भाजक (बीजगणितीय ज्यामिति): Difference between revisions
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
जो सीमित राशि है। (f) रूप के भाजक को ''''मुख्य भाजक'''<nowiki/>' भी कहा जाता है। चूँकि (fg) = (f) + (g), प्रमुख भाजक का समुच्चय भाजक के समूह का उपसमूह है। दो भाजक जो मुख्य भाजक से भिन्न होते हैं उन्हें ''''रैखिक समतुल्य'''<nowiki/>' कहा जाता है। | जो सीमित राशि है। (f) रूप के भाजक को ''''मुख्य भाजक'''<nowiki/>' भी कहा जाता है। चूँकि (fg) = (f) + (g), प्रमुख भाजक का समुच्चय भाजक के समूह का उपसमूह है। दो भाजक जो मुख्य भाजक से भिन्न होते हैं उन्हें ''''रैखिक समतुल्य'''<nowiki/>' कहा जाता है। | ||
सघन रीमैन सतह पर, मुख्य भाजक की डिग्री शून्य होती है; अर्थात्, मेरोमॉर्फिक फलन के शून्यों की संख्या बहुलता के साथ | सघन रीमैन सतह पर, मुख्य भाजक की डिग्री शून्य होती है; अर्थात्, मेरोमॉर्फिक फलन के शून्यों की संख्या बहुलता के साथ गणना किये जाने वाले ध्रुवों की संख्या के समान होती है। परिणामस्वरूप, विभाजक के रैखिक तुल्यता वर्गों पर डिग्री उचित प्रकार से परिभाषित होती है। | ||
सघन रीमैन सतह | सघन रीमैन सतह D से संबंधित 'लाइन बंडल के अनुभागों का स्थान' है। D की डिग्री इस सदिश समिष्ट के आयाम के विषय में बहुत कुछ कहती है। उदाहरण के लिए, यदि D की डिग्री ऋणात्मक है, तो इसकी सदिश समष्टि शून्य है (क्योंकि मेरोमोर्फिक फलन में ध्रुवों से अधिक शून्य नहीं हो सकते हैं)। यदि D की धनात्मक डिग्री है, तो H<sup>0</sup>(X, O(mD)) का आयाम m के लिए पर्याप्त रूप से बड़े होने पर रैखिक रूप से बढ़ता है। रीमैन-रोच प्रमेय इन पंक्तियों के साथ अधिक त्रुटिहीन कथन है। दूसरी ओर, निम्न डिग्री के विभाजक D के लिए H<sup>0</sup>(X, O(D)) का त्रुटिहीन आयाम सूक्ष्म है, और D की डिग्री द्वारा पूर्ण रूप से निर्धारित नहीं होता है। सघन रीमैन सतह की विशिष्ट विशेषताएं इन आयामों में परिलक्षित होती हैं। | ||
सघन रीमैन सतह पर | सघन रीमैन सतह पर प्रमुख विभाजक विहित विभाजक है। इसे परिभाषित करने के लिए, सबसे पूर्व उपरोक्त पंक्तियों के साथ गैर-शून्य मेरोमोर्फिक 1-रूप के विभाजक को परिभाषित किया जाता है। चूँकि मेरोमोर्फिक [[1-रूप|1-रूपों]] की समिष्ट मेरोमोर्फिक कार्यों के क्षेत्र पर 1-आयामी सदिश समिष्ट है, कोई भी दो गैर-शून्य मेरोमोर्फिक 1-रूप रैखिक रूप से समतुल्य विभाजक उत्पन्न करते हैं। इस रैखिक तुल्यता वर्ग में किसी भी भाजक को X, K<sub>''X''</sub> का '[[विहित भाजक]]' कहा जाता है। X के [[जीनस (गणित)|जीनस]] g को विहित विभाजक से पढ़ा जा सकता है: अर्थात्, K<sub>''X''</sub> की डिग्री 2g - 2 है। सघन रीमैन सतहों X के मध्य मुख्य ट्राइकोटॉमी यह है कि क्या विहित विभाजक में नकारात्मक डिग्री है (इसलिए X में जीनस शून्य है), शून्य डिग्री (जीनस) एक), या धनात्मक डिग्री (जीनस कम से कम 2)। उदाहरण के लिए, यह निर्धारित करता है कि क्या X के निकट धनात्मक [[अनुभागीय वक्रता|वक्रता]], शून्य वक्रता, या नकारात्मक वक्रता वाला काहलर मीट्रिक है। विहित विभाजक की डिग्री ऋणात्मक है यदि और केवल X [[रीमैन क्षेत्र]] CP<sup>1</sup> के लिए समरूपी है। | ||
==वेइल विभाजक== | ==वेइल विभाजक== | ||
मान लीजिए कि X | मान लीजिए कि X [[अभिन्न योजना|अभिन्न स्थानीय नोथेरियन योजना]] है। X पर '<nowiki/>'''अभाज्य विभाजक'''<nowiki/>' या ''''अपरिवर्तनीय विभाजक'''<nowiki/>' X में कोडिमेशन 1 का अभिन्न विवृत उपयोजना Z है। X पर '''वेइल विभाजक''', X के अभाज्य भाजक Z पर औपचारिक योग है: | ||
:<math>\sum_Z n_Z Z,</math> | :<math>\sum_Z n_Z Z,</math> | ||
जहां संग्रह <math>\{Z : n_Z \neq 0\}</math> स्थानीय रूप से सीमित | जहां संग्रह <math>\{Z : n_Z \neq 0\}</math> स्थानीय रूप से सीमित है। यदि X अर्ध-सघन है, तो स्थानीय परिमितता इसके समान है <math>\{Z : n_Z \neq 0\}</math> परिमित होता है। सभी वेइल विभाजकों के समूह को {{math|Div(''X'')}} द्वारा दर्शाया गया है। यदि सभी गुणांक गैर-ऋणात्मक हैं तो वेइल विभाजक D ''''प्रभावी'''<nowiki/>' है। यदि अंतर {{math|''D'' − ''D′''}} प्रभावी है तो {{math|''D'' ≥ ''D′''}} लिखा जाता है। | ||
उदाहरण के लिए, किसी क्षेत्र के बीजगणितीय वक्र पर | उदाहरण के लिए, किसी क्षेत्र के बीजगणितीय वक्र पर विभाजक सीमित रूप से कई विवृत बिंदुओं का औपचारिक योग होता है। {{math|Spec '''Z'''}} पर भाजक पूर्णांक गुणांक के साथ अभाज्य संख्याओं का औपचारिक योग है और इसलिए Q में गैर-शून्य भिन्नात्मक आदर्श से युग्मित होता है। समान लक्षण वर्णन भाजक <math>\operatorname{Spec} \mathcal{O}_K</math> के लिए सत्य है, जहाँ K संख्या क्षेत्र है। | ||
यदि Z ⊂ X | यदि Z ⊂ X अभाज्य भाजक है, तो स्थानीय वलय <math>\mathcal{O}_{X,Z}</math> में [[क्रुल आयाम]] है। यदि <math>f \in \mathcal{O}_{X,Z}</math> गैर-शून्य है, तो ''Z'' के साथ f के लुप्त होने का क्रम, जिसे {{math|ord<sub>''Z''</sub>(''f'')}} लिखा जाता है, [[एक मॉड्यूल की लंबाई|मॉड्यूल की लंबाई]] <math>\mathcal{O}_{X,Z}/(f)</math> है यह लंबाई सीमित है,<ref>{{Citation | title=Stacks Project, Tag 00PF | url=http://stacks.math.columbia.edu/tag/00PF}}.</ref> और यह गुणन के संबंध में योगात्मक है, अर्थात, {{math|1=ord<sub>''Z''</sub>(''fg'') = ord<sub>''Z''</sub>(''f'') + ord<sub>''Z''</sub>(''g'')}} है।<ref>{{Citation | title=Stacks Project, Tag 02MC | url=http://stacks.math.columbia.edu/tag/02MC}}.</ref> यदि k(X) X पर तर्कसंगत कार्यों का क्षेत्र है, तो किसी भी गैर-शून्य {{math|''f'' ∈ ''k''(''X'')}} को भागफल {{math|''g'' / ''h''}} के रूप में लिखा जा सकता है, जहां g और h हैं <math>\mathcal{O}_{X,Z},</math> और f के लुप्त होने के क्रम को {{math|ord<sub>''Z''</sub>(''g'') − ord<sub>''Z''</sub>(''h'')}} के रूप में परिभाषित किया गया है।<ref>{{Citation | title=Stacks Project, Tag 02MD | url=http://stacks.math.columbia.edu/tag/02MD}}.</ref> इस परिभाषा के साथ, लुप्त होने का क्रम फलन {{math|ord<sub>''Z''</sub> : ''k''(''X'')<sup>×</sup> → '''Z'''}} है। यदि X [[सामान्य योजना|सामान्य]] है, तो स्थानीय वलय <math>\mathcal{O}_{X,Z}</math> भिन्न मूल्यांकन वलय और फलन {{math|ord<sub>''Z''</sub>}} संबंधित मूल्यांकन है। X पर गैर-शून्य तर्कसंगत फलन f के लिए, f से जुड़े ''''प्रमुख वेइल विभाजक'''<nowiki/>' को वेइल विभाजक के रूप में परिभाषित किया गया है: | ||
:<math>\operatorname{div} f = \sum_Z \operatorname{ord}_Z(f) Z.</math> | :<math>\operatorname{div} f = \sum_Z \operatorname{ord}_Z(f) Z.</math> | ||
यह दिखाया जा सकता है कि यह योग स्थानीय रूप से सीमित है और इसलिए यह वास्तव में | यह दिखाया जा सकता है कि यह योग स्थानीय रूप से सीमित है और इसलिए यह वास्तव में वेइल विभाजक को परिभाषित करता है। f से जुड़े प्रमुख वेइल विभाजक {{math|(''f'')}} को भी नोट किया गया है। यदि f नियमित फलन है, तो इसका प्रमुख वेइल विभाजक प्रभावी है, किन्तु सामान्यतः यह सत्य नहीं है। लुप्त होने वाले फलन के क्रम की योज्यता का तात्पर्य यह है: | ||
:<math>\operatorname{div} fg = \operatorname{div} f + \operatorname{div} g.</math> | :<math>\operatorname{div} fg = \operatorname{div} f + \operatorname{div} g.</math> | ||
परिणामस्वरूप {{math|div}} समरूपता है, और विशेष रूप से इसकी छवि सभी वेइल विभाजकों के समूह का उपसमूह है। | |||
मान लीजिए कि X | मान लीजिए कि X सामान्य इंटीग्रल नॉथेरियन योजना है। प्रत्येक वेइल विभाजक D [[सुसंगत शीफ]] <math>\mathcal{O}_X(D)</math> ''X'' पर निर्धारित करता है। ठोस रूप से इसे तर्कसंगत कार्यों के शीफ के उपशीर्षक के रूप में परिभाषित किया जा सकता है।<ref name="K1.2">Kollár (2013), Notation 1.2.</ref> | ||
:<math>\Gamma(U, \mathcal{O}_X(D)) = \{ f \in k(X) : f = 0 \text{ or } \operatorname{div}(f) + D \ge 0 \text{ on } U \}.</math> | :<math>\Gamma(U, \mathcal{O}_X(D)) = \{ f \in k(X) : f = 0 \text{ or } \operatorname{div}(f) + D \ge 0 \text{ on } U \}.</math> | ||
अर्थात्, | अर्थात्, शून्येतर परिमेय फलन f का भाग है <math>\mathcal{O}_X(D)</math> U से अधिक यदि और केवल किसी अभाज्य भाजक Z के लिए जो U को प्रतिच्छेद करता है, | ||
:<math>\operatorname{ord}_Z(f) \ge -n_Z</math> | :<math>\operatorname{ord}_Z(f) \ge -n_Z</math> | ||
जहां ''n''<sub>Z</sub> D में Z का गुणांक है। यदि D प्रमुख है, इसलिए D परिमेय फलन g का विभाजक है, तो समरूपता है: | |||
:<math>\begin{cases} \mathcal{O}(D) \to \mathcal{O}_X \\ f \mapsto fg \end{cases}</math> तब से <math>\operatorname{div}(fg)</math> प्रभावी विभाजक | :<math>\begin{cases} \mathcal{O}(D) \to \mathcal{O}_X \\ f \mapsto fg \end{cases}</math> | ||
:तब से <math>\operatorname{div}(fg)</math> प्रभावी विभाजक <math>fg</math> है और इसलिए X की सामान्यता के कारण नियमित है। इसके विपरीत, यदि <math>\mathcal{O}(D)</math> समरूपी है <math>\mathcal{O}_X</math> के रूप में <math>\mathcal{O}_X</math>-मॉड्यूल, तो D प्रमुख है। इसका तात्पर्य यह है कि D स्थानीय रूप से प्रमुख है यदि और केवल <math>\mathcal{O}(D)</math> विपरीत है; अर्थात लाइन बंडल है। | |||
यदि D | यदि D प्रभावी भाजक है तो <math>\mathcal{O}(-D)</math> से प्रायः उपयोग किया जाने वाला संक्षिप्त त्रुटिहीनअनुक्रम प्राप्त होता है, | ||
:<math>0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0.</math> | :<math>0 \to \mathcal{O}_X(-D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0.</math> | ||
इस क्रम की शीफ सहसंरचना यह दर्शाती है <math>H^1(X, \mathcal{O}_X(-D))</math> | इस क्रम की शीफ सहसंरचना यह दर्शाती है <math>H^1(X, \mathcal{O}_X(-D))</math> में यह सूचना सम्मिलित है कि क्या D पर नियमित कार्य X पर नियमित कार्य के प्रतिबंध हैं। | ||
इसमें | इसमें समूहों का भी समावेश है: | ||
:<math>0 \to \mathcal{O}_X \to \mathcal{O}_X(D).</math> | :<math>0 \to \mathcal{O}_X \to \mathcal{O}_X(D).</math> | ||
यह | यह विहित तत्व <math>\Gamma(X, \mathcal{O}_X(D))</math> प्रस्तुत करता है, अर्थात्, वैश्विक भाग 1 की छवि है। इसे विहित अनुभाग कहा जाता है और इसे ''s''<sub>D</sub> से दर्शाया जा सकता है। जबकि विहित अनुभाग कहीं लुप्त न होने वाले तर्कसंगत फलन की छवि है, इसकी छवि <math>\mathcal{O}(D)</math> D के साथ लुप्त हो जाता है क्योंकि संक्रमण फलन D के साथ लुप्त हो जाते हैं। जब D सुचारु कार्टियर विभाजक होता है, तो उपरोक्त समावेशन के कोकर्नेल की पहचान की जा सकती है; नीचे कार्टियर विभाजक देखें। | ||
मान लें कि | मान लें कि X क्षेत्र पर परिमित प्रकार की सामान्य अभिन्न पृथक योजना है। मान लीजिए D वेइल विभाजक है। तब <math>\mathcal{O}(D)</math> श्रेणी वन [[रिफ्लेक्सिव शीफ]] है, और तब से <math>\mathcal{O}(D)</math> के उपशीर्षक के रूप में परिभाषित किया गया है। <math>\mathcal{M}_X</math> यह भिन्नात्मक आदर्श शीफ है (नीचे देखें)। इसके विपरीत, प्रत्येक श्रेणी रिफ्लेक्सिव शीफ वेइल विभाजक से युग्मित होती है: शीफ को नियमित लोकस तक सीमित किया जा सकता है, जहां यह मुक्त हो जाता है और इसलिए कार्टियर विभाजक से युग्मित होता है (पुनः, नीचे देखें), और क्योंकि एकवचन लोकस में कम से कम दो कोडिमेंशन होता है, कार्टियर विभाजक का विवृत होना वेइल विभाजक है। | ||
== भाजक वर्ग समूह == | == भाजक वर्ग समूह == | ||
Line 72: | Line 73: | ||
=== उदाहरण === | === उदाहरण === | ||
* मान लीजिए k फ़ील्ड है, और मान लीजिए n धनात्मक पूर्णांक है। चूँकि बहुपद वलय k[x<sub>1</sub>, ..., ्स<sub>n</sub>] अद्वितीय गुणनखंडन डोमेन है, एफ़िन स्पेस 'ए' का विभाजक वर्ग समूह<sup>n</sup>k से अधिक शून्य के | * मान लीजिए k फ़ील्ड है, और मान लीजिए n धनात्मक पूर्णांक है। चूँकि बहुपद वलय k[x<sub>1</sub>, ..., ्स<sub>n</sub>] अद्वितीय गुणनखंडन डोमेन है, एफ़िन स्पेस 'ए' का विभाजक वर्ग समूह<sup>n</sup>k से अधिक शून्य के समानहै।<ref name=H6.2/>चूँकि प्रक्षेप्य स्थान P<sup>n</sup>k से अधिक हाइपरप्लेन H, 'A' के समरूपी है<sup>n</sup>, इससे यह निष्कर्ष निकलता है कि 'P' का विभाजक वर्ग समूह<sup>n</sup> H के वर्ग द्वारा उत्पन्न होता है। वहां से, यह जांचना सीधा है कि Cl('P'<sup>n</sup>) वास्तव में H द्वारा उत्पन्न पूर्णांक 'Z' के समरूपी है। सीधे तौर पर, इसका मतलब है कि 'P' का प्रत्येक कोडिमेशन-1 सबवेरिटी<sup>n</sup> को ल सजातीय बहुपद के लुप्त होने से परिभाषित किया गया है। | ||
* मान लीजिए कि X फ़ील्ड k पर बीजगणितीय वक्र है। ्स में प्रत्येक बंद बिंदु पी में के के कुछ परिमित विस्तार क्षेत्र ई के लिए स्पेक ई का रूप है, और पी की 'डिग्री' को के के ऊपर ई के क्षेत्र विस्तार की डिग्री के रूप में परिभाषित किया गया है। इसे रैखिकता द्वारा विस्तारित करने से X पर भाजक के लिए 'डिग्री' की धारणा मिलती है। यदि X, k पर प्रक्षेप्य विविधता वक्र है, तो X पर गैर-शून्य तर्कसंगत फलन f के भाजक की डिग्री शून्य है।<ref>{{Citation | title=Stacks Project, Tag 02RS | url=http://stacks.math.columbia.edu/tag/02RS}}.</ref> परिणामस्वरूप, प्रक्षेप्य वक्र X के लिए, डिग्री समरूपता डिग्री देती है: Cl(X) → 'Z'। | * मान लीजिए कि X फ़ील्ड k पर बीजगणितीय वक्र है। ्स में प्रत्येक बंद बिंदु पी में के के कुछ परिमित विस्तार क्षेत्र ई के लिए स्पेक ई का रूप है, और पी की 'डिग्री' को के के ऊपर ई के क्षेत्र विस्तार की डिग्री के रूप में परिभाषित किया गया है। इसे रैखिकता द्वारा विस्तारित करने से X पर भाजक के लिए 'डिग्री' की धारणा मिलती है। यदि X, k पर प्रक्षेप्य विविधता वक्र है, तो X पर गैर-शून्य तर्कसंगत फलन f के भाजक की डिग्री शून्य है।<ref>{{Citation | title=Stacks Project, Tag 02RS | url=http://stacks.math.columbia.edu/tag/02RS}}.</ref> परिणामस्वरूप, प्रक्षेप्य वक्र X के लिए, डिग्री समरूपता डिग्री देती है: Cl(X) → 'Z'। | ||
* प्रक्षेप्य रेखा 'पी' के लिए<sup>1</sup> फ़ील्ड k पर, डिग्री समरूपता सीएल('पी') देती है<sup>1</sup>) ≅ Z. ''k''-[[तर्कसंगत बिंदु]] के साथ किसी भी चिकने प्रक्षेप्य वक्र ''X'' के लिए, डिग्री समरूपता विशेषण है, और कर्नेल ''k'' के समूह के लिए समरूपी है - ''्स'' की [[जैकोबियन किस्म]] पर बिंदु, जो ''्स'' के जीनस के | * प्रक्षेप्य रेखा 'पी' के लिए<sup>1</sup> फ़ील्ड k पर, डिग्री समरूपता सीएल('पी') देती है<sup>1</sup>) ≅ Z. ''k''-[[तर्कसंगत बिंदु]] के साथ किसी भी चिकने प्रक्षेप्य वक्र ''X'' के लिए, डिग्री समरूपता विशेषण है, और कर्नेल ''k'' के समूह के लिए समरूपी है - ''्स'' की [[जैकोबियन किस्म]] पर बिंदु, जो ''्स'' के जीनस के समानआयाम की [[एबेलियन किस्म]] है। उदाहरण के लिए, यह इस प्रकार है कि जटिल [[अण्डाकार वक्र]] का विभाजक वर्ग समूह [[बेशुमार]] एबेलियन समूह है। | ||
* पिछले उदाहरण को सामान्यीकृत करना: फ़ील्ड ''k'' पर किसी भी सहज प्रक्षेप्य विविधता ''X'' के लिए, जैसे कि ''X'' में ''k''-तर्कसंगत बिंदु है, विभाजक वर्ग समूह सीएल('' X'') जुड़े हुए [[समूह योजना]] के ''k''-बिंदुओं के समूह द्वारा सूक्ष्म रूप से उत्पन्न एबेलियन समूह, नेरॉन-सेवेरी समूह का विस्तार है। <math>\operatorname{Pic}^0_{X/k}.</math><ref>Kleiman (2005), Theorems 2.5 and 5.4, Remark 6.19.</ref> विशेषता शून्य के k के लिए, <math>\operatorname{Pic}^0_{X/k}</math> एबेलियन किस्म है, ्स की [[पिकार्ड किस्म]]। | * पिछले उदाहरण को सामान्यीकृत करना: फ़ील्ड ''k'' पर किसी भी सहज प्रक्षेप्य विविधता ''X'' के लिए, जैसे कि ''X'' में ''k''-तर्कसंगत बिंदु है, विभाजक वर्ग समूह सीएल('' X'') जुड़े हुए [[समूह योजना]] के ''k''-बिंदुओं के समूह द्वारा सूक्ष्म रूप से उत्पन्न एबेलियन समूह, नेरॉन-सेवेरी समूह का विस्तार है। <math>\operatorname{Pic}^0_{X/k}.</math><ref>Kleiman (2005), Theorems 2.5 and 5.4, Remark 6.19.</ref> विशेषता शून्य के k के लिए, <math>\operatorname{Pic}^0_{X/k}</math> एबेलियन किस्म है, ्स की [[पिकार्ड किस्म]]। | ||
Line 95: | Line 96: | ||
:<math>\omega = { dy_1 \over y_1 } \wedge \dots \wedge {dy_n \over y_n}.</math> | :<math>\omega = { dy_1 \over y_1 } \wedge \dots \wedge {dy_n \over y_n}.</math> | ||
तब ω यू पर तर्कसंगत अंतर रूप है; इस प्रकार, यह का तर्कसंगत | तब ω यू पर तर्कसंगत अंतर रूप है; इस प्रकार, यह का तर्कसंगत भागहै <math>\Omega^n_{\mathbf{P}^n}</math> जिसमें Z के अनुदिश सरल ध्रुव हैं<sub>i</sub>= {्स<sub>i</sub>= 0}, मैं = 1, ..., एन. अलग एफ़िन चार्ट पर स्विच करने से केवल ω का चिह्न बदलता है और इसलिए हम देखते हैं कि ω में Z के साथ सरल ध्रुव है<sub>0</sub> भी। इस प्रकार, ω का भाजक है | ||
:<math>\operatorname{div}(\omega) = -Z_0 - \dots - Z_n</math> | :<math>\operatorname{div}(\omega) = -Z_0 - \dots - Z_n</math> | ||
Line 107: | Line 108: | ||
:<math>0 \to \mathcal{O}_X^\times \to \mathcal{M}_X^\times \to \mathcal{M}_X^\times / \mathcal{O}_X^\times \to 0.</math> | :<math>0 \to \mathcal{O}_X^\times \to \mathcal{M}_X^\times \to \mathcal{M}_X^\times / \mathcal{O}_X^\times \to 0.</math> | ||
''X'' पर कार्टियर विभाजक वैश्विक | ''X'' पर कार्टियर विभाजक वैश्विक भागहै <math>\mathcal{M}_X^\times / \mathcal{O}_X^\times.</math> समतुल्य विवरण यह है कि कार्टियर विभाजक संग्रह है <math>\{(U_i, f_i)\},</math> कहाँ <math>\{U_i\}</math> का खुला आवरण है <math>X, f_i</math> का भाग है <math>\mathcal M_X^\times</math> पर <math>U_i,</math> और <math>f_i=f_j</math> पर <math>U_i \cap U_j</math> के भाग से गुणा तक <math>\mathcal O_X^\times.</math> | ||
कार्टियर विभाजक में शीफ-सैद्धांतिक विवरण भी होता है। भिन्नात्मक आदर्श शीफ उप- है<math>\mathcal O_X</math>-मॉड्यूल का <math>\mathcal{M}_X.</math> भिन्नात्मक आदर्श शीफ़ J 'उलटा' है यदि, X में प्रत्येक x के लिए, x का खुला पड़ोस U मौजूद है जिस पर J से U का प्रतिबंध | कार्टियर विभाजक में शीफ-सैद्धांतिक विवरण भी होता है। भिन्नात्मक आदर्श शीफ उप- है<math>\mathcal O_X</math>-मॉड्यूल का <math>\mathcal{M}_X.</math> भिन्नात्मक आदर्श शीफ़ J 'उलटा' है यदि, X में प्रत्येक x के लिए, x का खुला पड़ोस U मौजूद है जिस पर J से U का प्रतिबंध समानहै <math>\mathcal{O}_U \cdot f,</math> कहाँ <math>f \in \mathcal{M}_X^{\times}(U)</math> और उत्पाद अंदर ले लिया जाता है <math>\mathcal{M}_X.</math> प्रत्येक कार्टियर विभाजक संग्रह के रूप में कार्टियर विभाजक के विवरण का उपयोग करके उलटा भिन्नात्मक आदर्श शीफ को परिभाषित करता है <math>\{(U_i, f_i)\},</math> और इसके विपरीत, व्युत्क्रमणीय भिन्नात्मक आदर्श शीव्स कार्टियर विभाजक को परिभाषित करते हैं। यदि कार्टियर विभाजक को डी निरूपित किया जाता है, तो संबंधित भिन्नात्मक आदर्श शीफ को निरूपित किया जाता है <math>\mathcal{O}(D)</math> या एल(डी). | ||
उपरोक्त सटीक अनुक्रम के अनुसार, शीफ़ कोहोलॉजी समूहों का सटीक अनुक्रम है: | उपरोक्त सटीक अनुक्रम के अनुसार, शीफ़ कोहोलॉजी समूहों का सटीक अनुक्रम है: | ||
Line 160: | Line 161: | ||
प्रथम चेर्न वर्ग के रूप में जाना जाता है।<ref>For a variety ''X'' over a field, the Chern classes of any vector bundle on ''X'' act by [[cap product]] on the Chow groups of ''X'', and the homomorphism here can be described as ''L'' ↦ c<sub>1</sub>(''L'') ∩ [''X''].</ref><ref>{{harvnb|Eisenbud|Harris|2016|loc=§ 1.4.}}</ref> यदि X सामान्य है तो पहला चेर्न वर्ग इंजेक्शन है, और यदि X फैक्टोरियल है (जैसा कि ऊपर परिभाषित है) तो यह समरूपता है। विशेष रूप से, कार्टियर विभाजक को किसी भी नियमित योजना पर वेइल विभाजक के साथ पहचाना जा सकता है, और इसलिए पहला चेर्न वर्ग ्स नियमित के लिए समरूपता है। | प्रथम चेर्न वर्ग के रूप में जाना जाता है।<ref>For a variety ''X'' over a field, the Chern classes of any vector bundle on ''X'' act by [[cap product]] on the Chow groups of ''X'', and the homomorphism here can be described as ''L'' ↦ c<sub>1</sub>(''L'') ∩ [''X''].</ref><ref>{{harvnb|Eisenbud|Harris|2016|loc=§ 1.4.}}</ref> यदि X सामान्य है तो पहला चेर्न वर्ग इंजेक्शन है, और यदि X फैक्टोरियल है (जैसा कि ऊपर परिभाषित है) तो यह समरूपता है। विशेष रूप से, कार्टियर विभाजक को किसी भी नियमित योजना पर वेइल विभाजक के साथ पहचाना जा सकता है, और इसलिए पहला चेर्न वर्ग ्स नियमित के लिए समरूपता है। | ||
स्पष्ट रूप से, प्रथम चेर्न वर्ग को इस प्रकार परिभाषित किया जा सकता है। इंटीग्रल नोथेरियन स्कीम ) परिमेय फलन के भाजक के अनुरूप X पर। तब एल के पहले चेर्न वर्ग को विभाजक के रूप में परिभाषित किया जा सकता है। परिमेय | स्पष्ट रूप से, प्रथम चेर्न वर्ग को इस प्रकार परिभाषित किया जा सकता है। इंटीग्रल नोथेरियन स्कीम ) परिमेय फलन के भाजक के अनुरूप X पर। तब एल के पहले चेर्न वर्ग को विभाजक के रूप में परिभाषित किया जा सकता है। परिमेय भागs को बदलने से यह भाजक रैखिक तुल्यता द्वारा बदल जाता है, क्योंकि (fs) = (f) + (s) गैर-शून्य परिमेय फलन f और L के गैर-शून्य परिमेय भागs के लिए। तो तत्व c<sub>1</sub>(एल) सीएल(्स) में अच्छी तरह से परिभाषित है। | ||
आयाम n की जटिल किस्म | आयाम n की जटिल किस्म | ||
Line 180: | Line 181: | ||
कार्टियर विभाजक प्रभावी होता है यदि इसका स्थानीय परिभाषित कार्य ''f''<sub>''i''</sub> नियमित हो (केवल तर्कसंगत कार्य नहीं)। उस स्थिति में, कार्टियर विभाजक को X में कोडिमेंशन 1 की विवृत उप-योजना के साथ पहचाना जा सकता है, उप-योजना को स्थानीय रूप से f<sub>i</sub> = 0 द्वारा परिभाषित किया गया है। कार्टियर विभाजक D प्रभावी विभाजक के रैखिक रूप से समतुल्य है यदि और केवल इसकी संबद्ध रेखा बंडल हो <math>\mathcal{O}(D)</math> गैर-शून्य वैश्विक अनुभाग है; तब D, s के शून्य बिंदुपथ के रैखिक रूप से समतुल्य है। | कार्टियर विभाजक प्रभावी होता है यदि इसका स्थानीय परिभाषित कार्य ''f''<sub>''i''</sub> नियमित हो (केवल तर्कसंगत कार्य नहीं)। उस स्थिति में, कार्टियर विभाजक को X में कोडिमेंशन 1 की विवृत उप-योजना के साथ पहचाना जा सकता है, उप-योजना को स्थानीय रूप से f<sub>i</sub> = 0 द्वारा परिभाषित किया गया है। कार्टियर विभाजक D प्रभावी विभाजक के रैखिक रूप से समतुल्य है यदि और केवल इसकी संबद्ध रेखा बंडल हो <math>\mathcal{O}(D)</math> गैर-शून्य वैश्विक अनुभाग है; तब D, s के शून्य बिंदुपथ के रैखिक रूप से समतुल्य है। | ||
मान लीजिए कि X फ़ील्ड k पर प्रक्षेप्य किस्म है। फिर वैश्विक | मान लीजिए कि X फ़ील्ड k पर प्रक्षेप्य किस्म है। फिर वैश्विक भागको गुणा करना <math>\mathcal{O}(D)</math> k में शून्येतर अदिश द्वारा इसका शून्य स्थान नहीं बदलता है। परिणामस्वरूप, वैश्विक भागएच के के-वेक्टर स्थान में रेखाओं का प्रक्षेप्य स्थान<sup>0</sup>(X, O(D)) को D के रैखिक रूप से समतुल्य प्रभावी विभाजकों के सेट से पहचाना जा सकता है, जिसे D का 'पूर्ण रैखिक प्रणाली' कहा जाता है। इस प्रक्षेप्य स्थान के प्रक्षेप्य रैखिक उपस्थान को रैखिक प्रणाली कहा जाता है विभाजकों का. | ||
लाइन बंडल के वैश्विक खंडों के स्थान का अध्ययन करने का कारण किसी दिए गए विविधता से लेकर प्रक्षेप्य स्थान तक के संभावित मानचित्रों को समझना है। बीजगणितीय प्रकारों के वर्गीकरण के लिए यह आवश्यक है। स्पष्ट रूप से, विविधता X से प्रक्षेप्य स्थान 'P' तक रूपवाद<sup>n</sup> फ़ील्ड k पर X पर लाइन बंडल L निर्धारित करता है, जो मानक लाइन बंडल का [[पुलबैक बंडल]] है <math>\mathcal{O}(1)</math> पी पर<sup>n</sup>. इसके अतिरिक्त, L n+1 अनुभागों के साथ आता है जिनका [[आधार स्थान]] (उनके शून्य सेटों का प्रतिच्छेदन) खाली है। इसके विपरीत, n+1 वैश्विक खंडों वाला कोई भी लाइन बंडल L जिसका सामान्य आधार स्थान खाली है, रूपवाद X → 'P' निर्धारित करता है<sup>n</sup>.<ref>Hartshorne (1977), Theorem II.7.1.</ref> ये अवलोकन कार्टियर विभाजक (या लाइन बंडल) के लिए सकारात्मकता की कई धारणाओं को जन्म देते हैं, जैसे कि पर्याप्त विभाजक और [[नेफ विभाजक]]।<ref>{{harv|Lazarsfeld|2004|loc=Chapter 1}}</ref> | लाइन बंडल के वैश्विक खंडों के स्थान का अध्ययन करने का कारण किसी दिए गए विविधता से लेकर प्रक्षेप्य स्थान तक के संभावित मानचित्रों को समझना है। बीजगणितीय प्रकारों के वर्गीकरण के लिए यह आवश्यक है। स्पष्ट रूप से, विविधता X से प्रक्षेप्य स्थान 'P' तक रूपवाद<sup>n</sup> फ़ील्ड k पर X पर लाइन बंडल L निर्धारित करता है, जो मानक लाइन बंडल का [[पुलबैक बंडल]] है <math>\mathcal{O}(1)</math> पी पर<sup>n</sup>. इसके अतिरिक्त, L n+1 अनुभागों के साथ आता है जिनका [[आधार स्थान]] (उनके शून्य सेटों का प्रतिच्छेदन) खाली है। इसके विपरीत, n+1 वैश्विक खंडों वाला कोई भी लाइन बंडल L जिसका सामान्य आधार स्थान खाली है, रूपवाद X → 'P' निर्धारित करता है<sup>n</sup>.<ref>Hartshorne (1977), Theorem II.7.1.</ref> ये अवलोकन कार्टियर विभाजक (या लाइन बंडल) के लिए सकारात्मकता की कई धारणाओं को जन्म देते हैं, जैसे कि पर्याप्त विभाजक और [[नेफ विभाजक]]।<ref>{{harv|Lazarsfeld|2004|loc=Chapter 1}}</ref> | ||
Line 188: | Line 189: | ||
== Q-विभाजक == | == Q-विभाजक == | ||
माना कि X सामान्य प्रकार है। (वेइल) '<nowiki/>'''Q'''<nowiki/>'-विभाजक तर्कसंगत गुणांक के साथ X की इरेड्यूसबल कोडिमेंशन-1 उप-विविधता का सीमित औपचारिक रैखिक संयोजन है। ('<nowiki/>'''R'''<nowiki/>'-भाजक को इसी प्रकार परिभाषित किया गया है।) यदि गुणांक गैर-नकारात्मक हैं तो '<nowiki/>'''Q'''<nowiki/>'-विभाजक 'प्रभावी' होता है। यदि mD किसी धनात्मक पूर्णांक m के लिए कार्टियर विभाजक है तो '<nowiki/>'''Q'''<nowiki/>'-विभाजक D ' | माना कि X सामान्य प्रकार है। (वेइल) '<nowiki/>'''Q'''<nowiki/>'-विभाजक तर्कसंगत गुणांक के साथ X की इरेड्यूसबल कोडिमेंशन-1 उप-विविधता का सीमित औपचारिक रैखिक संयोजन है। ('<nowiki/>'''R'''<nowiki/>'-भाजक को इसी प्रकार परिभाषित किया गया है।) यदि गुणांक गैर-नकारात्मक हैं तो '<nowiki/>'''Q'''<nowiki/>'-विभाजक 'प्रभावी' होता है। यदि mD किसी धनात्मक पूर्णांक m के लिए कार्टियर विभाजक है तो '<nowiki/>'''Q'''<nowiki/>'-विभाजक D ''''Q'''-कार्टियर' है। यदि X सुचारू है, तो प्रत्येक ''''Q'''<nowiki/>'-विभाजक ''''Q'''<nowiki/>'-कार्टियर है। | ||
यदि, | यदि, | ||
Line 201: | Line 202: | ||
[[लेफ्शेट्ज़ हाइपरप्लेन प्रमेय]] का तात्पर्य है कि कम से कम 4 आयाम की चिकनी समिष्ट प्रक्षेप्य प्रकार उदाहरण के लिए, यदि Y समिष्ट प्रक्षेप्य में कम से कम 3 आयाम का सहज पूर्ण प्रतिच्छेदन प्रकार है, तो Y का पिकार्ड समूह 'Z' के समरूपी है, जो प्रक्षेप्य समिष्ट पर लाइन बंडल O(1) के प्रतिबंध से उत्पन्न होता है। | [[लेफ्शेट्ज़ हाइपरप्लेन प्रमेय]] का तात्पर्य है कि कम से कम 4 आयाम की चिकनी समिष्ट प्रक्षेप्य प्रकार उदाहरण के लिए, यदि Y समिष्ट प्रक्षेप्य में कम से कम 3 आयाम का सहज पूर्ण प्रतिच्छेदन प्रकार है, तो Y का पिकार्ड समूह 'Z' के समरूपी है, जो प्रक्षेप्य समिष्ट पर लाइन बंडल O(1) के प्रतिबंध से उत्पन्न होता है। | ||
[[अलेक्जेंडर ग्रोथेंडिक|ग्रोथेंडिक]] ने लेफ्शेट्ज़ के प्रमेय को कई दिशाओं में सामान्यीकृत किया, जिसमें इच्छानुसार आधार क्षेत्र, एकवचन प्रकार और प्रक्षेपी प्रकारों के अतिरिक्त स्थानीय वलय पर परिणाम सम्मिलित थे। विशेष रूप से, यदि R पूर्ण प्रतिच्छेदन स्थानीय वलय है, जो अधिकतम 3 कोड आयाम में भाज्य है (उदाहरण के लिए, यदि R के गैर-नियमित स्थान का कोड आयाम कम से कम 4 है), तो R अद्वितीय | [[अलेक्जेंडर ग्रोथेंडिक|ग्रोथेंडिक]] ने लेफ्शेट्ज़ के प्रमेय को कई दिशाओं में सामान्यीकृत किया, जिसमें इच्छानुसार आधार क्षेत्र, एकवचन प्रकार और प्रक्षेपी प्रकारों के अतिरिक्त स्थानीय वलय पर परिणाम सम्मिलित थे। विशेष रूप से, यदि R पूर्ण प्रतिच्छेदन स्थानीय वलय है, जो अधिकतम 3 कोड आयाम में भाज्य है (उदाहरण के लिए, यदि R के गैर-नियमित स्थान का कोड आयाम कम से कम 4 है), तो R अद्वितीय गुणनभागडोमेन है (और इसलिए प्रत्येक Spec(R) पर वेइल विभाजक कार्टियर है)।<ref>Grothendieck, SGA 2, Corollaire XI.3.14.</ref> यहां बंधा हुआ आयाम इष्टतम है, जैसा कि ऊपर दिए गए 3-आयामी क्वाड्रिक शंकु के उदाहरण से दिखाया गया है। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 09:54, 21 July 2023
बीजगणितीय ज्यामिति में, विभाजक बीजगणितीय रूपों की कोडिमेशन-1 उप-विविधता का सामान्यीकरण है। दो भिन्न-भिन्न सामान्यीकरण कार्टियर विभाजक और वेइल विभाजक (डेविड मम्फोर्ड द्वारा पियरे कार्टियर और आंद्रे वेइल के नाम पर) सामान्य उपयोग में हैं। दोनों पूर्णांक और बीजगणितीय संख्या क्षेत्रों में विभाज्यता की धारणा से प्राप्त हुए हैं।
विश्व स्तर पर, प्रक्षेप्य समिष्ट के प्रत्येक कोडिमेशन-1 उपविविधता को सजातीय बहुपद के लुप्त होने से परिभाषित किया जाता है; इसके विपरीत, कोडिमेंशन-r आर उपविविधता को केवल r समीकरणों द्वारा परिभाषित करने की आवश्यकता नहीं होती है जब r 1 से अधिक होता है। (अर्थात्, प्रक्षेप्य समिष्ट की प्रत्येक उपविविधता पूर्ण प्रतिच्छेदन नहीं है।) स्थानीय रूप से, सुचारु योजना के प्रत्येक कोडिमेशन-1 उपविविधता को प्रत्येक बिंदु के निकट में समीकरण द्वारा परिभाषित किया जा सकता है। फिर, समान कथन उच्च-संकेतन उप-विविधता के लिए विफल रहता है। इस संपत्ति के परिणामस्वरूप, बीजगणितीय ज्यामिति का अधिकांश भाग इसके कोडिमेशन-1 उप-विविधता और संबंधित लाइन बंडलों का विश्लेषण करके इच्छानुसार विविधता का अध्ययन करता है।
एकवचन प्रकारों पर, यह संपत्ति भी विफल हो सकती है, और इसलिए किसी को कोडिमेंशन-1 उप-विविधता और प्रकारों के मध्य अंतर करना होगा जिन्हें स्थानीय रूप से समीकरण द्वारा परिभाषित किया जा सकता है। पूर्व वेइल विभाजक हैं जबकि पश्चात वाले कार्टियर विभाजक हैं।
टोपोलॉजिकल रूप से, वेइल विभाजक होमोलॉजी कक्षाओं की भूमिका निभाते हैं, जबकि कार्टियर विभाजकसह-समरूपता कक्षाओं का प्रतिनिधित्व करते हैं। सहज विविधता (या अधिक सामान्यतः नियमित योजना) पर, पोंकारे द्वैत के अनुरूप परिणाम कहता है कि वेइल और कार्टियर विभाजक समान हैं।
"विभाजक" नाम डेडेकाइंड और हेनरिक एम. वेबर के कार्य पर आधारित है, जिन्होंने बीजगणितीय वक्रों के अध्ययन के लिए डेडेकाइंड डोमेन की प्रासंगिकता दिखाई थी।[1] वक्र पर विभाजकों का समूह (सभी विभाजकों द्वारा उत्पन्न मुक्त एबेलियन समूह) डेडेकाइंड डोमेन के लिए भिन्नात्मक आदर्शों के समूह से निकटता से संबंधित है।
बीजगणितीय चक्र भाजक का उच्च कोडिमेंशन सामान्यीकरण है; परिभाषा के अनुसार, वेइल विभाजक संहिता 1 का चक्र है।
रीमैन सतह पर विभाजक
रीमैन सतह 1-आयामी समिष्ट मैनिफोल्ड है, और इसलिए इसके कोडिमेंशन-1 सबमैनिफोल्ड्स का आयाम 0 है। सघन रीमैन सतह X पर विभाजकों का समूह X के बिंदुओं पर मुक्त एबेलियन समूह है।
समान रूप से, सघन रीमैन सतह X पर विभाजक पूर्णांक गुणांक के साथ X के बिंदुओं का सीमित रैखिक संयोजन है। X पर भाजक की 'डिग्री' उसके गुणांकों का योग है।
X पर किसी भी गैर-शून्य मेरोमोर्फिक फलन f के लिए, कोई X ordp(f) में बिंदु p पर f के लुप्त होने के क्रम को परिभाषित कर सकता है। यदि f का ध्रुव p पर है तो यह पूर्णांक, ऋणात्मक है। सघन रीमैन सतह X पर गैर-शून्य मेरोमोर्फिक फलन f के विभाजक को इस प्रकार परिभाषित किया गया है:
जो सीमित राशि है। (f) रूप के भाजक को 'मुख्य भाजक' भी कहा जाता है। चूँकि (fg) = (f) + (g), प्रमुख भाजक का समुच्चय भाजक के समूह का उपसमूह है। दो भाजक जो मुख्य भाजक से भिन्न होते हैं उन्हें 'रैखिक समतुल्य' कहा जाता है।
सघन रीमैन सतह पर, मुख्य भाजक की डिग्री शून्य होती है; अर्थात्, मेरोमॉर्फिक फलन के शून्यों की संख्या बहुलता के साथ गणना किये जाने वाले ध्रुवों की संख्या के समान होती है। परिणामस्वरूप, विभाजक के रैखिक तुल्यता वर्गों पर डिग्री उचित प्रकार से परिभाषित होती है।
सघन रीमैन सतह D से संबंधित 'लाइन बंडल के अनुभागों का स्थान' है। D की डिग्री इस सदिश समिष्ट के आयाम के विषय में बहुत कुछ कहती है। उदाहरण के लिए, यदि D की डिग्री ऋणात्मक है, तो इसकी सदिश समष्टि शून्य है (क्योंकि मेरोमोर्फिक फलन में ध्रुवों से अधिक शून्य नहीं हो सकते हैं)। यदि D की धनात्मक डिग्री है, तो H0(X, O(mD)) का आयाम m के लिए पर्याप्त रूप से बड़े होने पर रैखिक रूप से बढ़ता है। रीमैन-रोच प्रमेय इन पंक्तियों के साथ अधिक त्रुटिहीन कथन है। दूसरी ओर, निम्न डिग्री के विभाजक D के लिए H0(X, O(D)) का त्रुटिहीन आयाम सूक्ष्म है, और D की डिग्री द्वारा पूर्ण रूप से निर्धारित नहीं होता है। सघन रीमैन सतह की विशिष्ट विशेषताएं इन आयामों में परिलक्षित होती हैं।
सघन रीमैन सतह पर प्रमुख विभाजक विहित विभाजक है। इसे परिभाषित करने के लिए, सबसे पूर्व उपरोक्त पंक्तियों के साथ गैर-शून्य मेरोमोर्फिक 1-रूप के विभाजक को परिभाषित किया जाता है। चूँकि मेरोमोर्फिक 1-रूपों की समिष्ट मेरोमोर्फिक कार्यों के क्षेत्र पर 1-आयामी सदिश समिष्ट है, कोई भी दो गैर-शून्य मेरोमोर्फिक 1-रूप रैखिक रूप से समतुल्य विभाजक उत्पन्न करते हैं। इस रैखिक तुल्यता वर्ग में किसी भी भाजक को X, KX का 'विहित भाजक' कहा जाता है। X के जीनस g को विहित विभाजक से पढ़ा जा सकता है: अर्थात्, KX की डिग्री 2g - 2 है। सघन रीमैन सतहों X के मध्य मुख्य ट्राइकोटॉमी यह है कि क्या विहित विभाजक में नकारात्मक डिग्री है (इसलिए X में जीनस शून्य है), शून्य डिग्री (जीनस) एक), या धनात्मक डिग्री (जीनस कम से कम 2)। उदाहरण के लिए, यह निर्धारित करता है कि क्या X के निकट धनात्मक वक्रता, शून्य वक्रता, या नकारात्मक वक्रता वाला काहलर मीट्रिक है। विहित विभाजक की डिग्री ऋणात्मक है यदि और केवल X रीमैन क्षेत्र CP1 के लिए समरूपी है।
वेइल विभाजक
मान लीजिए कि X अभिन्न स्थानीय नोथेरियन योजना है। X पर 'अभाज्य विभाजक' या 'अपरिवर्तनीय विभाजक' X में कोडिमेशन 1 का अभिन्न विवृत उपयोजना Z है। X पर वेइल विभाजक, X के अभाज्य भाजक Z पर औपचारिक योग है:
जहां संग्रह स्थानीय रूप से सीमित है। यदि X अर्ध-सघन है, तो स्थानीय परिमितता इसके समान है परिमित होता है। सभी वेइल विभाजकों के समूह को Div(X) द्वारा दर्शाया गया है। यदि सभी गुणांक गैर-ऋणात्मक हैं तो वेइल विभाजक D 'प्रभावी' है। यदि अंतर D − D′ प्रभावी है तो D ≥ D′ लिखा जाता है।
उदाहरण के लिए, किसी क्षेत्र के बीजगणितीय वक्र पर विभाजक सीमित रूप से कई विवृत बिंदुओं का औपचारिक योग होता है। Spec Z पर भाजक पूर्णांक गुणांक के साथ अभाज्य संख्याओं का औपचारिक योग है और इसलिए Q में गैर-शून्य भिन्नात्मक आदर्श से युग्मित होता है। समान लक्षण वर्णन भाजक के लिए सत्य है, जहाँ K संख्या क्षेत्र है।
यदि Z ⊂ X अभाज्य भाजक है, तो स्थानीय वलय में क्रुल आयाम है। यदि गैर-शून्य है, तो Z के साथ f के लुप्त होने का क्रम, जिसे ordZ(f) लिखा जाता है, मॉड्यूल की लंबाई है यह लंबाई सीमित है,[2] और यह गुणन के संबंध में योगात्मक है, अर्थात, ordZ(fg) = ordZ(f) + ordZ(g) है।[3] यदि k(X) X पर तर्कसंगत कार्यों का क्षेत्र है, तो किसी भी गैर-शून्य f ∈ k(X) को भागफल g / h के रूप में लिखा जा सकता है, जहां g और h हैं और f के लुप्त होने के क्रम को ordZ(g) − ordZ(h) के रूप में परिभाषित किया गया है।[4] इस परिभाषा के साथ, लुप्त होने का क्रम फलन ordZ : k(X)× → Z है। यदि X सामान्य है, तो स्थानीय वलय भिन्न मूल्यांकन वलय और फलन ordZ संबंधित मूल्यांकन है। X पर गैर-शून्य तर्कसंगत फलन f के लिए, f से जुड़े 'प्रमुख वेइल विभाजक' को वेइल विभाजक के रूप में परिभाषित किया गया है:
यह दिखाया जा सकता है कि यह योग स्थानीय रूप से सीमित है और इसलिए यह वास्तव में वेइल विभाजक को परिभाषित करता है। f से जुड़े प्रमुख वेइल विभाजक (f) को भी नोट किया गया है। यदि f नियमित फलन है, तो इसका प्रमुख वेइल विभाजक प्रभावी है, किन्तु सामान्यतः यह सत्य नहीं है। लुप्त होने वाले फलन के क्रम की योज्यता का तात्पर्य यह है:
परिणामस्वरूप div समरूपता है, और विशेष रूप से इसकी छवि सभी वेइल विभाजकों के समूह का उपसमूह है।
मान लीजिए कि X सामान्य इंटीग्रल नॉथेरियन योजना है। प्रत्येक वेइल विभाजक D सुसंगत शीफ X पर निर्धारित करता है। ठोस रूप से इसे तर्कसंगत कार्यों के शीफ के उपशीर्षक के रूप में परिभाषित किया जा सकता है।[5]
अर्थात्, शून्येतर परिमेय फलन f का भाग है U से अधिक यदि और केवल किसी अभाज्य भाजक Z के लिए जो U को प्रतिच्छेद करता है,
जहां nZ D में Z का गुणांक है। यदि D प्रमुख है, इसलिए D परिमेय फलन g का विभाजक है, तो समरूपता है:
- तब से प्रभावी विभाजक है और इसलिए X की सामान्यता के कारण नियमित है। इसके विपरीत, यदि समरूपी है के रूप में -मॉड्यूल, तो D प्रमुख है। इसका तात्पर्य यह है कि D स्थानीय रूप से प्रमुख है यदि और केवल विपरीत है; अर्थात लाइन बंडल है।
यदि D प्रभावी भाजक है तो से प्रायः उपयोग किया जाने वाला संक्षिप्त त्रुटिहीनअनुक्रम प्राप्त होता है,
इस क्रम की शीफ सहसंरचना यह दर्शाती है में यह सूचना सम्मिलित है कि क्या D पर नियमित कार्य X पर नियमित कार्य के प्रतिबंध हैं।
इसमें समूहों का भी समावेश है:
यह विहित तत्व प्रस्तुत करता है, अर्थात्, वैश्विक भाग 1 की छवि है। इसे विहित अनुभाग कहा जाता है और इसे sD से दर्शाया जा सकता है। जबकि विहित अनुभाग कहीं लुप्त न होने वाले तर्कसंगत फलन की छवि है, इसकी छवि D के साथ लुप्त हो जाता है क्योंकि संक्रमण फलन D के साथ लुप्त हो जाते हैं। जब D सुचारु कार्टियर विभाजक होता है, तो उपरोक्त समावेशन के कोकर्नेल की पहचान की जा सकती है; नीचे कार्टियर विभाजक देखें।
मान लें कि X क्षेत्र पर परिमित प्रकार की सामान्य अभिन्न पृथक योजना है। मान लीजिए D वेइल विभाजक है। तब श्रेणी वन रिफ्लेक्सिव शीफ है, और तब से के उपशीर्षक के रूप में परिभाषित किया गया है। यह भिन्नात्मक आदर्श शीफ है (नीचे देखें)। इसके विपरीत, प्रत्येक श्रेणी रिफ्लेक्सिव शीफ वेइल विभाजक से युग्मित होती है: शीफ को नियमित लोकस तक सीमित किया जा सकता है, जहां यह मुक्त हो जाता है और इसलिए कार्टियर विभाजक से युग्मित होता है (पुनः, नीचे देखें), और क्योंकि एकवचन लोकस में कम से कम दो कोडिमेंशन होता है, कार्टियर विभाजक का विवृत होना वेइल विभाजक है।
भाजक वर्ग समूह
वेइल विभाजक वर्ग समूह सीएल(्स) सभी प्रमुख वेइल भाजक के उपसमूह द्वारा डिव(्स) का भागफल है। दो विभाजकों को रैखिक रूप से समतुल्य कहा जाता है यदि उनका अंतर प्रमुख है, इसलिए विभाजक वर्ग समूह भाजक मॉड्यूलो रैखिक तुल्यता का समूह है। किसी फ़ील्ड पर आयाम n की विविधता X के लिए, विभाजक वर्ग समूह चाउ समूह है; अर्थात्, सीएल(्स) चाउ समूह सीएच हैn−1(X) का (n−1)-आयामी चक्र।
मान लीजिए Z, X का बंद उपसमुच्चय है। यदि Z, कोड आयाम का अपरिवर्तनीय है, तो Cl(X - Z) Z के वर्ग द्वारा Cl(X) के भागफल समूह के लिए समरूपी है। यदि Z का कोड आयाम X में कम से कम 2 है , तो प्रतिबंध सीएल(्स) → सीएल(्स − जेड) समरूपता है।[6] (ये तथ्य चाउ समूह के विशेष मामले हैं#चाउ समूहों के लिए कार्यात्मकता।)
सामान्य इंटीग्रल नोथेरियन स्कीम ्स पर, दो वेइल विभाजक डी, ई रैखिक रूप से समतुल्य हैं यदि और केवल यदि और के रूप में समरूपी हैं -मॉड्यूल. ्स पर रिफ्लेक्सिव शीव्स के आइसोमोर्फिज्म वर्ग मोनोइड बनाते हैं जिसमें उत्पाद को टेंसर उत्पाद के रिफ्लेक्सिव पतवार के रूप में दिया जाता है। तब ्स के वेइल विभाजक वर्ग समूह से ्स पर रैंक-वन रिफ्लेक्सिव शीव्स के आइसोमोर्फिज्म वर्गों के मोनोइड तक मोनोइड आइसोमोर्फिज्म को परिभाषित करता है।
उदाहरण
- मान लीजिए k फ़ील्ड है, और मान लीजिए n धनात्मक पूर्णांक है। चूँकि बहुपद वलय k[x1, ..., ्सn] अद्वितीय गुणनखंडन डोमेन है, एफ़िन स्पेस 'ए' का विभाजक वर्ग समूहnk से अधिक शून्य के समानहै।[7]चूँकि प्रक्षेप्य स्थान Pnk से अधिक हाइपरप्लेन H, 'A' के समरूपी हैn, इससे यह निष्कर्ष निकलता है कि 'P' का विभाजक वर्ग समूहn H के वर्ग द्वारा उत्पन्न होता है। वहां से, यह जांचना सीधा है कि Cl('P'n) वास्तव में H द्वारा उत्पन्न पूर्णांक 'Z' के समरूपी है। सीधे तौर पर, इसका मतलब है कि 'P' का प्रत्येक कोडिमेशन-1 सबवेरिटीn को ल सजातीय बहुपद के लुप्त होने से परिभाषित किया गया है।
- मान लीजिए कि X फ़ील्ड k पर बीजगणितीय वक्र है। ्स में प्रत्येक बंद बिंदु पी में के के कुछ परिमित विस्तार क्षेत्र ई के लिए स्पेक ई का रूप है, और पी की 'डिग्री' को के के ऊपर ई के क्षेत्र विस्तार की डिग्री के रूप में परिभाषित किया गया है। इसे रैखिकता द्वारा विस्तारित करने से X पर भाजक के लिए 'डिग्री' की धारणा मिलती है। यदि X, k पर प्रक्षेप्य विविधता वक्र है, तो X पर गैर-शून्य तर्कसंगत फलन f के भाजक की डिग्री शून्य है।[8] परिणामस्वरूप, प्रक्षेप्य वक्र X के लिए, डिग्री समरूपता डिग्री देती है: Cl(X) → 'Z'।
- प्रक्षेप्य रेखा 'पी' के लिए1 फ़ील्ड k पर, डिग्री समरूपता सीएल('पी') देती है1) ≅ Z. k-तर्कसंगत बिंदु के साथ किसी भी चिकने प्रक्षेप्य वक्र X के लिए, डिग्री समरूपता विशेषण है, और कर्नेल k के समूह के लिए समरूपी है - ्स की जैकोबियन किस्म पर बिंदु, जो ्स के जीनस के समानआयाम की एबेलियन किस्म है। उदाहरण के लिए, यह इस प्रकार है कि जटिल अण्डाकार वक्र का विभाजक वर्ग समूह बेशुमार एबेलियन समूह है।
- पिछले उदाहरण को सामान्यीकृत करना: फ़ील्ड k पर किसी भी सहज प्रक्षेप्य विविधता X के लिए, जैसे कि X में k-तर्कसंगत बिंदु है, विभाजक वर्ग समूह सीएल( X) जुड़े हुए समूह योजना के k-बिंदुओं के समूह द्वारा सूक्ष्म रूप से उत्पन्न एबेलियन समूह, नेरॉन-सेवेरी समूह का विस्तार है। [9] विशेषता शून्य के k के लिए, एबेलियन किस्म है, ्स की पिकार्ड किस्म।
- आर के लिए किसी संख्या क्षेत्र के पूर्णांकों का वलय, विभाजक वर्ग समूह सीएल(आर) := सीएल(स्पेक आर) को आर का आदर्श वर्ग समूह भी कहा जाता है। यह परिमित एबेलियन समूह है। आदर्श वर्ग समूहों को समझना बीजगणितीय संख्या सिद्धांत का केंद्रीय लक्ष्य है।
- मान लीजिए कि X आयाम 2 का चतुर्भुज शंकु है, जो समीकरण xy = z द्वारा परिभाषित है2 क्षेत्र के ऊपर एफ़िन 3-स्पेस में। फिर x = z = 0 द्वारा परिभाषित X में रेखा D मूल बिंदु के निकट X पर प्रमुख नहीं है। ध्यान दें कि D को X पर समीकरण द्वारा सेट के रूप में परिभाषित किया जा सकता है, अर्थात् x = 0; किन्तु X पर फलन x, D के अनुदिश क्रम 2 पर लुप्त हो जाता है, और इसलिए हम केवल यह पाते हैं कि 2D, X पर कार्टियर (जैसा कि नीचे परिभाषित है) है। वास्तव में, विभाजक वर्ग समूह Cl(X) चक्रीय समूह 'Z' के लिए समरूपी है। /2, डी की कक्षा द्वारा उत्पन्न।[10]
- मान लीजिए कि X आयाम 3 का चतुर्भुज शंकु है, जो क्षेत्र के ऊपर 4-स्पेस में समीकरण xy = zw द्वारा परिभाषित है। फिर x = z = 0 द्वारा परिभाषित X में समतल D को मूल बिंदु के निकट समीकरण द्वारा, यहां तक कि सेट के रूप में भी, X में परिभाषित नहीं किया जा सकता है। इससे यह निष्कर्ष निकलता है कि D, X पर 'Q-कार्टियर' नहीं है; अर्थात्, D का कोई भी धनात्मक गुणज कार्टियर नहीं है। वास्तव में, विभाजक वर्ग समूह सीएल(्स) डी के वर्ग द्वारा उत्पन्न पूर्णांक 'जेड' के समरूपी है।[11]
विहित भाजक
मान लीजिए कि X आदर्श क्षेत्र में सामान्य किस्म है। X की सुचारू योजना लोकस U खुला उपसमुच्चय है जिसके पूरक का कोड आयाम कम से कम 2 है। मान लीजिए कि j: U → X समावेशन मानचित्र है, तो प्रतिबंध समरूपता:
समरूपता है, क्योंकि X - U का X में कोड आयाम कम से कम 2 है। उदाहरण के लिए, कोई विहित विभाजक K को परिभाषित करने के लिए इस समरूपता का उपयोग कर सकता हैX ्स का: यह यू पर शीर्ष डिग्री के अंतर रूपों के लाइन बंडल के अनुरूप वेइल विभाजक (रैखिक तुल्यता तक) है। समतुल्य रूप से, शीफ ्स पर प्रत्यक्ष छवि शीफ है जहाँ n, X का आयाम है।
'उदाहरण': मान लीजिए X = 'P'nसजातीय निर्देशांक x के साथ प्रक्षेप्य n-स्थान बनें0, ..., ्सn. माना U = {x0 ≠ 0}. फिर यू निर्देशांक y के साथ एफ़िन एन-स्पेस के लिए समरूपी हैi= ्सi/्स0. होने देना
तब ω यू पर तर्कसंगत अंतर रूप है; इस प्रकार, यह का तर्कसंगत भागहै जिसमें Z के अनुदिश सरल ध्रुव हैंi= {्सi= 0}, मैं = 1, ..., एन. अलग एफ़िन चार्ट पर स्विच करने से केवल ω का चिह्न बदलता है और इसलिए हम देखते हैं कि ω में Z के साथ सरल ध्रुव है0 भी। इस प्रकार, ω का भाजक है
और इसका विभाजक वर्ग है
जहां [एच] = [जेडi], मैं = 0, ..., एन। (यूलर अनुक्रम भी देखें।)
कार्टियर विभाजक
मान लीजिए कि X अभिन्न नोथेरियन योजना है। तब X के पास तर्कसंगत कार्यों का समूह है सभी नियमित कार्य तर्कसंगत कार्य हैं, जो संक्षिप्त सटीक अनुक्रम की ओर ले जाते हैं
X पर कार्टियर विभाजक वैश्विक भागहै समतुल्य विवरण यह है कि कार्टियर विभाजक संग्रह है कहाँ का खुला आवरण है का भाग है पर और पर के भाग से गुणा तक कार्टियर विभाजक में शीफ-सैद्धांतिक विवरण भी होता है। भिन्नात्मक आदर्श शीफ उप- है-मॉड्यूल का भिन्नात्मक आदर्श शीफ़ J 'उलटा' है यदि, X में प्रत्येक x के लिए, x का खुला पड़ोस U मौजूद है जिस पर J से U का प्रतिबंध समानहै कहाँ और उत्पाद अंदर ले लिया जाता है प्रत्येक कार्टियर विभाजक संग्रह के रूप में कार्टियर विभाजक के विवरण का उपयोग करके उलटा भिन्नात्मक आदर्श शीफ को परिभाषित करता है और इसके विपरीत, व्युत्क्रमणीय भिन्नात्मक आदर्श शीव्स कार्टियर विभाजक को परिभाषित करते हैं। यदि कार्टियर विभाजक को डी निरूपित किया जाता है, तो संबंधित भिन्नात्मक आदर्श शीफ को निरूपित किया जाता है या एल(डी).
उपरोक्त सटीक अनुक्रम के अनुसार, शीफ़ कोहोलॉजी समूहों का सटीक अनुक्रम है:
कार्टियर विभाजक को प्रमुख कहा जाता है यदि यह समरूपता की छवि में है अर्थात्, यदि यह X पर परिमेय फलन का भाजक है। दो कार्टियर भाजक 'रैखिक रूप से समतुल्य' हैं यदि उनका अंतर मूलधन है। इंटीग्रल नोथेरियन स्कीम ्स पर प्रत्येक लाइन बंडल एल कुछ कार्टियर विभाजक का वर्ग है। नतीजतन, उपरोक्त सटीक अनुक्रम कार्टियर डिवाइजर्स मॉड्यूलो रैखिक तुल्यता के समूह के साथ अभिन्न नोथेरियन योजना ्स पर लाइन बंडलों के पिकार्ड समूह की पहचान करता है। यह सामान्यतः कम नोथेरियन योजनाओं, या नोथेरियन रिंग पर अर्ध-प्रोजेक्टिव योजनाओं के लिए लागू होता है,[12] किन्तु यह सामान्य रूप से विफल हो सकता है (यहां तक कि सी से अधिक उचित योजनाओं के लिए भी), जो पूरी व्यापकता में कार्टियर विभाजकों की रुचि को कम कर देता है।[13] मान लें कि D प्रभावी कार्टियर विभाजक है। फिर संक्षिप्त सटीक क्रम है
यह क्रम स्थानीय रूप से मुफ़्त है, और इसलिए उस अनुक्रम को सीमित किया जा रहा है और संक्षिप्त सटीक अनुक्रम उत्पन्न होता है, ऊपर वाला। जब D चिकना हो, X में D का सामान्य बंडल है।
वेइल विभाजक और कार्टियर विभाजक की तुलना
वेइल विभाजक डी को 'कार्टियर' कहा जाता है यदि और केवल यदि शीफ उलटा है. जब ऐसा होता है, (एम में इसके एम्बेडिंग के साथ)X) कार्टियर विभाजक से संबद्ध रेखा बंडल है। अधिक सटीक रूप से, यदि उलटा है, तो खुला आवरण मौजूद है {यूi} ऐसा है कि प्रत्येक खुले सेट पर तुच्छ बंडल तक सीमित है। प्रत्येक यू के लिएi, समरूपता चुनें की छवि इस मानचित्र के अंतर्गत भाग है वह यूi. क्योंकि तर्कसंगत कार्यों के समूह के उपशीर्षक के रूप में परिभाषित किया गया है, 1 की छवि को कुछ तर्कसंगत कार्यों के साथ पहचाना जा सकता हैi. संग्रह तब कार्टियर विभाजक है। यह अच्छी तरह से परिभाषित है क्योंकि इसमें सम्मिलित मात्र विकल्प कवरिंग और समरूपता के थे, जिनमें से कोई भी कार्टियर विभाजक को नहीं बदलता है। इस कार्टियर विभाजक का उपयोग शीफ का उत्पादन करने के लिए किया जा सकता है, जिसे भेद के लिए हम एल (डी) नोट करेंगे। की समरूपता है खुले कवर {यू' पर काम करके परिभाषित एल(डी) के साथi}. यह जाँचने के लिए मुख्य कारक कि संक्रमण कार्य कहाँ है और एल(डी) संगत हैं, और इसका मतलब यह है कि इन सभी कार्यों का रूप है विपरीत दिशा में, कार्टियर विभाजक इंटीग्रल नोथेरियन स्कीम पर ्स, लागू करके, प्राकृतिक तरीके से ्स पर वेइल विभाजक निर्धारित करता है कार्यों के लिए एफiखुले सेट पर यूi.
यदि
नोएथेरियन स्कीम ्स को 'फैक्टोरियल' कहा जाता है यदि ्स के सभी स्थानीय रिंग अद्वितीय गुणनखंडन डोमेन हैं।[5](कुछ लेखक स्थानीय रूप से फैक्टोरियल कहते हैं।) विशेष रूप से, प्रत्येक नियमित योजना फैक्टोरियल होती है।[14] फैक्टोरियल स्कीम ्स पर, प्रत्येक वेइल विभाजक डी स्थानीय रूप से प्रिंसिपल है, और इसी तरह हमेशा लाइन बंडल होता है.[7] हालाँकि, सामान्यतः, सामान्य योजना पर वेइल विभाजक को स्थानीय रूप से प्रमुख होने की आवश्यकता नहीं होती है; ऊपर चतुर्भुज शंकु के उदाहरण देखें।
प्रभावी कार्टियर विभाजक
प्रभावी कार्टियर विभाजक वे होते हैं जो आदर्श शीव्स के अनुरूप होते हैं। वास्तव में, प्रभावी कार्टियर विभाजक के सिद्धांत को तर्कसंगत कार्यों के समूह या आंशिक आदर्श समूह के संदर्भ के बिना विकसित किया जा सकता है।
मान लीजिए कि X योजना है। X पर 'प्रभावी कार्टियर विभाजक' आदर्श शीफ I है जो विपरीत है और ऐसा है कि X में प्रत्येक बिंदु x के लिए, आधार Ix प्रमुख है। यह आवश्यक है कि प्रत्येक x के निकट, संवृत एफ़िन उपसमुच्चय U = Spec A उपस्थित हो, जैसे कि U ∩ D = Spec A / (f), जहां f, A में गैर-शून्य भाजक है। दो प्रभावी कार्टियर विभाजकों का योग आदर्श शीव्स के गुणन से युग्मित होता है।
प्रभावी कार्टियर विभाजक के परिवारों का उत्तम सिद्धांत है। मान लीजिए φ : X → S रूपवाद है। X पर S के लिए सापेक्ष प्रभावी कार्टियर विभाजक X पर प्रभावी कार्टियर विभाजक D है जो S पर समतल है। समतलता धारणा के कारण, प्रत्येक के लिए D से पुलबैक है, और यह पुलबैक प्रभावी कार्टियर विभाजक है। विशेष रूप से, यह φ के फाइबर के लिए सत्य है।
कोडैरा की लेम्मा
(बड़े) कार्टियर विभाजक के मूल परिणाम के रूप में, कोडैरा का लेम्मा नामक परिणाम होता है:[15][16]
Let X be a irreducible projective variety and let D be a big Cartier divisor on X and let H be an arbitrary effective Cartier divisor on X. Then
- .
for all sufficiently large .
कोदैरा की प्रमेयिका बड़े भाजक के बारे में कुछ परिणाम देती है।
कार्यात्मकता
होने देना φ : X → Y अभिन्न स्थानीय नोथेरियन योजनाओं का रूपवाद बनें। विभाजक D को योजना से दूसरी योजना में स्थानांतरित करने के लिए φ का उपयोग करना प्रायः—किन्तु हमेशा नहीं—संभव होता है। क्या यह संभव है यह इस बात पर निर्भर करता है कि भाजक वेइल या कार्टियर भाजक है, क्या भाजक को X से Y या इसके विपरीत स्थानांतरित किया जाना है, और φ में कौन से अतिरिक्त गुण हो सकते हैं।
यदि Z, X पर अभाज्य वेइल विभाजक है, तो Y का बंद इरेड्यूसिबल उपयोजना है। φ के आधार पर, यह प्राइम वेइल विभाजक हो भी सकता है और नहीं भी। उदाहरण के लिए, यदि φ समतल में किसी बिंदु का ब्लो अप है और Z असाधारण भाजक है, तो इसकी छवि वेइल भाजक नहीं है। इसलिए, φ*Z को परिभाषित किया गया है यदि वह उपयोजना अभाज्य भाजक है और अन्यथा उसे शून्य भाजक के रूप में परिभाषित किया गया है। इसे रैखिकता द्वारा विस्तारित करने पर, यह मानते हुए कि X अर्ध-सघन है, समरूपता को परिभाषित करेगा Div(X) → Div(Y) पुशफॉरवर्ड कहा जाता है। (यदि X अर्ध-सघन नहीं है, तो पुशफॉरवर्ड स्थानीय रूप से सीमित योग होने में विफल हो सकता है।) यह चाउ समूहों पर पुशफॉरवर्ड का विशेष मामला है।
यदि Z कार्टियर विभाजक है, तो φ पर हल्की परिकल्पना के अंतर्गत, पुलबैक है . शीफ़-सैद्धांतिक रूप से, जब कोई पुलबैक मानचित्र होता है , तो इस पुलबैक का उपयोग कार्टियर विभाजकों के पुलबैक को परिभाषित करने के लिए किया जा सकता है। स्थानीय अनुभागों के संदर्भ में, का पुलबैक होने के लिए परिभाषित किया गया है . यदि φ प्रभावी है तो पुलबैक को हमेशा परिभाषित किया जाता है, किन्तु इसे सामान्य रूप से परिभाषित नहीं किया जा सकता है। उदाहरण के लिए, यदि X = Z और φ, Y में Z का समावेश है, फिर φ*Z अपरिभाषित है क्योंकि संबंधित स्थानीय अनुभाग हर जगह शून्य होंगे। (हालाँकि, संबंधित लाइन बंडल का पुलबैक परिभाषित है।)
यदि φ समतल है, तो वेइल विभाजक का पुलबैक परिभाषित किया गया है। इस मामले में, Z का पुलबैक है φ*Z = φ−1(Z). φ की समतलता यह सुनिश्चित करती है कि Z की व्युत्क्रम छवि का कोड आयाम बना रहे। यह उन आकृतियों के लिए विफल हो सकता है जो समतल नहीं हैं, उदाहरण के लिए, छोटे संकुचन के लिए।
प्रथम चेर्न वर्ग
अभिन्न नोथेरियन योजना
प्रथम चेर्न वर्ग के रूप में जाना जाता है।[17][18] यदि X सामान्य है तो पहला चेर्न वर्ग इंजेक्शन है, और यदि X फैक्टोरियल है (जैसा कि ऊपर परिभाषित है) तो यह समरूपता है। विशेष रूप से, कार्टियर विभाजक को किसी भी नियमित योजना पर वेइल विभाजक के साथ पहचाना जा सकता है, और इसलिए पहला चेर्न वर्ग ्स नियमित के लिए समरूपता है।
स्पष्ट रूप से, प्रथम चेर्न वर्ग को इस प्रकार परिभाषित किया जा सकता है। इंटीग्रल नोथेरियन स्कीम ) परिमेय फलन के भाजक के अनुरूप X पर। तब एल के पहले चेर्न वर्ग को विभाजक के रूप में परिभाषित किया जा सकता है। परिमेय भागs को बदलने से यह भाजक रैखिक तुल्यता द्वारा बदल जाता है, क्योंकि (fs) = (f) + (s) गैर-शून्य परिमेय फलन f और L के गैर-शून्य परिमेय भागs के लिए। तो तत्व c1(एल) सीएल(्स) में अच्छी तरह से परिभाषित है।
आयाम n की जटिल किस्म
बाद वाले समूह को इसकी शास्त्रीय (यूक्लिडियन) टोपोलॉजी के साथ, ्स के जटिल बिंदुओं के स्थान ्स ('सी') का उपयोग करके परिभाषित किया गया है। इसी तरह, पिकार्ड समूह टोपोलॉजिकल अर्थ में प्रथम चेर्न वर्ग द्वारा वचन कोहोमोलॉजी का मानचित्रण करता है:
दो समरूपताएं क्रमविनिमेय आरेख से संबंधित हैं, जहां सही ऊर्ध्वाधर मानचित्र बोरेल-मूर होमोलॉजी में ्स के मौलिक वर्ग के साथ कैप उत्पाद है:
'सी' पर ्स स्मूथ के लिए, दोनों ऊर्ध्वाधर मानचित्र समरूपता हैं।
लाइन बंडलों और रैखिक प्रणालियों के वैश्विक खंड
कार्टियर विभाजक प्रभावी होता है यदि इसका स्थानीय परिभाषित कार्य fi नियमित हो (केवल तर्कसंगत कार्य नहीं)। उस स्थिति में, कार्टियर विभाजक को X में कोडिमेंशन 1 की विवृत उप-योजना के साथ पहचाना जा सकता है, उप-योजना को स्थानीय रूप से fi = 0 द्वारा परिभाषित किया गया है। कार्टियर विभाजक D प्रभावी विभाजक के रैखिक रूप से समतुल्य है यदि और केवल इसकी संबद्ध रेखा बंडल हो गैर-शून्य वैश्विक अनुभाग है; तब D, s के शून्य बिंदुपथ के रैखिक रूप से समतुल्य है।
मान लीजिए कि X फ़ील्ड k पर प्रक्षेप्य किस्म है। फिर वैश्विक भागको गुणा करना k में शून्येतर अदिश द्वारा इसका शून्य स्थान नहीं बदलता है। परिणामस्वरूप, वैश्विक भागएच के के-वेक्टर स्थान में रेखाओं का प्रक्षेप्य स्थान0(X, O(D)) को D के रैखिक रूप से समतुल्य प्रभावी विभाजकों के सेट से पहचाना जा सकता है, जिसे D का 'पूर्ण रैखिक प्रणाली' कहा जाता है। इस प्रक्षेप्य स्थान के प्रक्षेप्य रैखिक उपस्थान को रैखिक प्रणाली कहा जाता है विभाजकों का.
लाइन बंडल के वैश्विक खंडों के स्थान का अध्ययन करने का कारण किसी दिए गए विविधता से लेकर प्रक्षेप्य स्थान तक के संभावित मानचित्रों को समझना है। बीजगणितीय प्रकारों के वर्गीकरण के लिए यह आवश्यक है। स्पष्ट रूप से, विविधता X से प्रक्षेप्य स्थान 'P' तक रूपवादn फ़ील्ड k पर X पर लाइन बंडल L निर्धारित करता है, जो मानक लाइन बंडल का पुलबैक बंडल है पी परn. इसके अतिरिक्त, L n+1 अनुभागों के साथ आता है जिनका आधार स्थान (उनके शून्य सेटों का प्रतिच्छेदन) खाली है। इसके विपरीत, n+1 वैश्विक खंडों वाला कोई भी लाइन बंडल L जिसका सामान्य आधार स्थान खाली है, रूपवाद X → 'P' निर्धारित करता हैn.[19] ये अवलोकन कार्टियर विभाजक (या लाइन बंडल) के लिए सकारात्मकता की कई धारणाओं को जन्म देते हैं, जैसे कि पर्याप्त विभाजक और नेफ विभाजक।[20] फ़ील्ड k पर प्रक्षेप्य विविधता X पर विभाजक D के लिए, k-वेक्टर स्थान H0(X, O(D)) का आयाम सीमित है। रीमैन-रोच प्रमेय इस वेक्टर स्थान के आयाम की गणना करने के लिए मौलिक उपकरण है जब ्स प्रक्षेप्य वक्र है। क्रमिक सामान्यीकरण, हिरज़ेब्रुच-रीमैन-रोच प्रमेय और ग्रोथेंडिक-रीमैन-रोच प्रमेय, एच के आयाम के बारे में कुछ जानकारी देते हैं।0(X, O(D)) किसी क्षेत्र पर किसी भी आयाम की प्रक्षेप्य किस्म X के लिए।
क्योंकि विहित विभाजक आंतरिक रूप से किस्म से जुड़ा होता है, प्रकारों के वर्गीकरण में महत्वपूर्ण भूमिका K द्वारा दिए गए प्रक्षेप्य स्थान के मानचित्रों द्वारा निभाई जाती है।X और इसके सकारात्मक गुणज। ्स का कोडैरा आयाम प्रमुख द्विवार्षिक ज्यामिति अपरिवर्तनीय है, जो वेक्टर रिक्त स्थान एच की वृद्धि को मापता है0(्स, एमकेX) (अर्थ एच0(्स, ओ(एमकेX))) जैसे-जैसे m बढ़ता है। कोडैरा आयाम सभी n-आयामी प्रकारों को n+2 वर्गों में विभाजित करता है, जो (बहुत मोटे तौर पर) सकारात्मक वक्रता से नकारात्मक वक्रता की ओर जाते हैं।
Q-विभाजक
माना कि X सामान्य प्रकार है। (वेइल) 'Q'-विभाजक तर्कसंगत गुणांक के साथ X की इरेड्यूसबल कोडिमेंशन-1 उप-विविधता का सीमित औपचारिक रैखिक संयोजन है। ('R'-भाजक को इसी प्रकार परिभाषित किया गया है।) यदि गुणांक गैर-नकारात्मक हैं तो 'Q'-विभाजक 'प्रभावी' होता है। यदि mD किसी धनात्मक पूर्णांक m के लिए कार्टियर विभाजक है तो 'Q'-विभाजक D 'Q-कार्टियर' है। यदि X सुचारू है, तो प्रत्येक 'Q'-विभाजक 'Q'-कार्टियर है।
यदि,
क्यू-विभाजक है, तो इसका राउंड-डाउन भाजक है:
जहाँ a से कम या उसके समान सबसे बड़ा पूर्णांक है। शीफ को तब के रूप में परिभाषित किया जाता है।
ग्रोथेंडि-लेफ़्सचेत्ज़ हाइपरप्लेन प्रमेय
लेफ्शेट्ज़ हाइपरप्लेन प्रमेय का तात्पर्य है कि कम से कम 4 आयाम की चिकनी समिष्ट प्रक्षेप्य प्रकार उदाहरण के लिए, यदि Y समिष्ट प्रक्षेप्य में कम से कम 3 आयाम का सहज पूर्ण प्रतिच्छेदन प्रकार है, तो Y का पिकार्ड समूह 'Z' के समरूपी है, जो प्रक्षेप्य समिष्ट पर लाइन बंडल O(1) के प्रतिबंध से उत्पन्न होता है।
ग्रोथेंडिक ने लेफ्शेट्ज़ के प्रमेय को कई दिशाओं में सामान्यीकृत किया, जिसमें इच्छानुसार आधार क्षेत्र, एकवचन प्रकार और प्रक्षेपी प्रकारों के अतिरिक्त स्थानीय वलय पर परिणाम सम्मिलित थे। विशेष रूप से, यदि R पूर्ण प्रतिच्छेदन स्थानीय वलय है, जो अधिकतम 3 कोड आयाम में भाज्य है (उदाहरण के लिए, यदि R के गैर-नियमित स्थान का कोड आयाम कम से कम 4 है), तो R अद्वितीय गुणनभागडोमेन है (और इसलिए प्रत्येक Spec(R) पर वेइल विभाजक कार्टियर है)।[21] यहां बंधा हुआ आयाम इष्टतम है, जैसा कि ऊपर दिए गए 3-आयामी क्वाड्रिक शंकु के उदाहरण से दिखाया गया है।
टिप्पणियाँ
- ↑ Dieudonné (1985), section VI.6.
- ↑ Stacks Project, Tag 00PF.
- ↑ Stacks Project, Tag 02MC.
- ↑ Stacks Project, Tag 02MD.
- ↑ 5.0 5.1 Kollár (2013), Notation 1.2.
- ↑ Hartshorne (1977), Proposition II.6.5.
- ↑ 7.0 7.1 Hartshorne (1977), Proposition II.6.2.
- ↑ Stacks Project, Tag 02RS.
- ↑ Kleiman (2005), Theorems 2.5 and 5.4, Remark 6.19.
- ↑ Hartshorne (1977), Example II.6.5.2.
- ↑ Hartshorne(1977), Exercise II.6.5.
- ↑ Grothendieck, EGA IV, Part 4, Proposition 21.3.4, Corollaire 21.3.5.
- ↑ Lazarsfeld (2004), Example 1.1.6.
- ↑ Stacks Project, Tag 0AFW.
- ↑ "Chapter 2. Preliminaries". न्यूनतम मॉडल कार्यक्रम की नींव. Mathematical Society of Japan Memoirs. 2017. pp. 16–47. doi:10.2969/msjmemoirs/03501C020. ISBN 978-4-86497-045-7.
- ↑ (Lazarsfeld 2004, p. 141, Proposition 2.2.6.)
- ↑ For a variety X over a field, the Chern classes of any vector bundle on X act by cap product on the Chow groups of X, and the homomorphism here can be described as L ↦ c1(L) ∩ [X].
- ↑ Eisenbud & Harris 2016, § 1.4.
- ↑ Hartshorne (1977), Theorem II.7.1.
- ↑ (Lazarsfeld 2004, Chapter 1)
- ↑ Grothendieck, SGA 2, Corollaire XI.3.14.
संदर्भ
- Dieudonné, Jean (1985), History of Algebraic Geometry, Wadsworth Mathematics Series, translated by Judith D. Sally, Belmont, CA: Wadsworth International Group, ISBN 0-534-03723-2, MR 0780183
- Eisenbud, David; Harris, Joe (2016), 3264 and All That: A Second Course in Algebraic Geometry, C. U.P., ISBN 978-1107602724
- Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32: 5–361. doi:10.1007/bf02732123. MR 0238860.
- Grothendieck, Alexander; Raynaud, Michèle (2005) [1968], Laszlo, Yves (ed.), Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques, vol. 4, Paris: Société Mathématique de France, arXiv:math/0511279, Bibcode:2005math.....11279G, ISBN 978-2-85629-169-6, MR 2171939
- Section II.6 of Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York, Heidelberg: Springer-Verlag, doi:10.1007/978-1-4757-3849-0, ISBN 0-387-90244-9, MR 0463157
- Kleiman, Steven (2005), "The Picard scheme", Fundamental Algebraic Geometry, Math. Surveys Monogr., vol. 123, Providence, R.I.: American Mathematical Society, pp. 235–321, arXiv:math/0504020, Bibcode:2005math......4020K, MR 2223410
- Kollár, János (2013), Singularities of the Minimal Model Program, Cambridge University Press, doi:10.1017/CBO9781139547895, ISBN 978-1-107-03534-8, MR 3057950
- Lazarsfeld, Robert (2004), Positivity in Algebraic Geometry, vol. 1, Berlin: Springer-Verlag, doi:10.1007/978-3-642-18808-4, ISBN 3-540-22533-1, MR 2095471
बाहरी संबंध
- The Stacks Project Authors, The Stacks Project