लेवी-सिविटा कनेक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 76: Line 76:


# यह मीट्रिक को सुरक्षित रखता है, अर्थात, {{math|1=∇''g'' = 0}}.
# यह मीट्रिक को सुरक्षित रखता है, अर्थात, {{math|1=∇''g'' = 0}}.
# यह संबंध-मुक्त का टॉरशन है, अर्थात, किसी भी सदिश क्षेत्र के लिए {{math|''X''}} और {{math|''Y''}} अपने पास {{math|1=∇<sub>''X''</sub>''Y'' − ∇<sub>''Y''</sub>''X'' = [''X'', ''Y'']}}, जहाँ {{math|[''X'', ''Y'']}} सदिश क्षेत्रों के सदिश क्षेत्रों का लाई {{math|''X''}} और {{math|''Y''}}  ब्रैकेट है।
# यह मरोड़-मुक्त है अर्थात, किसी भी सदिश क्षेत्र के लिए {{math|''X''}} और {{math|''Y''}} अपने पास {{math|1=∇<sub>''X''</sub>''Y'' − ∇<sub>''Y''</sub>''X'' = [''X'', ''Y'']}}, जहां [X, Y] सदिश फ़ील्ड X और Y का लाई ब्रैकेट है।


उपरोक्त स्थिति 1 को कभी-कभी मीट्रिक के साथ संगतता के रूप में जाना जाता है, और स्थिति 2 को कभी-कभी समरूपता कहा जाता है, सीएफ कार्मो का पाठ किया जाता है।<ref>{{Cite book |last=Carmo |first=Manfredo Perdigão do |url=https://www.worldcat.org/oclc/24667701 |title=रीमैनियन ज्यामिति|date=1992 |publisher=Birkhäuser |others=Francis J. Flaherty |isbn=0-8176-3490-8 |location=Boston |oclc=24667701}}</ref>
उपरोक्त शर्त 1 को कभी-कभी मीट्रिक के साथ संगतता के रूप में संदर्भित किया जाता है, और स्थिति 2 को कभी-कभी समरूपता कहा जाता है।<ref>{{Cite book |last=Carmo |first=Manfredo Perdigão do |url=https://www.worldcat.org/oclc/24667701 |title=रीमैनियन ज्यामिति|date=1992 |publisher=Birkhäuser |others=Francis J. Flaherty |isbn=0-8176-3490-8 |location=Boston |oclc=24667701}}</ref>
==(छद्म) रीमैनियन ज्यामिति का मौलिक प्रमेय==
==(छद्म) रीमैनियन ज्यामिति का मौलिक प्रमेय==
{{main|Fundamental theorem of Riemannian geometry}}
{{main|Fundamental theorem of Riemannian geometry}}
Line 85: Line 85:
प्रमाण:
प्रमाण:


यदि लेवी-सिविटा संबंध उपलब्ध है, तो यह अद्वितीय होना चाहिए, टेन्सर्स पर संबंध की क्रिया की परिभाषा को सुलझाया जाता है।
यदि लेवी-सिविटा संबंध उपलब्ध है, तो यह अद्वितीय होना चाहिए, इसे देखने के लिए, टेन्सर्स पर संबंध की क्रिया की परिभाषा को सुलझाया जाता है।
:<math> X\bigl(g(Y,Z)\bigr) = (\nabla_X g)(Y, Z) + g(\nabla_X Y, Z) + g( Y, \nabla_X Z).</math>
:<math> X\bigl(g(Y,Z)\bigr) = (\nabla_X g)(Y, Z) + g(\nabla_X Y, Z) + g( Y, \nabla_X Z).</math>
इसलिए हम शर्त 1 को इस प्रकार लिख सकते है।
इसलिए हम शर्त 1 को इस प्रकार लिख सकते है।

Revision as of 21:55, 13 July 2023

रीमैनियन या स्यूडो-रीमैनियन ज्यामिति विशेष रूप से सामान्य सापेक्षता की लोरेंत्ज़ियन ज्यामिति में, लेवी-सिविटा संबंध एक मैनिफोल्ड अर्थात एफ़िन संबंध के स्पर्शरेखा बंडल पर अद्वितीय एफिन संबंध है जो छद्म रीमैनियन मीट्रिक को संरक्षित करता है और मरोड़-मुक्त है।

रीमैनियन ज्यामिति के मौलिक प्रमेय में कहा गया है कि एक अद्वितीय संबंध है जो इन गुणों को संतुष्ट करता है।

रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड्स के सिद्धांत में सहसंयोजक व्युत्पन्न शब्द का प्रयोग अधिकांशतः लेवी-सिविटा कनेक्शन के लिए किया जाता है। स्थानीय निर्देशांक की एक प्रणाली के संबंध में इस संबंध के घटकों संरचना गुणांक को क्रिस्टोफेल चिह्न कहा जाता है।

इतिहास

लेवी-सिविटा कनेक्शन का नाम टुलियो लेवी-सिविटा के नाम पर रखा गया है, चूंकि मूल रूप से एल्विन ब्रूनो क्रिस्टोफेल द्वारा "खोजा" गया था। लेवी-सिविटा,[1] ग्रेगोरियो रिक्की-कर्बस्ट्रो के साथ, क्रिस्टोफ़ेल चिह्न का उपयोग किया,[2] समानांतर परिवहन की धारणा को परिभाषित करने और वक्रता के साथ समानांतर परिवहन के संबंध का पता लगाने के लिए, इस प्रकार होलोनोमी की आधुनिक धारणा विकसित करना है।[3]

1869 में, क्रिस्टोफ़ेल ने पाया कि एक सदिश क्षेत्र के आंतरिक व्युत्पन्न के घटक, समन्वय प्रणाली को परिवर्तित करने पर, एक कॉन्ट्रावेरिएंट सदिश के घटकों के रूप में बदल जाते हैं। यह खोज टेंसर विश्लेषण की वास्तविक शुरुआत थी।

1906 में, एल.ई.जे. ब्रौवर पहले गणितज्ञ थे जिन्होंने निरंतर वक्रता के स्थान के मामले में वेक्टर के समानांतर परिवहन पर विचार किया था।[4][5]

1917 में, लेवी-सिविटा ने यूक्लिडियन अंतरिक्ष में डूबे हुए हाइपरसर्फेस के स्थितियाँ में, अर्थात, एक बड़े परिवेश समिष्ट में एम्बेडेड रीमैनियन ज्यामिति के स्थितियाँ में इसके महत्व को बताया,[1] उन्होंने एम्बेडेड सतह के स्थितियाँ में आंतरिक व्युत्पन्न की व्याख्या परिवेशीय एफ़िन समिष्ट में सामान्य व्युत्पन्न के स्पर्शरेखा घटक के रूप में की, एक वक्र के साथ एक सदिश के आंतरिक व्युत्पन्न और समानांतर विस्थापन की लेवी-सिविटा धारणाएं एक अमूर्त रीमैनियन ज्यामिति पर समझ में आती हैं, यदि मूल प्रेरणा एक विशिष्ट एम्बेडिंग पर निर्भर थी।

1918 में, लेवी-सिविटा से स्वतंत्र रूप से, जान अर्नोल्ड स्काउटन ने समान परिणाम प्राप्त किए,[6] उसी वर्ष, हरमन वेइल ने लेवी-सिविटा के परिणामों को सामान्यीकृत किया जाता है।[7][8]

नोटेशन

  • (M, g) एक रीमैनियन ज्यामिति या छद्म-रिमैनियन ज्यामिति को दर्शाता है।
  • TM का स्पर्शरेखा बंडल M है।
  • g रीमैनियन मीट्रिक या छद्म-रीमैनियन मीट्रिक M है।
  • X, Y, Z, M पर चिकने सदिश क्षेत्र हैं।, TM के चिकने खंड होता है।
  • [X, Y] के सदिश क्षेत्रों का लाई ब्रैकेट है X और Y. यह फिर से एक सहज सदिश क्षेत्र है।

मीट्रिक जी दो सदिश या सदिश क्षेत्र X, Y को तर्क के रूप में ले सकता है। पहले स्थितियाँ में आउटपुट एक संख्या है, X और Y का (छद्म) आंतरिक उत्पाद, बाद के मामले में, Xp, Yp के आंतरिक उत्पाद को ज्यामिति पर सभी बिंदुओं पी पर लिया जाता है ताकि जी (X, Y) M एक सुचारू कार्य को परिभाषित करता है | सदिश क्षेत्र सुचारू कार्य पर अंतर ऑपरेटरों के रूप में (परिभाषा के अनुसार) कार्य करते हैं। स्थानीय निर्देशांक में क्रिया पढ़ती है।

जहां अल्बर्ट आइंस्टीन के आइंस्टीन सारांश सम्मेलन का उपयोग किया जाता है।

औपचारिक परिभाषा

एक एफ़िन संबंध को लेवी-सिविटा संबंध कहा जाता है यदि

  1. यह मीट्रिक को सुरक्षित रखता है, अर्थात, g = 0.
  2. यह मरोड़-मुक्त है अर्थात, किसी भी सदिश क्षेत्र के लिए X और Y अपने पास XY − ∇YX = [X, Y], जहां [X, Y] सदिश फ़ील्ड X और Y का लाई ब्रैकेट है।

उपरोक्त शर्त 1 को कभी-कभी मीट्रिक के साथ संगतता के रूप में संदर्भित किया जाता है, और स्थिति 2 को कभी-कभी समरूपता कहा जाता है।[9]

(छद्म) रीमैनियन ज्यामिति का मौलिक प्रमेय

प्रमेय प्रत्येक छद्म रीमैनियन ज्यामिति एक अनोखा लेवी सिविटा संबंध है।

प्रमाण:

यदि लेवी-सिविटा संबंध उपलब्ध है, तो यह अद्वितीय होना चाहिए, इसे देखने के लिए, टेन्सर्स पर संबंध की क्रिया की परिभाषा को सुलझाया जाता है।

इसलिए हम शर्त 1 को इस प्रकार लिख सकते है।

मीट्रिक टेंसर की समरूपता द्वारा फिर मिल जाता है:

शर्त 2 के अनुसार, दाहिना हाथ इसलिए समतुल्य है।

और हमें जीन-लुई कोस्ज़ुल सूत्र मिलता है।

इसलिए, यदि लेवी-सिविटा संबंध उपलब्ध है, तो यह अद्वितीय होना चाहिए, क्योंकि माना है, गैर पतित है, और दाहिने हाथ पर निर्भर नहीं है .

अस्तित्व को सिद्ध करने के लिए, दिए गए सदिश क्षेत्र के लिए ध्यान दें और , कोस्ज़ुल अभिव्यक्ति का दाहिना हाथ सदिश क्षेत्र में फ़ंक्शन-रैखिक है , सिर्फ वास्तविक रैखिक नहीं, अत: के गैर अध: पतन द्वारा , दाहिना हाथ विशिष्ट रूप से कुछ नए सदिश क्षेत्र को परिभाषित करता है जिसे हम सुझावात्मक रूप से दर्शाते हैं जैसे बायीं ओर. कोसज़ुल सूत्र को प्रतिस्थापित करके, अब सभी सदिश क्षेत्र के लिए इसकी जाँच की जाती है , और सभी कार्य

इसलिए कोसज़ुल अभिव्यक्ति, वास्तव में, एक संबंध को परिभाषित करती है, और यह संबंध मीट्रिक के साथ संगत है और टॉरशन मुक्त है, अर्थात एक इसलिए लेवी-सिविटा संबंध है।

ध्यान दें कि कॉमन परिवर्तनों के साथ एक ही प्रमाण दिखाता है कि एक अद्वितीय संबंध है जो मीट्रिक के साथ संगत है और इसमें टॉरशन निर्धारित है।

क्रिस्टोफर प्रतीक

कृपया ध्यान स्पर्शरेखा बंडल पर एक एफ़िन संबंध बनें, स्थानीय निर्देशांक चुनें समन्वय आधार सदिश क्षेत्र के साथ और लिखा के लिए . क्रिस्टोफ़ेल चिह्न का इन निर्देशांकों के संबंध में परिभाषित किया गया है।

क्रिस्टोफ़ेल चिह्न इसके विपरीत संबंध को परिभाषित करते हैं समन्वित निकटतम पर क्योंकि

वह है,

एक एफ़िन संबंध एक मीट्रिक आईएफएफ के साथ संगत है।

अर्थात, यदि और मात्र यदि

एक एफ़िन संबंध टॉरशन मुक्त है iff

अर्थात, यदि और मात्र यदि

इसके निचले दो सूचकांकों में सममित है।

जैसे कोई जांच करता है , सदिश क्षेत्रों का समन्वय करें (या सीधे गणना करता है), मीट्रिक के संदर्भ में , ऊपर प्राप्त लेवी-सिविटा संबंध की कोसज़ुल अभिव्यक्ति क्रिस्टोफ़ेल चिह्न की परिभाषा के समतुल्य है।

जहां निरंतर के जैसे दोहरे मीट्रिक टेंसर के गुणांक होते हैं, अर्थात मैट्रिक्स के व्युत्क्रम की प्रविष्टियाँ होती हैं।

वक्र के अनुदिश व्युत्पन्न

लेवी-सिविटा संबंध किसी भी एफ़िन संबंध की प्रकार भी वक्रों के साथ व्युत्पन्न को परिभाषित करता है, जिसे कभी-कभी D द्वारा दर्शाया जाता है।

एक सहज वक्र दिया गया है γ पर (M, g) और एक सदिश क्षेत्र V साथ में γ इसके व्युत्पन्न को परिभाषित किया गया है।

औपचारिक रूप से, D पुलबैक विभेदक ज्यामिति है γ*∇ पुलबैक बंडल पर γ*TM.

विशेष रूप से, वक्र के अनुदिश एक सदिश क्षेत्र है γ अपने आप। यदि लुप्त हो जाता है, वक्र को सहसंयोजक व्युत्पन्न का जियोडेसिक कहा जाता है। औपचारिक रूप से, स्थिति को लागू किए गए पुलबैक संबंध के गायब होने के रूप में दोहराया जा सकता है :

यदि सहसंयोजक व्युत्पन्न एक निश्चित मीट्रिक का लेवी-सिविटा संबंध है, तो संबंध के लिए जियोडेसिक्स वास्तव में मीट्रिक टेंसर के वे जियोडेसिक्स हैं जो उनकी चाप लंबाई के आनुपातिक रूप से पैरामीट्रिज्ड होते हैं।

समानांतर परिवहन

सामान्यत: किसी संबंध के संबंध में वक्र के साथ समानांतर परिवहन वक्र के बिंदुओं पर स्पर्शरेखा समिष्टों के बीच समरूपता को परिभाषित करता है। यदि संबंध लेवी-सिविटा संबंध है, तो ये समरूपताएं ऑर्थोगोनल समूह हैं अर्थात, वे विभिन्न स्पर्शरेखा समिष्टों पर आंतरिक उत्पादों को संरक्षित करते हैं।

नीचे दी गई छवियां ध्रुवीय समन्वय प्रणाली में व्यक्त, विमान पर दो भिन्न-भिन्न रीमैनियन मेट्रिक्स से जुड़े लेवी-सिविटा संबंध के समानांतर परिवहन को दिखाती हैं। बाईं छवि का मीट्रिक मानक यूक्लिडियन दूरी से मेल खाता है।, जबकि दाईं ओर की मीट्रिक का ध्रुवीय निर्देशांक में मानक रूप है कब , और इस प्रकार सदिश को सुरक्षित रखता है वृत्त की स्पर्शरेखा. इस दूसरे मीट्रिक के मूल में एक विलक्षणता है, जैसा कि इसे कार्टेशियन निर्देशांक में व्यक्त करके देखा जा सकता है।

Parallel transports under Levi-Civita connections
Cartesian transport
This transport is given by the metric .
Polar transport
This transport is given by the metric .

उदाहरण: इकाई क्षेत्र में R3

मान लीजिए ⟨ , ⟩ सामान्य अदिश गुणनफल पर हो R3. होने देना S2 इकाई क्षेत्र में हो R3. का स्पर्शरेखा समिष्ट S2 एक बिंदु पर m को स्वाभाविक रूप से सदिश उपस्थान के साथ पहचाना जाता है R3 सभी वैक्टर ओर्थोगोनल से मिलकर बना है m. यह एक सदिश क्षेत्र का अनुसरण करता है Y पर S2 को मानचित्र के रूप में देखा जा सकता है Y : S2R3, जो संतुष्ट करता है।

निरूपित करें dmY(X) मानचित्र का सहसंयोजक व्युत्पन्न Y सदिश की दिशा में X. तो हमारे पास हैं |

Lemma — The formula

defines an affine connection on S2 with vanishing torsion.

Proof

It is straightforward to prove that satisfies the Leibniz identity and is C(S2) linear in the first variable. It is also a straightforward computation to show that this connection is torsion free. So all that needs to be proved here is that the formula above does indeed define a vector field. That is, we need to prove that for all m in S2

Consider the map f that sends every m in S2 to Y(m), m, which is always 0. The map f is constant, hence its differential vanishes. In particular
The equation (1) above follows. Q.E.D.

वास्तव में, यह संबंध मेट्रिक ऑन के लिए लेवी-सिविटा संबंध है S2 विरासत में मिला R3. दरअसल, कोई यह जांच सकता है कि यह संबंध मीट्रिक को सुरक्षित रखता है।

यह भी देखें

  • वेइटज़ेनबॉक संबंध

टिप्पणियाँ

  1. 1.0 1.1 Levi-Civita, Tullio (1917). "Nozione di parallelismo in una varietà qualunque" [The notion of parallelism on any manifold]. Rendiconti del Circolo Matematico di Palermo (in italiano). 42: 173–205. doi:10.1007/BF03014898. JFM 46.1125.02. S2CID 122088291.
  2. Christoffel, Elwin B. (1869). "Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades". Journal für die reine und angewandte Mathematik. 1869 (70): 46–70. doi:10.1515/crll.1869.70.46. S2CID 122999847.
  3. See Spivak, Michael (1999). A Comprehensive introduction to differential geometry (Volume II). Publish or Perish Press. p. 238. ISBN 0-914098-71-3.
  4. Brouwer, L. E. J. (1906). "Het krachtveld der niet-Euclidische, negatief gekromde ruimten". Koninklijke Akademie van Wetenschappen. Verslagen. 15: 75–94.
  5. Brouwer, L. E. J. (1906). "The force field of the non-Euclidean spaces with negative curvature". Koninklijke Akademie van Wetenschappen. Proceedings. 9: 116–133. Bibcode:1906KNAB....9..116B.
  6. Schouten, Jan Arnoldus (1918). "Die direkte Analysis zur neueren Relativiteitstheorie". Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. 12 (6): 95.
  7. Weyl, Hermann (1918). "Gravitation und Elektrizitat". Sitzungsberichte Berliner Akademie: 465–480.
  8. Weyl, Hermann (1918). "Reine Infinitesimal geometrie". Mathematische Zeitschrift. 2 (3–4): 384–411. Bibcode:1918MatZ....2..384W. doi:10.1007/bf01199420. S2CID 186232500.
  9. Carmo, Manfredo Perdigão do (1992). रीमैनियन ज्यामिति. Francis J. Flaherty. Boston: Birkhäuser. ISBN 0-8176-3490-8. OCLC 24667701.


संदर्भ


बाहरी संबंध