</u> का उपयोग किया जाता है।
गैर-मानक से मानक रूप में रूपांतरण के निम्नलिखित उदाहरण में, हस्ताक्षरित-अंक प्रतिनिधित्व -1 का प्रतिनिधित्व करने के लिए नोटेशन <u>1</u> का उपयोग किया जाता है।


211.0<u>1</u><sub>φ</sub> यह एक मानक आधार-φ अंक नहीं है, क्योंकि इसमें 11 और इसके अतिरिक्त 2 और <u>1</u> = −1 शामिल हैं, जो 0 या 1 नहीं हैं।
211.0<u>1</u><sub>φ</sub> यह मानक आधार-φ अंक नहीं है, क्योंकि इसमें 11 और इसके अतिरिक्त 2 और <u>1</u> = −1 शामिल हैं, जो 0 या 1 नहीं हैं।


किसी अंक को मानक रूप में रखने के लिए, हम निम्नलिखित प्रतिस्थापनों का उपयोग कर सकते हैं: <math>0\underline{1}0_\phi=\underline{1}0_\phi</math>, <math>1\underline{1}0_\phi=001_\phi</math>, <math>200_\phi=1001_\phi</math>, <math>011_\phi=100_\phi</math>. प्रतिस्थापनों को हमारी इच्छानुसार किसी भी क्रम में लागू किया जा सकता है, क्योंकि परिणाम वही होगा। नीचे, पिछली पंक्ति की संख्या पर लागू प्रतिस्थापन दाईं ओर हैं, परिणामी संख्या बाईं ओर है।
किसी अंक को मानक रूप में रखने के लिए, हम निम्नलिखित प्रतिस्थापनों का उपयोग कर सकते हैं: <math>0\underline{1}0_\phi=\underline{1}0_\phi</math>, <math>1\underline{1}0_\phi=001_\phi</math>, <math>200_\phi=1001_\phi</math>, <math>011_\phi=100_\phi</math>. प्रतिस्थापनों को हमारी इच्छानुसार किसी भी क्रम में लागू किया जा सकता है, क्योंकि परिणाम वही होगा। नीचे, पिछली पंक्ति की संख्या पर लागू प्रतिस्थापन दाईं ओर हैं, परिणामी संख्या बाईं ओर है।
Line 73: Line 72:
\end{align}
\end{align}
</math>
</math>
गैर-मानक समाप्ति आधार-φ प्रतिनिधित्व वाली किसी भी [[सकारात्मक संख्या]] को इस तरीके से अद्वितीय (गणितीय) मानकीकृत किया जा सकता है। यदि हम ऐसे बिंदु पर पहुंचते हैं जहां पहला अंक [[ऋणात्मक संख्या]] होने के अलावा सभी अंक 0 या 1 हैं, तो वह संख्या ऋणात्मक है। (इसका अपवाद तब होता है जब पहला अंक [[नकार]]ात्मक होता है और अगले दो अंक एक होते हैं, जैसे <u>1</u>111.001=1.001।) इसे निषेध द्वारा आधार-φ प्रतिनिधित्व के नकारात्मक में परिवर्तित किया जा सकता है प्रत्येक अंक, परिणाम को मानकीकृत करना, और फिर इसे नकारात्मक के रूप में चिह्नित करना। उदाहरण के लिए, ऋणात्मक संख्याओं को दर्शाने के लिए [[ऋण चिह्न]] या किसी अन्य महत्व का उपयोग करें।
गैर-मानक समाप्ति आधार-φ प्रतिनिधित्व वाली किसी भी [[सकारात्मक संख्या]] को इस तरीके से अद्वितीय (गणितीय) मानकीकृत किया जा सकता है। यदि हम ऐसे बिंदु पर पहुंचते हैं जहां पहला अंक [[ऋणात्मक संख्या]] होने के अलावा सभी अंक 0 या 1 हैं, तो वह संख्या ऋणात्मक है। (इसका अपवाद तब होता है जब पहला अंक [[नकार]]ात्मक होता है और अगले दो अंक होते हैं, जैसे <u>1</u>111.001=1.001।) इसे निषेध द्वारा आधार-φ प्रतिनिधित्व के नकारात्मक में परिवर्तित किया जा सकता है प्रत्येक अंक, परिणाम को मानकीकृत करना, और फिर इसे नकारात्मक के रूप में चिह्नित करना। उदाहरण के लिए, ऋणात्मक संख्याओं को दर्शाने के लिए [[ऋण चिह्न]] या किसी अन्य महत्व का उपयोग करें।


==पूर्णांकों को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना==
==पूर्णांकों को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना==


हम या तो अपने पूर्णांक को एक गैरमानक आधार-φ अंक का (केवल) अंक मान सकते हैं, और इसे मानकीकृत कर सकते हैं, या निम्नलिखित कार्य कर सकते हैं:
हम या तो अपने पूर्णांक को गैरमानक आधार-φ अंक का (केवल) अंक मान सकते हैं, और इसे मानकीकृत कर सकते हैं, या निम्नलिखित कार्य कर सकते हैं:


1 × 1 = 1, φ × φ = 1 + φ और {{sfrac|1|φ}} = −1 + φ. इसलिए, हम गणना कर सकते हैं
1 × 1 = 1, φ × φ = 1 + φ और {{sfrac|1|φ}} = −1 + φ. इसलिए, हम गणना कर सकते हैं
Line 90: Line 89:
इसलिए, केवल पूर्णांक मानों का उपयोग करके, हम (a + bφ) रूप की संख्याओं को जोड़, घटा और गुणा कर सकते हैं, और यहां तक ​​कि φ के सकारात्मक और नकारात्मक पूर्णांक [[घातांक]] का भी प्रतिनिधित्व कर सकते हैं।
इसलिए, केवल पूर्णांक मानों का उपयोग करके, हम (a + bφ) रूप की संख्याओं को जोड़, घटा और गुणा कर सकते हैं, और यहां तक ​​कि φ के सकारात्मक और नकारात्मक पूर्णांक [[घातांक]] का भी प्रतिनिधित्व कर सकते हैं।


(ए + बीφ) > (सी + डीφ) यदि और केवल यदि 2(ए - सी) - (डी - बी) > (डी - बी) × {{sqrt|5}}. यदि एक पक्ष नकारात्मक है और दूसरा सकारात्मक, तो तुलना तुच्छ है। अन्यथा, पूर्णांक तुलना प्राप्त करने के लिए दोनों पक्षों को वर्गाकार करें, यदि दोनों पक्ष नकारात्मक हों तो तुलना दिशा को उलट दें। [[वर्ग (बीजगणित)]] पर दोनों तरफ, {{sqrt|5}} को पूर्णांक 5 से प्रतिस्थापित किया जाता है।
(ए + बीφ) > (सी + डीφ) यदि और केवल यदि 2(ए - सी) - (डी - बी) > (डी - बी) × {{sqrt|5}}. यदि पक्ष नकारात्मक है और दूसरा सकारात्मक, तो तुलना तुच्छ है। अन्यथा, पूर्णांक तुलना प्राप्त करने के लिए दोनों पक्षों को वर्गाकार करें, यदि दोनों पक्ष नकारात्मक हों तो तुलना दिशा को उलट दें। [[वर्ग (बीजगणित)]] पर दोनों तरफ, {{sqrt|5}} को पूर्णांक 5 से प्रतिस्थापित किया जाता है।


इसलिए, केवल पूर्णांक मानों का उपयोग करके, हम (a + bφ) रूप की संख्याओं की तुलना भी कर सकते हैं।
इसलिए, केवल पूर्णांक मानों का उपयोग करके, हम (a + bφ) रूप की संख्याओं की तुलना भी कर सकते हैं।
Line 114: Line 113:
===गैर-विशिष्टता===
===गैर-विशिष्टता===


किसी भी आधार-एन प्रणाली की तरह, समाप्ति प्रतिनिधित्व वाली संख्याओं का एक वैकल्पिक आवर्ती प्रतिनिधित्व होता है। आधार-10 में, यह इस अवलोकन पर निर्भर करता है कि 0.999...|0.999...=1। आधार-φ में, अंक 0.1010101... को कई तरीकों से 1 के बराबर देखा जा सकता है:
किसी भी आधार-एन प्रणाली की तरह, समाप्ति प्रतिनिधित्व वाली संख्याओं का वैकल्पिक आवर्ती प्रतिनिधित्व होता है। आधार-10 में, यह इस अवलोकन पर निर्भर करता है कि 0.999...|0.999...=1। आधार-φ में, अंक 0.1010101... को कई तरीकों से 1 के बराबर देखा जा सकता है:


*अमानक रूप में रूपांतरण: 1 = 0.11<sub>φ</sub> = 0.1011<sub>φ</sub> = 0.101011<sub>φ</sub> = ... = 0.10101010....<sub>φ</sub>
*अमानक रूप में रूपांतरण: 1 = 0.11<sub>φ</sub> = 0.1011<sub>φ</sub> = 0.101011<sub>φ</sub> = ... = 0.10101010....<sub>φ</sub>
Line 121: Line 120:
*पालियों के बीच अंतर: φ<sup>2</sup>x − x = 10.101010...<sub>φ</sub> − 0.101010...<sub>φ</sub> = 10<sub>φ</sub> = φ ताकि x = {{sfrac|φ|φ<sup>2</sup> − 1}}=1
*पालियों के बीच अंतर: φ<sup>2</sup>x − x = 10.101010...<sub>φ</sub> − 0.101010...<sub>φ</sub> = 10<sub>φ</sub> = φ ताकि x = {{sfrac|φ|φ<sup>2</sup> − 1}}=1


यह गैर-विशिष्टता अंकन प्रणाली की एक विशेषता है, क्योंकि 1.0000 और 0.101010... दोनों मानक रूप में हैं।
यह गैर-विशिष्टता अंकन प्रणाली की विशेषता है, क्योंकि 1.0000 और 0.101010... दोनों मानक रूप में हैं।


सामान्य तौर पर, आधार-φ में किसी भी संख्या के अंतिम 1 को उस संख्या के मान को बदले बिना आवर्ती 01 से बदला जा सकता है।
सामान्य तौर पर, आधार-φ में किसी भी संख्या के अंतिम 1 को उस संख्या के मान को बदले बिना आवर्ती 01 से बदला जा सकता है।
Line 127: Line 126:
==तर्कसंगत संख्याओं को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना==
==तर्कसंगत संख्याओं को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना==


प्रत्येक गैर-नकारात्मक परिमेय संख्या को आवर्ती आधार-φ विस्तार के रूप में दर्शाया जा सकता है, जैसा कि क्षेत्र (गणित) के किसी भी गैर-नकारात्मक तत्व Q[{{sqrt|5}}] = क्यू + {{sqrt|5}}Q, परिमेय संख्याओं और 5 के वर्गमूल द्वारा उत्पन्न क्षेत्र|{{sqrt|5}}. इसके विपरीत कोई भी आवर्ती (या समाप्ति) आधार-φ विस्तार Q का एक गैर-नकारात्मक तत्व है [{{sqrt|5}}]. आवर्ती दशमलव के लिए, आवर्ती भाग को रेखांकित किया गया है:
प्रत्येक गैर-नकारात्मक परिमेय संख्या को आवर्ती आधार-φ विस्तार के रूप में दर्शाया जा सकता है, जैसा कि क्षेत्र (गणित) के किसी भी गैर-नकारात्मक तत्व Q[{{sqrt|5}}] = क्यू + {{sqrt|5}}Q, परिमेय संख्याओं और 5 के वर्गमूल द्वारा उत्पन्न क्षेत्र|{{sqrt|5}}. इसके विपरीत कोई भी आवर्ती (या समाप्ति) आधार-φ विस्तार Q का गैर-नकारात्मक तत्व है [{{sqrt|5}}]. आवर्ती दशमलव के लिए, आवर्ती भाग को रेखांकित किया गया है:


*{{sfrac|1|2}} ≈ 0.<span style= text-decoration:overline;>010</span><sub>φ</sub>
*{{sfrac|1|2}} ≈ 0.<span style= text-decoration:overline;>010</span><sub>φ</sub>
Line 133: Line 132:
*{{sqrt|5}} = 10.1<sub>φ</sub>
*{{sqrt|5}} = 10.1<sub>φ</sub>
*2 + {{sfrac|{{sqrt|5}}|13}} ≈ 10.01<span style= text-decoration:overline;>01000100010101000100010001000000</span><sub>φ</sub>
*2 + {{sfrac|{{sqrt|5}}|13}} ≈ 10.01<span style= text-decoration:overline;>01000100010101000100010001000000</span><sub>φ</sub>
यह औचित्य कि एक परिमेय आवर्ती विस्तार देता है, आधार-एन अंकन प्रणाली (एन = 2,3,4,...) के लिए समतुल्य प्रमाण के अनुरूप है। अनिवार्य रूप से आधार-φ लंबे विभाजन में संभावित शेषफलों की केवल एक सीमित संख्या होती है, और इसलिए एक बार आवर्ती पैटर्न होना चाहिए। उदाहरण के लिए, साथ {{sfrac|1|2}} = {{sfrac|1|10.01<sub>φ</sub>}} = {{sfrac|100<sub>φ</sub>|1001<sub>φ</sub>}} लंबा विभाजन इस तरह दिखता है (ध्यान दें कि आधार-φ घटाव का पालन करना पहली बार में कठिन हो सकता है):
यह औचित्य कि परिमेय आवर्ती विस्तार देता है, आधार-एन अंकन प्रणाली (एन = 2,3,4,...) के लिए समतुल्य प्रमाण के अनुरूप है। अनिवार्य रूप से आधार-φ लंबे विभाजन में संभावित शेषफलों की केवल सीमित संख्या होती है, और इसलिए बार आवर्ती पैटर्न होना चाहिए। उदाहरण के लिए, साथ {{sfrac|1|2}} = {{sfrac|1|10.01<sub>φ</sub>}} = {{sfrac|100<sub>φ</sub>|1001<sub>φ</sub>}} लंबा विभाजन इस तरह दिखता है (ध्यान दें कि आधार-φ घटाव का पालन करना पहली बार में कठिन हो सकता है):
<पूर्व>
<पूर्व>
                 .0 1 0 0 1
                 .0 1 0 0 1
Line 145: Line 144:
                       वगैरह।
                       वगैरह।
</पूर्व>
</पूर्व>
इसका विपरीत भी सत्य है, जिसमें आवर्ती आधार वाली एक संख्या-φ; प्रतिनिधित्व क्षेत्र का एक तत्व है Q[{{sqrt|5}}]. यह अवलोकन से पता चलता है कि अवधि k के साथ आवर्ती प्रतिनिधित्व में अनुपात φ के साथ एक ज्यामितीय श्रृंखला शामिल होती है<sup>−k</sup>, जो Q के एक तत्व का योग होगा[{{sqrt|5}}].
इसका विपरीत भी सत्य है, जिसमें आवर्ती आधार वाली संख्या-φ; प्रतिनिधित्व क्षेत्र का तत्व है Q[{{sqrt|5}}]. यह अवलोकन से पता चलता है कि अवधि k के साथ आवर्ती प्रतिनिधित्व में अनुपात φ के साथ ज्यामितीय श्रृंखला शामिल होती है<sup>−k</sup>, जो Q के तत्व का योग होगा[{{sqrt|5}}].


==नोट की अपरिमेय संख्याओं को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना==
==नोट की अपरिमेय संख्याओं को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना==
कुछ दिलचस्प संख्याओं का आधार-φ निरूपण:
कुछ दिलचस्प संख्याओं का आधार-φ निरूपण:
<!-- unlike the previous rational numbers where spaces actually indicate something meaningful, the spaces I stuck in these irrational numbers every 4 bits are meaningless. Feel free to remove/add spaces if it helps. -->
 
* पाई|{{pi}} ≈ 100.0100 1010 1001 0001 0101 0100 0001 0100 ...<sub>φ</sub> {{OEIS|A102243}}
* पाई|{{pi}} ≈ 100.0100 1010 1001 0001 0101 0100 0001 0100 ...<sub>φ</sub> {{OEIS|A102243}}
* {{mvar|[[e (mathematical constant)|e]]}} ≈ 100.0000 1000 0100 1000 0000 0100 ...<sub>φ</sub> {{OEIS|A105165}}
* {{mvar|[[e (mathematical constant)|e]]}} ≈ 100.0000 1000 0100 1000 0000 0100 ...<sub>φ</sub> {{OEIS|A105165}}
Line 161: Line 160:


===गणना करें, फिर मानक रूप में बदलें===
===गणना करें, फिर मानक रूप में बदलें===
दो आधार-φ संख्याओं को जोड़ने के लिए, अंकों के प्रत्येक जोड़े को बिना किसी कैरी के जोड़ें, और फिर अंक को मानक रूप में परिवर्तित करें। घटाने के लिए, अंकों के प्रत्येक जोड़े को बिना उधार के घटाएं (उधार लेना एक ऋणात्मक राशि है), और फिर अंक को मानक रूप में परिवर्तित करें। गुणन के लिए, सामान्य आधार-10 तरीके से, बिना किसी कैरी के गुणा करें, फिर अंक को मानक रूप में बदलें।
दो आधार-φ संख्याओं को जोड़ने के लिए, अंकों के प्रत्येक जोड़े को बिना किसी कैरी के जोड़ें, और फिर अंक को मानक रूप में परिवर्तित करें। घटाने के लिए, अंकों के प्रत्येक जोड़े को बिना उधार के घटाएं (उधार लेना ऋणात्मक राशि है), और फिर अंक को मानक रूप में परिवर्तित करें। गुणन के लिए, सामान्य आधार-10 तरीके से, बिना किसी कैरी के गुणा करें, फिर अंक को मानक रूप में बदलें।


उदाहरण के लिए,
उदाहरण के लिए,
Line 175: Line 174:


==विभाजन==
==विभाजन==
किसी भी गैर-पूर्णांक परिमेय संख्या को एक [[परिमित सेट]] आधार-φ संख्या के रूप में प्रस्तुत नहीं किया जा सकता है। दूसरे शब्दों में, सभी अंतिम रूप से निरूपित करने योग्य आधार-φ संख्याएँ या तो पूर्णांक हैं या (अधिक संभावना है) [[द्विघात क्षेत्र]] Q में एक अपरिमेय संख्या हैं[{{sqrt|5}}]. दीर्घ विभाजन में संभावित शेषफलों की केवल सीमित संख्या होने के कारण, दो पूर्णांकों (या परिमित आधार-φ निरूपण वाली अन्य संख्याओं) के विभाजन में आवर्ती विस्तार होगा, जैसा कि ऊपर दिखाया गया है।
किसी भी गैर-पूर्णांक परिमेय संख्या को [[परिमित सेट]] आधार-φ संख्या के रूप में प्रस्तुत नहीं किया जा सकता है। दूसरे शब्दों में, सभी अंतिम रूप से निरूपित करने योग्य आधार-φ संख्याएँ या तो पूर्णांक हैं या (अधिक संभावना है) [[द्विघात क्षेत्र]] Q में अपरिमेय संख्या हैं[{{sqrt|5}}]. दीर्घ विभाजन में संभावित शेषफलों की केवल सीमित संख्या होने के कारण, दो पूर्णांकों (या परिमित आधार-φ निरूपण वाली अन्य संख्याओं) के विभाजन में आवर्ती विस्तार होगा, जैसा कि ऊपर दिखाया गया है।


==फाइबोनैचि कोडिंग के साथ संबंध==
==फाइबोनैचि कोडिंग के साथ संबंध==
{{main|Fibonacci coding}}
{{main|Fibonacci coding}}


[[फाइबोनैचि कोडिंग]] पूर्णांकों के लिए उपयोग की जाने वाली एक निकट से संबंधित अंकन प्रणाली है। इस प्रणाली में, केवल अंक 0 और 1 का उपयोग किया जाता है और अंकों का स्थानीय मान [[फाइबोनैचि संख्या]]एं हैं। बेस-φ की तरह, फाइबोनैचि [[पुनरावृत्ति संबंध]] F का उपयोग करके, अंक अनुक्रम 11 को मानक रूप में पुनर्व्यवस्थित करने से बचा जाता है।<sub>''k''+1</sub> = एफ<sub>''k''</sub> + एफ<sub>''k''−1</sub>. उदाहरण के लिए,
[[फाइबोनैचि कोडिंग]] पूर्णांकों के लिए उपयोग की जाने वाली निकट से संबंधित अंकन प्रणाली है। इस प्रणाली में, केवल अंक 0 और 1 का उपयोग किया जाता है और अंकों का स्थानीय मान [[फाइबोनैचि संख्या]]एं हैं। बेस-φ की तरह, फाइबोनैचि [[पुनरावृत्ति संबंध]] F का उपयोग करके, अंक अनुक्रम 11 को मानक रूप में पुनर्व्यवस्थित करने से बचा जाता है।<sub>''k''+1</sub> = एफ<sub>''k''</sub> + एफ<sub>''k''−1</sub>. उदाहरण के लिए,
:30 = 1×21 + 0×13 + 1×8 + 0×5 + 0×3 + 0×2 + 1×1 + 0×1 = 10100010<sub>fib</sub>.
:30 = 1×21 + 0×13 + 1×8 + 0×5 + 0×3 + 0×2 + 1×1 + 0×1 = 10100010<sub>fib</sub>.


Line 217: Line 216:
}}
}}
*{{cite journal|last=Plojhar|first=Jozef|title=The Good natured Rabbit breeder|journal=Manifold|volume=11|year=1971|pages=26–30}}
*{{cite journal|last=Plojhar|first=Jozef|title=The Good natured Rabbit breeder|journal=Manifold|volume=11|year=1971|pages=26–30}}
<!-- ''To do: is there any official name for normalizing?''
 
... not that I know of, but "standard form" is not too bad, so I have incorporated this -->





Revision as of 18:50, 12 July 2023

स्वर्णिम अनुपात आधार गैर-पूर्णांक प्रतिनिधित्व | गैर-पूर्णांक स्थितीय अंक प्रणाली है जो स्वर्णिम अनुपात (अपरिमेय संख्या) का उपयोग करता है 1 + 5/2 ≈ 1.61803399 को इसके आधार (घातांक) के रूप में ग्रीक वर्णमाला phi|φ) द्वारा दर्शाया गया है। इसे कभी-कभी बेस-φ, गोल्डन मीन बेस, फी-बेस, या, बोलचाल की भाषा में, फ़िनरी कहा जाता है। किसी भी गैर-नकारात्मक वास्तविक संख्या को केवल अंक 0 और 1 का उपयोग करके आधार-φ अंक के रूप में दर्शाया जा सकता है, और अंक अनुक्रम 11 से बचा जा सकता है - इसे मानक रूप कहा जाता है। आधार-φ अंक जिसमें अंक अनुक्रम 11 शामिल है, उसे हमेशा आधार φ के बीजगणितीय गुणों का उपयोग करके मानक रूप में फिर से लिखा जा सकता है - सबसे विशेष रूप से φ1+ एफ0 = एफ2. उदाहरण के लिए, 11φ = 100φ.

एक अपरिमेय संख्या आधार का उपयोग करने के बावजूद, मानक रूप का उपयोग करते समय, सभी गैर-नकारात्मक पूर्णांकों का समाप्ति (परिमित) आधार-φ विस्तार के रूप में अद्वितीय प्रतिनिधित्व होता है। संख्याओं का समूह जिसमें परिमित आधार-φ निरूपण होता है, वलय (बीजगणित) द्विघात पूर्णांक है|Z[1 + 5/2]; यह इस अंक प्रणाली में वही भूमिका निभाता है जो द्विआधारी संख्याओं में द्विआधारी परिमेय निभाता है, जिससे गुणन की संभावना मिलती है।

अन्य संख्याओं का आधार-φ में मानक प्रतिनिधित्व होता है, तर्कसंगत संख्याओं का आवर्ती प्रतिनिधित्व होता है। ये निरूपण अद्वितीय हैं, सिवाय इसके कि समाप्ति विस्तार वाली संख्याओं का गैर-समाप्ति विस्तार भी होता है। उदाहरण के लिए, आधार-φ में 1 = 0.1010101… ठीक वैसे ही जैसे दशमलव|आधार-10 में 0.999…|1 = 0.99999…।

उदाहरण

Decimal Powers of φ Base φ
1 φ0 1     
2 φ1 + φ−2 10.01  
3 φ2 + φ−2 100.01  
4 φ2 + φ0 + φ−2 101.01  
5 φ3 + φ−1 + φ−4 1000.1001
6 φ3 + φ1 + φ−4 1010.0001
7 φ4 + φ−4 10000.0001
8 φ4 + φ0 + φ−4 10001.0001
9 φ4 + φ1 + φ−2 + φ−4 10010.0101
10 φ4 + φ2 + φ−2 + φ−4 10100.0101


स्वर्णिम अनुपात आधार संख्याओं को मानक रूप में लिखना

गैर-मानक से मानक रूप में रूपांतरण के निम्नलिखित उदाहरण में, हस्ताक्षरित-अंक प्रतिनिधित्व -1 का प्रतिनिधित्व करने के लिए नोटेशन 1 का उपयोग किया जाता है।

211.01φ यह मानक आधार-φ अंक नहीं है, क्योंकि इसमें 11 और इसके अतिरिक्त 2 और 1 = −1 शामिल हैं, जो 0 या 1 नहीं हैं।

किसी अंक को मानक रूप में रखने के लिए, हम निम्नलिखित प्रतिस्थापनों का उपयोग कर सकते हैं: , , , . प्रतिस्थापनों को हमारी इच्छानुसार किसी भी क्रम में लागू किया जा सकता है, क्योंकि परिणाम वही होगा। नीचे, पिछली पंक्ति की संख्या पर लागू प्रतिस्थापन दाईं ओर हैं, परिणामी संख्या बाईं ओर है।

गैर-मानक समाप्ति आधार-φ प्रतिनिधित्व वाली किसी भी सकारात्मक संख्या को इस तरीके से अद्वितीय (गणितीय) मानकीकृत किया जा सकता है। यदि हम ऐसे बिंदु पर पहुंचते हैं जहां पहला अंक ऋणात्मक संख्या होने के अलावा सभी अंक 0 या 1 हैं, तो वह संख्या ऋणात्मक है। (इसका अपवाद तब होता है जब पहला अंक नकारात्मक होता है और अगले दो अंक होते हैं, जैसे 1111.001=1.001।) इसे निषेध द्वारा आधार-φ प्रतिनिधित्व के नकारात्मक में परिवर्तित किया जा सकता है प्रत्येक अंक, परिणाम को मानकीकृत करना, और फिर इसे नकारात्मक के रूप में चिह्नित करना। उदाहरण के लिए, ऋणात्मक संख्याओं को दर्शाने के लिए ऋण चिह्न या किसी अन्य महत्व का उपयोग करें।

पूर्णांकों को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना

हम या तो अपने पूर्णांक को गैरमानक आधार-φ अंक का (केवल) अंक मान सकते हैं, और इसे मानकीकृत कर सकते हैं, या निम्नलिखित कार्य कर सकते हैं:

1 × 1 = 1, φ × φ = 1 + φ और 1/φ = −1 + φ. इसलिए, हम गणना कर सकते हैं

(ए + बीφ) + (सी + डीφ) = ((ए + सी) + (बी + डी)φ),
(ए + बीφ) - (सी + डीφ) = ((ए - सी) + (बी - डी)φ)

और

(ए + बीφ) × (सी + डीφ) = ((एसी + बीडी) + (एडी + बीसी + बीडी)φ)।

इसलिए, केवल पूर्णांक मानों का उपयोग करके, हम (a + bφ) रूप की संख्याओं को जोड़, घटा और गुणा कर सकते हैं, और यहां तक ​​कि φ के सकारात्मक और नकारात्मक पूर्णांक घातांक का भी प्रतिनिधित्व कर सकते हैं।

(ए + बीφ) > (सी + डीφ) यदि और केवल यदि 2(ए - सी) - (डी - बी) > (डी - बी) × 5. यदि पक्ष नकारात्मक है और दूसरा सकारात्मक, तो तुलना तुच्छ है। अन्यथा, पूर्णांक तुलना प्राप्त करने के लिए दोनों पक्षों को वर्गाकार करें, यदि दोनों पक्ष नकारात्मक हों तो तुलना दिशा को उलट दें। वर्ग (बीजगणित) पर दोनों तरफ, 5 को पूर्णांक 5 से प्रतिस्थापित किया जाता है।

इसलिए, केवल पूर्णांक मानों का उपयोग करके, हम (a + bφ) रूप की संख्याओं की तुलना भी कर सकते हैं।

  1. एक पूर्णांक x को आधार-φ संख्या में बदलने के लिए, ध्यान दें कि x = (x + 0φ)।
  2. हमारी नई संख्या प्राप्त करने के लिए, φ की उच्चतम शक्ति को घटाएं, जो अभी भी हमारे पास मौजूद संख्या से छोटी है, और परिणामी आधार-φ संख्या में उचित स्थान पर 1 दर्ज करें।
  3. जब तक हमारा नंबर 0 न हो, चरण 2 पर जाएं.
  4. खत्म।

उपरोक्त प्रक्रिया का परिणाम अनुक्रम 11 में कभी नहीं होगा, क्योंकि 11φ = 100φ, इसलिए 11 प्राप्त करने का मतलब होगा कि हम अनुक्रम 11 से पहले 1 से चूक गए।

प्रारंभ करें, उदाहरण के लिए, पूर्णांक = 5 से, अब तक का परिणाम ...00000.00000...φ φ ≤ 5 की उच्चतम शक्ति φ है3 = 1 + 2φ ≈ 4.236067977

इसे 5 से घटाने पर, हमें 5 - (1 + 2φ) = 4 - 2φ ≈ 0.763932023... प्राप्त होता है, अब तक परिणाम 1000.00000 है...φ φ ≤ 4 - 2φ ≈ 0.763932023... की उच्चतम शक्ति φ है−1 = −1 + 1φ ≈ 0.618033989...

इसे 4 − 2φ ≈ 0.763932023... से घटाने पर, हमारे पास 4 − 2φ − (−1 + 1φ) = 5 − 3φ ≈ 0.145898034... है, अब तक परिणाम 1000.10000 है...φ φ ≤ 5 − 3φ ≈ 0.145898034... की उच्चतम शक्ति φ है−4 = 5 − 3φ ≈ 0.145898034...

इसे 5 − 3φ ≈ 0.145898034... से घटाने पर, हमारे पास 5 − 3φ − (5 − 3φ) = 0 + 0φ = 0 है, जिसका अंतिम परिणाम 1000.1001 हैφ.

गैर-विशिष्टता

किसी भी आधार-एन प्रणाली की तरह, समाप्ति प्रतिनिधित्व वाली संख्याओं का वैकल्पिक आवर्ती प्रतिनिधित्व होता है। आधार-10 में, यह इस अवलोकन पर निर्भर करता है कि 0.999...|0.999...=1। आधार-φ में, अंक 0.1010101... को कई तरीकों से 1 के बराबर देखा जा सकता है:

  • अमानक रूप में रूपांतरण: 1 = 0.11φ = 0.1011φ = 0.101011φ = ... = 0.10101010....φ
  • ज्यामितीय श्रृंखला: 1.0101010...φ के बराबर है
  • पालियों के बीच अंतर: φ2x − x = 10.101010...φ − 0.101010...φ = 10φ = φ ताकि x = φ/φ2 − 1=1

यह गैर-विशिष्टता अंकन प्रणाली की विशेषता है, क्योंकि 1.0000 और 0.101010... दोनों मानक रूप में हैं।

सामान्य तौर पर, आधार-φ में किसी भी संख्या के अंतिम 1 को उस संख्या के मान को बदले बिना आवर्ती 01 से बदला जा सकता है।

तर्कसंगत संख्याओं को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना

प्रत्येक गैर-नकारात्मक परिमेय संख्या को आवर्ती आधार-φ विस्तार के रूप में दर्शाया जा सकता है, जैसा कि क्षेत्र (गणित) के किसी भी गैर-नकारात्मक तत्व Q[5] = क्यू + 5Q, परिमेय संख्याओं और 5 के वर्गमूल द्वारा उत्पन्न क्षेत्र|5. इसके विपरीत कोई भी आवर्ती (या समाप्ति) आधार-φ विस्तार Q का गैर-नकारात्मक तत्व है [5]. आवर्ती दशमलव के लिए, आवर्ती भाग को रेखांकित किया गया है:

  • 1/2 ≈ 0.010φ
  • 1/3 ≈ 0.00101000φ
  • 5 = 10.1φ
  • 2 + 5/13 ≈ 10.0101000100010101000100010001000000φ

यह औचित्य कि परिमेय आवर्ती विस्तार देता है, आधार-एन अंकन प्रणाली (एन = 2,3,4,...) के लिए समतुल्य प्रमाण के अनुरूप है। अनिवार्य रूप से आधार-φ लंबे विभाजन में संभावित शेषफलों की केवल सीमित संख्या होती है, और इसलिए बार आवर्ती पैटर्न होना चाहिए। उदाहरण के लिए, साथ 1/2 = 1/10.01φ = 100φ/1001φ लंबा विभाजन इस तरह दिखता है (ध्यान दें कि आधार-φ घटाव का पालन करना पहली बार में कठिन हो सकता है): <पूर्व>

               .0 1 0 0 1
        ________________________
1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0
            1 0 0 1 व्यापार: 10000 = 1100 = 1011
            ------- तो 10000 - 1001 = 1011 - 1001 = 10
                1 0 0 0 0
                  1 0 0 1
                  -------
                      वगैरह।

</पूर्व> इसका विपरीत भी सत्य है, जिसमें आवर्ती आधार वाली संख्या-φ; प्रतिनिधित्व क्षेत्र का तत्व है Q[5]. यह अवलोकन से पता चलता है कि अवधि k के साथ आवर्ती प्रतिनिधित्व में अनुपात φ के साथ ज्यामितीय श्रृंखला शामिल होती है−k, जो Q के तत्व का योग होगा[5].

नोट की अपरिमेय संख्याओं को स्वर्णिम अनुपात आधार संख्याओं के रूप में प्रस्तुत करना

कुछ दिलचस्प संख्याओं का आधार-φ निरूपण:

  • पाई|π ≈ 100.0100 1010 1001 0001 0101 0100 0001 0100 ...φ (sequence A102243 in the OEIS)
  • e ≈ 100.0000 1000 0100 1000 0000 0100 ...φ (sequence A105165 in the OEIS)
  • 2 का वर्गमूल|2 ≈ 1.0100 0001 0100 1010 0100 0000 0101 0000 0000 0101 ...φ
  • सुनहरा अनुपात|φ = 1+5/2 = 10φ
  • 5 = 10.1φ


जोड़, घटाव, और गुणा

बेस-10 अंकगणित के सभी मानक एल्गोरिदम को बेस-φ अंकगणित में अनुकूलित करना संभव है। इसके दो दृष्टिकोण हैं:

गणना करें, फिर मानक रूप में बदलें

दो आधार-φ संख्याओं को जोड़ने के लिए, अंकों के प्रत्येक जोड़े को बिना किसी कैरी के जोड़ें, और फिर अंक को मानक रूप में परिवर्तित करें। घटाने के लिए, अंकों के प्रत्येक जोड़े को बिना उधार के घटाएं (उधार लेना ऋणात्मक राशि है), और फिर अंक को मानक रूप में परिवर्तित करें। गुणन के लिए, सामान्य आधार-10 तरीके से, बिना किसी कैरी के गुणा करें, फिर अंक को मानक रूप में बदलें।

उदाहरण के लिए,

  • 2 + 3 = 10.01 + 100.01 = 110.02 = 110.1001 = 1000.1001
  • 2 × 3 = 10.01 × 100.01 = 1000.1 + 1.0001 = 1001.1001 = 1010.0001
  • 7 − 2 = 10000.0001 − 10.01 = 10010.0101 = 1110.0101 = 1001.0 101 = 1000.1001

===0 और 1=== के अलावा अन्य अंकों से बचें एक अधिक मूल तरीका यह है कि अंकों को 1+1 जोड़ने या 0-1 घटाने से बचा जाए। यह ऑपरेंड को गैर-मानक रूप में पुनर्गठित करके किया जाता है ताकि ये संयोजन न हों। उदाहरण के लिए,

  • 2 + 3 = 10.01 + 100.01 = 10.01 + 100.0011 = 110.0111 = 1000.1001
  • 7 − 2 = 10000.0001 − 10.01 = 1100.0001 − 10.01 = 1011.0001 − 10.01 = 1010.1101 − 10.01 = 1000.1001

यहां देखा गया घटाव, घटाव के लिए मानक ट्रेडिंग एल्गोरिदम के संशोधित रूप का उपयोग करता है।

विभाजन

किसी भी गैर-पूर्णांक परिमेय संख्या को परिमित सेट आधार-φ संख्या के रूप में प्रस्तुत नहीं किया जा सकता है। दूसरे शब्दों में, सभी अंतिम रूप से निरूपित करने योग्य आधार-φ संख्याएँ या तो पूर्णांक हैं या (अधिक संभावना है) द्विघात क्षेत्र Q में अपरिमेय संख्या हैं[5]. दीर्घ विभाजन में संभावित शेषफलों की केवल सीमित संख्या होने के कारण, दो पूर्णांकों (या परिमित आधार-φ निरूपण वाली अन्य संख्याओं) के विभाजन में आवर्ती विस्तार होगा, जैसा कि ऊपर दिखाया गया है।

फाइबोनैचि कोडिंग के साथ संबंध

फाइबोनैचि कोडिंग पूर्णांकों के लिए उपयोग की जाने वाली निकट से संबंधित अंकन प्रणाली है। इस प्रणाली में, केवल अंक 0 और 1 का उपयोग किया जाता है और अंकों का स्थानीय मान फाइबोनैचि संख्याएं हैं। बेस-φ की तरह, फाइबोनैचि पुनरावृत्ति संबंध F का उपयोग करके, अंक अनुक्रम 11 को मानक रूप में पुनर्व्यवस्थित करने से बचा जाता है।k+1 = एफk + एफk−1. उदाहरण के लिए,

30 = 1×21 + 0×13 + 1×8 + 0×5 + 0×3 + 0×2 + 1×1 + 0×1 = 10100010fib.

व्यावहारिक उपयोग

बेस-φ अंकगणित को फाइबोनैचि संख्याओं के सामान्यीकरण के साथ मिलाना संभव है। सामान्य फाइबोनैचि पूर्णांक अनुक्रम में संख्याओं का योग जो आधार-φ संख्या में गैर-शून्य अंकों के अनुरूप होता है, आधार-φ संख्या और अनुक्रम में शून्य-स्थान पर तत्व का गुणन होता है। उदाहरण के लिए:

  • उत्पाद 10 (10100.0101 आधार-φ) और 25 (शून्य स्थिति) = 5 + 10 + 65 + 170 = 250
    आधार-φ: 1 0 1 0 0. 0 1 0 1
    आंशिक अनुक्रम: ... 5 5 10 15 25 40 65 105 170 275 445 720 1165 ...
  • उत्पाद 10 (10100.0101 आधार-φ) और 65 (शून्य स्थिति) = 10 + 25 + 170 + 445 = 650
    आधार-φ: 1 0 1 0 0. 0 1 0 1
    आंशिक अनुक्रम: ... 5 5 10 15 25 40 65 105 170 275 445 720 1165 ...

यह भी देखें

  • बीटा एनकोडर - मूल रूप से गोल्डन रेशियो बेस का उपयोग किया जाता है
  • ओस्ट्रोवस्की अंकन

टिप्पणियाँ


संदर्भ

  • Bergman, George (1957). "A Number System with an Irrational Base". Mathematics Magazine. 31 (2): 98–110. doi:10.2307/3029218. JSTOR 3029218.
  • Eggan, L. C.; vanden Eynden, C. L. (1966). "Decimal expansions to nonintegral bases". Amer. Math. Monthly. 73 (73): 576–582. doi:10.2307/2314786. JSTOR 2314786.
  • Plojhar, Jozef (1971). "The Good natured Rabbit breeder". Manifold. 11: 26–30.


बाहरी संबंध