आकारिक वर्ग नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, एक '''औपचारिक''' '''वर्ग''' '''नियम''' (सामान्यतः) एक [[औपचारिक शक्ति श्रृंखला]] है, जो ऐसा व्यवहार करता है, जैसे कि यह एक झूठ वर्ग का उत्पाद था। उन्हें [[एस बोचनर (1946)]] द्वारा पेश किया गया था। औपचारिक वर्ग शब्द का अर्थ कभी-कभी औपचारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। औपचारिक वर्ग झूठ वर्ग (या बीजगणितीय वर्गों) और झूठ बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी|बीजगणितीय टोपोलॉ]]में किया जाता है।
गणित में, एक '''आकारिक''' '''वर्ग''' '''नियम''' (सामान्यतः) एक [[औपचारिक शक्ति श्रृंखला|आकारिक शक्ति श्रृंखला]] है, जो ऐसा व्यवहार करता है, जैसे कि यह एक लाई वर्ग का उत्पाद था। उन्हें [[एस बोचनर (1946)]] द्वारा पेश किया गया था। आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या बीजगणितीय वर्गों) और लाई बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग [[बीजगणितीय संख्या सिद्धांत]] और [[बीजगणितीय टोपोलॉजी]] में किया जाता है।


==परिभाषाएँ==
==परिभाषाएँ==
एक [[क्रमविनिमेय वलय]] R पर एक आयामी औपचारिक वर्ग नियम एक शक्ति श्रृंखला F (x, y) है जिसमें R में गुणांक होते हैं, जैसे कि
एक [[क्रमविनिमेय वलय]] आर पर एक आयामी आकारिक वर्ग नियम एक शक्ति श्रृंखला एफ (x, y) है जिसमें आर में गुणांक होते हैं, जैसे कि
# ''F''(''x'',''y'') = ''x'' + ''y'' + उच्च डिग्री के पद
# ''F''(''x'',''y'') = ''x'' + ''y'' + उच्च डिग्री के पद
# ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'' ,''y''), ''z'') (सहयोगिता)।
# ''F''(''x'', ''F''(''y'',''z'')) = ''F''(''F''(''x'' ,''y''), ''z'') (सहयोगिता)।
सबसे सरल उदाहरण योजक औपचारिक वर्ग कानून F(x, y) = x + y है। परिभाषा का विचार यह है, कि एफ को एक झूठ वर्ग के उत्पाद के औपचारिक शक्ति श्रृंखला विस्तार की तरह कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं, ताकि झूठ वर्ग की पहचान मूल सकती है।
सबसे सरल उदाहरण योजक आकारिक वर्ग कानून एफ(x, y) = x + y है। परिभाषा का विचार यह है, कि एफ को एक लाई वर्ग के उत्पाद के आकारिक शक्ति श्रृंखला विस्तार की तरह कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं, ताकि लाई वर्ग की पहचान मूल सकती है।


अधिक आम तौर पर, एक एन-आयामी औपचारिक वर्ग कानून 2n चर में एन पावर श्रृंखला एफआई F<sub>i</sub>(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>, y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n</sub>)) का एक संग्रह है, जैसे कि
अधिक आम तौर पर, एक एन-आयामी आकारिक वर्ग कानून 2n चर में एन पावर श्रृंखला एफआई F<sub>i</sub>(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>, y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n</sub>)) का एक संग्रह है, जैसे कि
# F(x,y) = x + y + उच्च डिग्री के पद
# F(x,y) = x + y + उच्च डिग्री के पद
# F(x, F(y,z)) = F(F(x,y), z)
# F(x, F(y,z)) = F(F(x,y), z)
जहां हम F के लिए (F1, ..., Fn), x के लिए (x1, ..., xn), और इसी तरह लिखते हैं।
जहां हम एफ के लिए (F1, ..., Fn), x के लिए (x1, ..., xn), और इसी तरह लिखते हैं।


औपचारिक वर्ग कानून को कम्यूटेटिव कहा जाता है, यदि F(x,y) = F(y,x) यदि R टॉरशन फ्री है, तो कोई R को Q-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी औपचारिक वर्ग कानून F को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए F आवश्यक रूप से कम्यूटेटिव है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक आम तौर पर, हमारे पास है:
आकारिक वर्ग कानून को कम्यूटेटिव कहा जाता है, यदि F(x,y) = F(y,x) यदि आर टॉरशन फ्री है, तो कोई आर को क्यू-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी आकारिक वर्ग कानून एफ को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए एफ आवश्यक रूप से कम्यूटेटिव है।<ref>Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that ''F'' is commutative.</ref> अधिक आम तौर पर, हमारे पास है।
:प्रमेय. आर पर प्रत्येक एक-आयामी औपचारिक वर्ग कानून क्रमविनिमेय है, यदि आर में कोई नॉनज़ीरो टोरसन निलपोटेंट नहीं है, (यानी, कोई गैर-शून्य तत्व नहीं है जो मरोड़ और निलपोटेंट दोनों हैं)।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref>
:प्रमेय. आर पर प्रत्येक एक-आयामी आकारिक वर्ग कानून क्रमविनिमेय है, यदि आर में कोई नॉनज़ीरो टोरसन निलपोटेंट नहीं है, (यानी, कोई गैर-शून्य तत्व नहीं है जो मरोड़ और निलपोटेंट दोनों हैं)।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§6.1}}</ref>
[[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह औपचारिक वर्ग कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम हमेशा एक (अद्वितीय) पावर श्रृंखला पा सकते हैं।
[[समूह (गणित)|वर्ग (गणित)]] के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम हमेशा एक (अद्वितीय) पावर श्रृंखला पा सकते हैं।


आयाम m के औपचारिक वर्ग नियम F से आयाम n के औपचारिक वर्ग नियम जी तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह f है, जैसे कि
आयाम m के आकारिक वर्ग नियम F से आयाम n के आकारिक वर्ग नियम जी तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह f है, जैसे कि
::G(f(x), f(y)) = f(F(x,y)).
::G(f(x), f(y)) = f(F(x,y)).
व्युत्क्रम के साथ एक समरूपता को आइसोमोर्फिज्म कहा जाता है, और इसे सख्त आइसोमोर्फिज्म कहा जाता है, यदि इसके अलावाf(x) = x + उच्च डिग्री की शर्तें, उनके बीच एक आइसोमोर्फिज्म के साथ दो औपचारिक वर्ग कानून अनिवार्य रूप से समान हैं, वे केवल "निर्देशांक के परिवर्तन" से भिन्न होते हैं।
व्युत्क्रम के साथ एक समरूपता को आइसोमोर्फिज्म कहा जाता है, और इसे सख्त आइसोमोर्फिज्म कहा जाता है, यदि इसके अलावाf(x) = x + उच्च डिग्री की शर्तें, उनके बीच एक आइसोमोर्फिज्म के साथ दो आकारिक वर्ग कानून अनिवार्य रूप से समान हैं, वे केवल "निर्देशांक के परिवर्तन" से भिन्न होते हैं।


==उदाहरण==
==उदाहरण==
*योगात्मक औपचारिक वर्ग नियम द्वारा दिया गया है।
*योगात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
:: <math>F(x,y) = x + y.\ </math>
:: <math>F(x,y) = x + y.\ </math>
*गुणात्मक औपचारिक वर्ग नियम द्वारा दिया गया है।
*गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
:: <math>F(x,y) = x + y + xy.\ </math>
:: <math>F(x,y) = x + y + xy.\ </math>
:इस नियम को इस प्रकार समझा जा सकता है। रिंग R के गुणक समूह में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए "निर्देशांक बदलते हैं", तो हम पाते हैं कि F(x,y) = x + y + xy।
:इस नियम को इस प्रकार समझा जा सकता है। रिंग आर के गुणक समूह में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए "निर्देशांक बदलते हैं", तो हम पाते हैं कि F(x,y) = x + y + xy.
[[तर्कसंगत संख्याओं]] पर, योगात्मक औपचारिक वर्ग नियम से गुणक तक एक आइसोमोर्फिज्म होता है, जो एक्सपी (एक्स) − 1 द्वारा दिया जाता है। सामान्य कम्यूटेटिव रिंग्स आर पर ऐसा कोई समरूपता नहीं है क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक औपचारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं।
[[तर्कसंगत संख्याओं]] पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक आइसोमोर्फिज्म होता है, जो एक्सपी (एक्स) − 1 द्वारा दिया जाता है। सामान्य कम्यूटेटिव रिंग्स आर पर ऐसा कोई समरूपता नहीं है, क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक आकारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं।


*सामान्यतः, आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के औपचारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय समूह या आयाम एन के झूठ समूह से आयाम एन के एक औपचारिक समूह कानून का निर्माण कर सकते हैं। योगात्मक और गुणक औपचारिक समूह कानून इस तरह से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष मामला एक [[अंडाकार वक्र]] (या [[एबेलियन किस्म]]) का औपचारिक समूह (नियम) है।
*सामान्यतः, आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय समूह या आयाम एन के लाई समूह से आयाम एन के एक आकारिक समूह कानून का निर्माण कर सकते हैं। योगात्मक और गुणक आकारिक समूह कानून इस तरह से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष मामला एक [[अंडाकार वक्र]] (या [[एबेलियन किस्म]]) का आकारिक समूह (नियम) है।
*F(x,y) = (x + y)/(1 + xy) हाइपरबॉलिक स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र से आने वाला एक औपचारिक समूह नियम है: tanh(x + y) = F(tanh(x), tanh(y)), और यह [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है (1 के बराबर [[प्रकाश की गति]] के साथ)।
*F(x,y) = (x + y)/(1 + xy) हाइपरबॉलिक स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र से आने वाला एक आकारिक समूह नियम है: tanh(x + y) = F(tanh(x), tanh(y)), और यह [[विशेष सापेक्षता]] में वेगों को जोड़ने का सूत्र भी है (1 के बराबर [[प्रकाश की गति]] के साथ)।
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> जेड पर एक औपचारिक समूह कानून है[1/2] [[यूलर]] द्वारा पाया गया, एक एलिप्टिक इंटीग्रल (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में:
*<math display="inline">F(x,y) = \left. \left(x\sqrt{1-y^4} +y\sqrt{1-x^4}\right) \right/ \!(1+x^2y^2)</math> जेड पर एक आकारिक समूह कानून है[1/2] [[यूलर]] द्वारा पाया गया, एक एलिप्टिक इंटीग्रल (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में:


:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math>
:: <math>\int_0^x{dt\over \sqrt{1-t^4}} + \int_0^y{dt\over \sqrt{1-t^4}} = \int_0^{F(x,y)}{dt\over \sqrt{1-t^4}}.</math>
==लाई बीजगणित==
==लाई बीजगणित==


कोई भी एन-आयामी औपचारिक समूह कानून रिंग आर पर एक एन-आयामी लाई बीजगणित देता है, जिसे औपचारिक समूह कानून के द्विघात भाग एफ 2 के संदर्भ में परिभाषित किया गया है।
कोई भी एन-आयामी आकारिक समूह कानून रिंग आर पर एक एन-आयामी लाई बीजगणित देता है, जिसे आकारिक समूह कानून के द्विघात भाग एफ 2 के संदर्भ में परिभाषित किया गया है।
:[x,y] = एफ<sub>2</sub>(एक्स,वाई) - एफ<sub>2</sub>(वाई,एक्स)
:[x,y] = एफ<sub>2</sub>(एक्स,वाई) - एफ<sub>2</sub>(वाई,एक्स)
लाई वर्गों या बीजगणितीय समूहों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से औपचारिक समूह कानूनों में शामिल किया जा सकता है, इसके बाद औपचारिक समूह के झूठ बीजगणित को लिया जा सकता है:
लाई वर्गों या बीजगणितीय समूहों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से आकारिक समूह कानूनों में शामिल किया जा सकता है, इसके बाद आकारिक समूह के लाई बीजगणित को लिया जा सकता है:
::लाई वर्ग → औपचारिक वर्ग नियम → लाई बीजगणित
::लाई वर्ग → आकारिक वर्ग नियम → लाई बीजगणित


[[विशेषता (बीजगणित)]] 0 के क्षेत्रों में, औपचारिक समूह कानून अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं: अधिक सटीक रूप से, परिमित-आयामी औपचारिक समूह कानूनों से परिमित-आयामी झूठ बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, औपचारिक समूह कानून लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है कि एक बीजगणितीय समूह से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय औपचारिक समूह कानून में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में औपचारिक समूह कानून विशेषता पी > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।
[[विशेषता (बीजगणित)]] 0 के क्षेत्रों में, आकारिक समूह कानून अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं, अधिक सटीक रूप से, परिमित-आयामी आकारिक समूह कानूनों से परिमित-आयामी लाई बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§14.2.3}}</ref> गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक समूह कानून लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है, कि एक बीजगणितीय समूह से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय आकारिक समूह कानून में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक समूह कानून विशेषता पी > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।


==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक==
==क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक==


यदि एफ एक कम्यूटेटिव क्यू-बीजगणित आर पर एक कम्यूटेटिव एन-आयामी औपचारिक समूह कानून है, तो यह योगात्मक औपचारिक समूह कानून के लिए सख्ती से आइसोमोर्फिक है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक औपचारिक समूह से एफ तक एक सख्त आइसोमोर्फिज्म एफ है, जिसे एफ का लघुगणक कहा जाता है, ताकि
यदि एफ एक कम्यूटेटिव क्यू-बीजगणित आर पर एक कम्यूटेटिव एन-आयामी आकारिक समूह कानून है, तो यह योगात्मक आकारिक समूह कानून के लिए सख्ती से आइसोमोर्फिक है।<ref>{{Cite book |last=Hazewinkel |first=Michiel |title=औपचारिक समूह और अनुप्रयोग|at=§11.1.6}}</ref> दूसरे शब्दों में, योगात्मक आकारिक समूह से एफ तक एक सख्त आइसोमोर्फिज्म एफ है, जिसे एफ का लघुगणक कहा जाता है, ताकि
::f(F(x,y)) = f(x) + f(y).
::f(F(x,y)) = f(x) + f(y).


Line 51: Line 51:
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) है '') = लॉग(1+''x''), क्योंकि लॉग(1+''x''+''y''+''xy'') = लॉग(1+''x'')+ लॉग(1+''y'').
*''F''(''x'',''y'') = ''x'' + ''y'' +''xy'' का लघुगणक ''f''(''x) है '') = लॉग(1+''x''), क्योंकि लॉग(1+''x''+''y''+''xy'') = लॉग(1+''x'')+ लॉग(1+''y'').


यदि R में परिमेय नहीं है, तो R Q तक अदिश राशि के विस्तार द्वारा एक मानचित्र f का निर्माण किया जा सकता है, लेकिन यदि R में सकारात्मक विशेषता है तो यह सब कुछ शून्य पर भेज देगा। रिंग आर पर औपचारिक समूह कानून अक्सर उनके लघुगणक को आर ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह साबित किया जाता है कि आर ⊗ क्यू पर संबंधित औपचारिक समूह के गुणांक वास्तव में आर में हैं। सकारात्मक में काम करते समय विशेषता, कोई आम तौर पर आर को एक मिश्रित विशेषता रिंग से बदल देता है जिसका आर पर प्रक्षेपण होता है, जैसे कि विट वैक्टर की रिंग डब्ल्यू (आर), और अंत में आर तक कम हो जाती है।
यदि आर में परिमेय नहीं है, तो आर क्यू तक अदिश राशि के विस्तार द्वारा एक मानचित्र एफ का निर्माण किया जा सकता है, लेकिन यदि आर में सकारात्मक विशेषता है, तो यह सब कुछ शून्य पर भेज दिया जाता है। रिंग आर पर आकारिक समूह कानून अक्सर उनके लघुगणक को आर ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह साबित किया जाता है, कि आर ⊗ क्यू पर संबंधित आकारिक समूह के गुणांक वास्तव में आर में हैं। सकारात्मक में काम करते समय विशेषता, कोई आम तौर पर आर को एक मिश्रित विशेषता रिंग से बदल देता है, जिसका आर पर प्रक्षेपण होता है, जैसे कि विट वैक्टर की रिंग डब्ल्यू (आर), और अंत में आर तक कम हो जाती है।


=== अपरिवर्तनीय अंतर ===
=== अपरिवर्तनीय अंतर ===
जब F एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय विभेदक ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref> होने देना <math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>कहाँ <math display="inline">R[[t]] dt</math> नि: शुल्क है <math display="inline">R[[t]]</math>-एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है कि <math display="block">F^* \omega = \omega,</math>अगर हम लिखते हैं<math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है।<math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>F के लघुगणक को परिभाषित करता है।
जब एफ एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय विभेदक ω(t) के संदर्भ में लिख सकता है।<ref>{{Cite web |last=Mavraki |first=Niki Myrto |title=औपचारिक समूह|url=https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |url-status=live |archive-url=https://web.archive.org/web/20220912144322/https://personal.math.ubc.ca/~reichst/FormalGroups.pdf |archive-date=2022-09-12}}</ref> होने देना <math display="block">\omega(t) = \frac{\partial F}{\partial x}(0,t)^{-1} dt \in R[[t]]dt,</math>कहाँ <math display="inline">R[[t]] dt</math> नि: शुल्क है, <math display="inline">R[[t]]</math>-एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है कि <math display="block">F^* \omega = \omega,</math>अगर हम लिखते हैं, <math display="inline">\omega(t) = p(t)dt</math>, तो परिभाषा के अनुसार<math display="block">F^* \omega := p(F(t,s)) \frac{\partial F}{\partial x}(t,s) dt.</math>यदि कोई विस्तार पर विचार करता है।<math display="inline">\omega(t) = (1 + c_1 t + c_2 t^2 + \dots) dt</math>, सूत्र<math display="block">f(t) = \int \omega(t) = t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots</math>एफ के लघुगणक को परिभाषित करता है।


==आकारिक वर्ग नियम का आकारिक वर्ग वलय==
==आकारिक वर्ग नियम का आकारिक वर्ग वलय==


एक आकारिक वर्ग नियम का आकारिक वर्ग वलय एक वर्ग के वर्ग वलय और एक ली बीजगणित के [[सार्वभौमिक आवरण बीजगणित]] के अनुरूप एक सह-विनिमेय [[हॉपफ बीजगणित]] है, जो दोनों सह-अनुकरणीय हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित बहुत हद तक वर्गों की तरह व्यवहार करते हैं।
एक आकारिक वर्ग नियम की आकारिक वर्ग वलय एक वर्ग के वर्ग वलय के अनुरूप एक सह-विनिमेय [[हॉपफ बीजगणित]] है, और एक ली बीजगणित के [[सार्वभौमिक आवरण बीजगणित]] के समान है, जिनमें से दोनों कोकम्यूटेटिव हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित वर्गों की तरह व्यवहार करते हैं।
 
सादगी के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है, सिवाय इसके कि नोटेशन अधिक शामिल हो जाता है।


सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।
सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।


मान लीजिए कि F, R के ऊपर एक (1-आयामी) आकारिक वर्ग नियम है। इसका 'आकारिक वर्ग वलय' (जिसे इसका 'हाइपरलेजेब्रा' या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित H है, जिसका निर्माण इस प्रकार किया गया है।
मान लीजिए कि एफ, आर पर एक (1-आयामी) आकारिक समूह कानून है। इसकी आकारिक समूह वलय (जिसे हाइपरलेजेब्रा या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित एच है जिसका निर्माण निम्नानुसार किया गया है।
* आर-[[मॉड्यूल (गणित)]] के रूप में, एच एक आधार 1 = डी के साथ [[मुफ़्त मॉड्यूल]] है<sup>(0)</sup>, डी<sup>(1)</sup>, डी<sup>(2)</sup>,...
* एक आर-[[मॉड्यूल (गणित)]] के रूप में, एच एक आधार 1 = डी (0), डी (1), डी (2), ...
* सहउत्पाद Δ, ΔD द्वारा दिया जाता है<sup>(n)</sup> = ΣD<sup>(i)</sup>‍⊗ डी<sup>(n−i)</sup> (इसलिए इस कोलजेब्रा का द्वैत केवल आकारिक शक्ति श्रृंखला का वलय है)।
* सह-उत्पाद त्रिभुज <sup>(n)</sup> = Σडी<sup>(i)</sup>‍⊗ डी<sup>(n−i)</sup> द्वारा दिया गया है, (इसलिए इस को बीजगणित का कोलजेब्रा का द्वैत केवल आकारिक शक्ति श्रृंखला की वलय है)।
*गणक η D के गुणांक द्वारा दिया जाता है<sup>(0)</sup>.
*गणक η डी (0) के गुणांक द्वारा दिया गया है।
*पहचान 1 = D है<sup>(0)</sup>.
*पहचान 1 = डी(0) है।
*एंटीपोड एस डी लेता है<sup>(n)</sup> से (−1)<sup>एन</sup>डी<sup>(एन)</sup>.
*एंटीपोड एस डी <sup>(n)</sup> से (−1)<sup>एन</sup>डी<sup>(एन)</sup> तक ले जाता है।
*डी का गुणांक<sup>(1) उत्पाद डी में<sup>(i)</sup>D<sup>(j)</sup>x का गुणांक है<sup>मैं</sup>y<sup>j</sup> F(x,y) में।
*गुणांक डी(i)डी(j) में डी(1) का गुणांक, F(x,y) में xiyj का गुणांक है।


इसके विपरीत, एक हॉपफ बीजगणित दिया गया है जिसकी कोलजेब्रा संरचना ऊपर दी गई है, हम इससे एक आकारिक वर्ग नियम एफ पुनर्प्राप्त कर सकते हैं। तो 1-आयामी आकारिक वर्ग नियम अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी कोलजेब्रा संरचना ऊपर दी गई है।
इसके विपरीत, एक हॉपफ बीजगणित को देखते हुए जिसकी को बीजगणित संरचना ऊपर दी गई है, हम इससे एक आकारिक समूह कानून एफ पुनर्प्राप्त कर सकते हैं। इसलिए 1-आयामी आकारिक समूह कानून अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी को बीजगणित संरचना ऊपर दी गई है।


==कार्यकर्ताओं के रूप में आकारिक वर्ग नियम==
==कार्यकर्ताओं के रूप में आकारिक वर्ग नियम==


R पर एक n-आयामी आकारिक वर्ग नियम 'F' और एक क्रमविनिमेय R-बीजगणित S को देखते हुए, हम एक वर्ग 'F'(S) बना सकते हैं जिसका अंतर्निहित सेट N है<sup>n</sup> जहां N, S के शून्यप्रभावी तत्वों का समुच्चय है। N के तत्वों को गुणा करने के लिए 'F' का उपयोग करके उत्पाद दिया जाता है।<sup>n</sup>; मुद्दा यह है कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित हो गई हैं क्योंकि उन्हें शून्य-शक्तिशाली तत्वों पर लागू किया जा रहा है, इसलिए गैर-शून्य शब्दों की केवल एक सीमित संख्या है।
आर पर एक n-आयामी आकारिक वर्ग नियम एफ और एक क्रमविनिमेय आर-बीजगणित को देखते हुए, हम एक समूह एफ() बना सकते हैं, जिसका अंतर्निहित सेट Nn है जहां N, के निलपोटेंट तत्वों का समुच्चय है। उत्पाद को एनएन के तत्वों को गुणा करने के लिए एफ का उपयोग करके दिया जाता है, मुद्दा यह है, कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित करती हैं, क्योंकि उन्हें निलपोटेंट तत्वों पर लागू किया जा रहा है, इसलिए केवल गैर-शून्य शब्दों की एक सीमित संख्या है।
यह 'F' को क्रमविनिमेय R-बीजगणित S से वर्गों तक एक फ़नकार बनाता है।
 
यह एफ को क्रमविनिमेय आर-बीजगणित एस से समूहों में एक फ़नकार बनाता है।


हम 'एफ'(एस) की परिभाषा को कुछ टोपोलॉजिकल बीजगणित|टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि S असतत R बीजगणित की व्युत्क्रम सीमा है, तो हम 'F'(S) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें 'F'('Z') को परिभाषित करने की अनुमति देता है<sub>''p''</sub>) पी-एडिक संख्या|पी-एडिक संख्याओं में मानों के साथ।
हम एफ (एस) की परिभाषा को कुछ टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि एस असतत आर बीजगणित की व्युत्क्रम सीमा है, तो हम एफ (एस) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें पी-एडिक संख्याओं में मानों के साथ एफ (जेडपी) को परिभाषित करने की अनुमति देता है।


'एफ' के वर्ग-मूल्यवान फ़ैक्टर को 'एफ' के आकारिक वर्ग रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि 'एफ' 1-आयामी है; सामान्य मामला समान है. किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है यदि Δg = g ⊗ g और εg = 1, और वर्ग-समान तत्व गुणन के तहत एक वर्ग बनाते हैं। एक रिंग पर आकारिक वर्ग नियम के हॉपफ बीजगणित के मामले में, वर्ग जैसे तत्व बिल्कुल फॉर्म के होते हैं
एफ के वर्ग-मूल्यवान फ़ैक्टर को एफ के आकारिक समूह रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि एफ 1-आयामी है; सामान्य मामला समान है। किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है, यदि Δg = g ⊗ g और εg = 1, और समूह जैसे तत्व गुणन के तहत एक समूह बनाते हैं। एक रिंग पर एक आकारिक समूह कानून के हॉपफ बीजगणित के मामले में, समूह जैसे तत्व बिल्कुल फॉर्म के होते हैं।
:डी<sup>(0)+डी<sup>(1)x+डी<sup>(2)x<sup>2</sup> +...
:''D''<sup>(0)</sup> + ''D''<sup>(1)</sup>''x'' + ''D''<sup>(2)</sup>''x''<sup>2</sup> + ...
शून्यशक्तिशाली तत्वों x के लिए। विशेष रूप से हम H S के वर्ग-जैसे तत्वों की पहचान S के निलपोटेंट तत्वों से कर सकते हैं, और H S के वर्ग-जैसे तत्वों पर वर्ग संरचना की पहचान 'F'(S) पर वर्ग संरचना से की जाती है।
निलोपोटेंट तत्वों के लिए x, विशेष रूप से हम एस के निलपोटेंट तत्वों के साथ एच एस के समूह जैसे तत्वों की पहचान कर सकते हैं, और एच एस के वर्ग जैसे तत्वों पर समूह संरचना को तब एफ (एस) पर समूह संरचना के साथ पहचाना जाता है।


==ऊंचाई==
==ऊंचाई==
मान लीजिए कि f विशेषता p > 0 के क्षेत्र पर एक-आयामी आकारिक वर्ग नियमों के बीच एक समरूपता है। तब f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य शब्द है <math>ax^{p^h}</math> कुछ गैर-नकारात्मक [[पूर्णांक]] h के लिए, जिसे समरूपता f की 'ऊंचाई' कहा जाता है। शून्य समरूपता की ऊंचाई ∞ के रूप में परिभाषित की गई है।
मान लीजिए कि एफ विशेषता पी > 0 के क्षेत्र पर एक-आयामी आकारिक समूह कानूनों के बीच एक समरूपता है। फिर f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य पद क्या है? <math>ax^{p^h}</math>
 
कुछ गैर-ऋणात्मक पूर्णांक H के लिए ax^{p^h}, जिसे समरूपता f की ऊंचाई कहा जाता है। शून्य समरूपता की ऊंचाई को ∞ के रूप में परिभाषित किया गया है।


विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक वर्ग नियम की 'ऊंचाई' को पी मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।
विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक समूह कानून की ऊंचाई को p मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।


विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी आकारिक वर्ग नियम आइसोमोर्फिक हैं यदि और केवल तभी जब उनकी ऊंचाई समान हो, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।
विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी आकारिक समूह नियम आइसोमोर्फिक हैं यदि उनके पास समान ऊंचाई है, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।


उदाहरण:
उदाहरण:
*योगात्मक आकारिक वर्ग नियम F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
*योगात्मक आकारिक समूह कानून F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
*गुणात्मक आकारिक वर्ग नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x) है<sup>p</sup> - 1 = x<sup>प</sup>.
*गुणक आकारिक समूह नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x)p 1 = xp है।
*अण्डाकार वक्र के आकारिक वर्ग नियम की ऊंचाई या तो एक या दो होती है, यह इस पर निर्भर करता है कि वक्र सामान्य है या [[सुपरसिंगुलर]]। आइज़ेंस्टीन श्रृंखला के लुप्त होने से सुपरसिंग्युलैरिटी का पता लगाया जा सकता है <math>E_{p-1}</math>.
*एक अंडाकार वक्र के आकारिक समूह नियम में ऊंचाई या तो एक या दो होती है, जो इस बात पर निर्भर करता है कि वक्र साधारण है, या [[सुपरसिंगुलर]]। आइसेनस्टीन श्रृंखला के लुप्त होने से सुपरसिंगुलैरिटी का पता लगाया जा सकता है। <math>E_{p-1}</math>.


==लेज़ार्ड रिंग==
==लेज़ार्ड रिंग==
{{main|Lazard's universal ring}}
{{main|लाजार्ड यूनिवर्सल रिंग}}
एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय आकारिक वर्ग नियम है जिसे इस प्रकार परिभाषित किया गया है। हम जाने
 
एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय एक-आयामी आकारिक समूह कानून निम्नानुसार परिभाषित है। हम अनुमति देते हैं।


:एफ(एक्स,वाई)
:एफ(एक्स,वाई)
Line 109: Line 115:
:सी<sub>''i'',''j''</sub>,
:सी<sub>''i'',''j''</sub>,


और हम सार्वभौमिक वलय R को तत्वों c द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं<sub>''i'',''j''</sub>, उन संबंधों के साथ जो आकारिक वर्ग नियमों के लिए साहचर्यता और क्रमविनिमेयता नियमों द्वारा मजबूर हैं। परिभाषा के अनुसार कमोबेश, वलय R में निम्नलिखित सार्वभौमिक गुण हैं:
और हम सार्वभौमिक रिंग आर को तत्वों द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं, जो आकारिक समूह कानूनों के लिए संबद्धता और क्रमविनिमेयता नियमों द्वारा मजबूर संबंधों के साथ हैं। परिभाषा के अनुसार कम या ज्यादा, वलय आर में निम्नलिखित सार्वभौमिक गुण हैं।
:किसी भी क्रमविनिमेय वलय S के लिए, S पर एक-आयामी आकारिक वर्ग नियम R से S तक [[वलय समरूपता]] के अनुरूप हैं।
:किसी भी कम्यूटेटिव वलय एस के लिए, एस पर एक-आयामी आकारिक वर्ग नियम आर से एस तक [[वलय समरूपता]] के अनुरूप हैं।


ऊपर निर्मित क्रमविनिमेय वलय R को 'लेज़ार्ड की सार्वभौमिक वलय' के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालाँकि लैज़ार्ड ने साबित किया कि इसकी एक बहुत ही सरल संरचना है: यह डिग्री 2, 4, 6, ... (जहाँ c<sub>''i'',''j''</sub> डिग्री 2(i+j−1)) है। [[डेनियल क्विलेन]] ने असामान्य ग्रेडिंग की व्याख्या करते हुए साबित किया कि जटिल कोबॉर्डिज्म का गुणांक रिंग स्वाभाविक रूप से लैजार्ड की सार्वभौमिक रिंग के लिए एक ग्रेडेड रिंग के रूप में आइसोमोर्फिक है।
ऊपर निर्मित कम्यूटेटिव वलय आर को लाजार्ड की सार्वभौमिक वलय के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालांकि लाजार्ड ने साबित कर दिया कि इसकी एक बहुत ही सरल संरचना है। यह डिग्री 2, 4, 6, ... (जहां ci, j की डिग्री 2 (i + j − 1)) है। [[डेनियल क्विलेन]] ने साबित किया कि जटिल कोबोर्डिज्म की गुणांक रिंग स्वाभाविक रूप से लाजार्ड की सार्वभौमिक रिंग के लिए एक वर्गीकृत रिंग के रूप में आइसोमोर्फिक है, जो असामान्य ग्रेडिंग की व्याख्या करती है।


==आकारिक वर्ग==
==आकारिक वर्ग==


आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है।
एक आकारिक वर्ग [[औपचारिक योजना|आकारिक योजना]]ओं की [[श्रेणी (गणित)]] में एक [[समूह वस्तु|वर्ग वस्तु]] है।
* अगर <math>G</math> [[बीजगणित की कला]] से वर्गों के लिए एक फ़नकार है जिसे सटीक फ़नकार छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (एक आकारिक वर्ग के बिंदुओं का फ़नकार है। (फ़नकार की बाईं सटीकता परिमित प्रक्षेप्य सीमाओं के साथ आने के बराबर है)।
* अगर <math>G</math> आर्टिन बीजगणित से उन वर्गों तक एक नियम है जिन्हें सटीक छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (G एक आकारिक समूह के बिंदुओं का कारक है)। (एक लापरवाह की बाईं सटीकता परिमित प्रोजेक्टिव सीमाओं के साथ यात्रा करने के बराबर है)।
* अगर <math>G</math> तो यह एक [[समूह योजना|वर्ग योजना]] है <math> \widehat{G} </math>, पहचान पर का आकारिक समापन, एक आकारिक वर्ग की संरचना है।
* अगर <math>G</math> तब एक [[समूह योजना|वर्ग योजना]] है ,<math> \widehat{G} </math>, पहचान पर G के आकारिक समापन में, एक आकारिक समूह की संरचना है।
*एक सुचारु वर्ग योजना का आकारिक समापन समरूपी है <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>. कुछ लोग आकारिक वर्ग योजना को सुचारू कहते हैं यदि इसका विपरीत प्रभाव पड़ता है; अन्य लोग इस रूप की स्थानीय वस्तुओं के लिए आकारिक वर्ग शब्द को आरक्षित रखते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref>
*एक सुचारु वर्ग योजना का आकारिक समापन समरूपी के लिए आइसोमोर्फिक है, <math>\mathrm{Spf}(R[[T_1,\ldots,T_n]])</math>, कुछ लोग एक आकारिक समूह योजना को सुचारू कहते हैं, यदि विपरीत प्रभाव होती है, अन्य इस रूप की स्थानीय वस्तुओं के लिए "आकारिक वर्ग" शब्द आरक्षित करते हैं।<ref>{{cite web | last=Weinstein | first=Jared | title=ल्यूबिन-टेट स्पेस की ज्यामिति| url=http://math.bu.edu/people/jsweinst/FRGLecture.pdf}}</ref>
*आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व पर जोर देती है और उन आकारिक योजनाओं पर लागू हो सकती है जो बिंदुओं से बड़ी हैं। एक सुचारु आकारिक वर्ग योजना आकारिक वर्ग योजना का एक विशेष मामला है।
*आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व का जोर करती है, और आकारिक योजनाओं पर लागू हो सकती है, जो बिंदुओं से बड़ी हैं। एक सहज आकारिक समूह योजना एक आकारिक समूह योजना का एक विशेष मामला है।
*एक सुचारू आकारिक वर्ग को देखते हुए, कोई भी अनुभागों का एक समान सेट चुनकर एक आकारिक वर्ग नियम और एक क्षेत्र का निर्माण कर सकता है।
*एक सहज आकारिक समूह को देखते हुए, कोई भी वर्गों के एक समान सेट का चयन करके एक आकारिक समूह कानून और एक क्षेत्र का निर्माण कर सकता है।
*मापदंडों के परिवर्तन से प्रेरित आकारिक वर्ग नियमों के बीच (गैर-सख्त) समरूपताएं आकारिक वर्ग पर समन्वय परिवर्तन के वर्ग के तत्व बनाती हैं।
*मापदंडों के परिवर्तन से प्रेरित आकारिक समूह कानूनों के बीच (गैर-सख्त) आइसोमोर्फिज्म आकारिक समूह पर समन्वय परिवर्तनों के समूह के तत्वों को बनाते हैं।


आकारिक वर्गों और आकारिक वर्ग नियमों को केवल क्रमविनिमेय रिंगों या क्षेत्रों के बजाय मनमानी [[योजना (गणित)]] पर भी परिभाषित किया जा सकता है, और परिवारों को आधार से पैरामीट्रिज़िंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।
आकारिक वर्गों और आकारिक वर्ग नियमों को मनमानी [[योजना (गणित)]] पर भी परिभाषित किया जा सकता है, न कि केवल क्रमविनिमेय रिंगों या क्षेत्रों पर, और परिवारों को आधार से एक परमेट्रिंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।


आकारिक वर्ग नियमों का मॉड्यूलि स्पेस अनंत-आयामी एफ़िन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटक आयाम द्वारा पैरामीट्रिज्ड होते हैं, और जिनके बिंदु पावर श्रृंखला 'एफ' के स्वीकार्य गुणांक द्वारा पैरामीट्रिज्ड होते हैं। सुचारू आकारिक वर्गों का संबंधित [[मॉड्यूलि स्टैक]] समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।
आकारिक वर्ग नियमों का मॉड्यूलि स्पेस अनंत-आयामी एफिन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटकों को आयाम द्वारा परमेट्राइज्ड किया जाता है, और जिनके बिंदुओं को पावर श्रृंखला एफ के स्वीकार्य गुणांक द्वारा परमेट्राइज्ड किया जाता है। सुचारू आकारिक वर्गों का संबंधित [[मॉड्यूलि स्टैक]] समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।


बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी आकारिक वर्गों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर आकारिक वर्गों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक वर्ग द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से [[सुपरसिंगुलर एबेलियन किस्म]] के मामले में। [[सुपरसिंगुलर अण्डाकार वक्र]]ों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां आकारिक वर्ग में कोई विकृति नहीं है।
बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी आकारिक समूहों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर आकारिक वर्गों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक समूह द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से [[सुपरसिंगुलर]] एबेलियन किस्मों के मामले में। [[सुपरसिंगुलर अण्डाकार वक्रों]] के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां आकारिक समूह में कोई विकृति नहीं है।


एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों को जोड़ा जाता है, जैसे इंगित किया जाना या जुड़ा होना)।<ref name=Und121>{{cite book | last=Underwood | first=Robert G. | title=हॉपफ बीजगणित का परिचय| location=Berlin | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-387-72765-3 | zbl=1234.16022 | page=121 }}</ref> यह उपरोक्त धारणा से कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना आकारिक वर्ग रिंग का विशिष्ट आधार लेने के बराबर है।
एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों के साथ, जैसे कि पॉइंटेड या जुड़ा होना)।<ref name="Und121">{{cite book | last=Underwood | first=Robert G. | title=हॉपफ बीजगणित का परिचय| location=Berlin | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-387-72765-3 | zbl=1234.16022 | page=121 }}</ref> यह उपरोक्त धारणा के लिए कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना आकारिक समूह रिंग का एक विशिष्ट आधार लेने के बराबर है।


कुछ लेखक आकारिक वर्ग शब्द का प्रयोग आकारिक वर्ग नियम के अर्थ में करते हैं।
कुछ लेखक आकारिक समूह शब्द का उपयोग आकारिक समूह कानून के अर्थ के लिए करते हैं।


==लुबिन-टेट आकारिक वर्ग नियम==
==लुबिन-टेट आकारिक वर्ग नियम==


{{main|Lubin–Tate formal group law}}
{{main|लुबिन-टेट औपचारिक समूह कानून}}


हमने Z को जाने दिया<sub>''p''</sub> p-adic पूर्णांकों का वलय बनें|p-adic पूर्णांकों का। 'लुबिन-टेट आकारिक वर्ग नियम' अद्वितीय (1-आयामी) आकारिक वर्ग नियम F है जैसे कि e(x) = px + x<sup>पी</sup>दूसरे शब्दों में, एफ का एक एंडोमोर्फिज्म है
हम जेडपी को पी-एडीक पूर्णांक की वलय मानते हैं। लुबिन-टेट औपचारिक समूह कानून अद्वितीय (1-आयामी) औपचारिक समूह कानून एफ है जैसे कि (एक्स) = पीएक्स + एक्सपी दूसरे शब्दों में एफ का एक एंडोमोर्फिज्म है।
:<math>e(F(x,y)) = F(e(x), e(y)).\ </math>
:<math>e(F(x,y)) = F(e(x), e(y)).\ </math>
अधिक सामान्यतः हम ई को किसी भी शक्ति श्रृंखला के रूप में अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्स<sup>पी</sup>मॉड पी. इन शर्तों को पूरा करने वाले ई के विभिन्न विकल्पों के लिए सभी वर्ग नियम सख्ती से आइसोमोर्फिक हैं।<ref>{{cite book | first1=Yu. I. | last1=Manin | authorlink1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=आधुनिक संख्या सिद्धांत का परिचय| series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=168 }}</ref>
अधिक आम तौर पर हम ई को किसी भी पावर श्रृंखला होने की अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्सपी मॉड पी। इन शर्तों को पूरा करने के विभिन्न विकल्पों के लिए सभी समूह कानून सख्ती से आइसोमोर्फिक हैं।<ref>{{cite book | first1=Yu. I. | last1=Manin | authorlink1=Yuri I. Manin | first2=A. A. | last2=Panchishkin | title=आधुनिक संख्या सिद्धांत का परिचय| series=Encyclopaedia of Mathematical Sciences | volume=49 | edition=Second | year=2007 | isbn=978-3-540-20364-3 | issn=0938-0396 | zbl=1079.11002 | page=168 }}</ref>
'Z' में प्रत्येक तत्व a के लिए<sub>''p''</sub> ल्यूबिन-टेट आकारिक वर्ग नियम का एक अद्वितीय एंडोमोर्फिज्म एफ है जैसे कि एफ(एक्स) = कुल्हाड़ी + उच्च-डिग्री शब्द। यह वलय 'Z' की क्रिया देता है<sub>''p''</sub> लुबिन-टेट आकारिक वर्ग नियम पर।
 
'Z' में प्रत्येक तत्व के लिए लुबिन-टेट औपचारिक समूह कानून का एक अद्वितीय एंडोमोर्फिज्म एफ है, जैसे कि एफ (एक्स) = एक्स + उच्च-डिग्री शब्द। यह लुबिन-टेट औपचारिक समूह कानून पर रिंग जेडपी की कार्रवाई देता है।
 
Z के साथ एक समान निर्माण है, जिसे परिमित अवशेष वर्ग क्षेत्र के साथ किसी भी पूर्ण [[असतत मूल्यांकन रिंग]] द्वारा प्रतिस्थापित किया गया है।<ref>{{cite book | first=Helmut | last=Koch | title=बीजगणितीय संख्या सिद्धांत| publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st | pages=62–63 }}</ref>


Z के साथ एक समान निर्माण है<sub>''p''</sub> मूल्यांकन के परिमित अवशेष क्षेत्र के साथ किसी भी पूर्ण [[असतत मूल्यांकन रिंग]] द्वारा प्रतिस्थापित।<ref>{{cite book | first=Helmut | last=Koch | title=बीजगणितीय संख्या सिद्धांत| publisher=[[Springer-Verlag]] | year=1997 | isbn=3-540-63003-1 | zbl=0819.11044 | series=Encycl. Math. Sci. | volume=62 | edition=2nd printing of 1st | pages=62–63 }}</ref>
यह निर्माण ल्यूबिन और टेट (1965) द्वारा [[अण्डाकार कार्यों के जटिल गुणन]] के शास्त्रीय सिद्धांत के [[स्थानीय क्षेत्र]] भाग को अलग करने के एक सफल प्रयास में पेश किया गया था। यह [[स्थानीय वर्ग क्षेत्र सिद्धांत]] के कुछ दृष्टिकोणों में एक प्रमुख घटक है।<ref>e.g. {{cite book | first=Jean-Pierre | last=Serre | authorlink=Jean-Pierre Serre | chapter=Local class field theory | pages=128–161 | editor1-first=J.W.S. | editor1-last=Cassels | editor1-link=J. W. S. Cassels | editor2-first=Albrecht | editor2-last=Fröhlich | editor2-link=Albrecht Fröhlich | title=Algebraic Number Theory | year=1967 | publisher=Academic Press | zbl=0153.07403 }}{{cite journal | first=Michiel | last=Hazewinkel | title=Local class field theory is easy | journal=[[Advances in Mathematics]] | volume=18 | year=1975 | issue=2 | pages=148–181 | zbl=0312.12022 | doi=10.1016/0001-8708(75)90156-5| doi-access=free }}{{cite book | last1=Iwasawa | first1=Kenkichi | authorlink=Kenkichi Iwasawa | title=Local class field theory | publisher=The Clarendon Press Oxford University Press | series=Oxford Mathematical Monographs | isbn=978-0-19-504030-2 | mr=863740 | year=1986 | zbl=0604.12014 }}</ref> और [[रंगीन समरूपता सिद्धांत]] में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक है।<ref>{{cite web
यह निर्माण किसके द्वारा शुरू किया गया था? {{harvtxt|Lubin|Tate|1965}}, [[अण्डाकार कार्य]]ों के [[जटिल गुणन]] के शास्त्रीय सिद्धांत के [[स्थानीय क्षेत्र]] भाग को अलग करने के सफल प्रयास में। यह [[स्थानीय वर्ग क्षेत्र सिद्धांत]] के कुछ दृष्टिकोणों में भी एक प्रमुख घटक है<ref>e.g. {{cite book | first=Jean-Pierre | last=Serre | authorlink=Jean-Pierre Serre | chapter=Local class field theory | pages=128–161 | editor1-first=J.W.S. | editor1-last=Cassels | editor1-link=J. W. S. Cassels | editor2-first=Albrecht | editor2-last=Fröhlich | editor2-link=Albrecht Fröhlich | title=Algebraic Number Theory | year=1967 | publisher=Academic Press | zbl=0153.07403 }}{{cite journal | first=Michiel | last=Hazewinkel | title=Local class field theory is easy | journal=[[Advances in Mathematics]] | volume=18 | year=1975 | issue=2 | pages=148–181 | zbl=0312.12022 | doi=10.1016/0001-8708(75)90156-5| doi-access=free }}{{cite book | last1=Iwasawa | first1=Kenkichi | authorlink=Kenkichi Iwasawa | title=Local class field theory | publisher=The Clarendon Press Oxford University Press | series=Oxford Mathematical Monographs | isbn=978-0-19-504030-2 | mr=863740 | year=1986 | zbl=0604.12014 }}</ref> और [[रंगीन समरूपता सिद्धांत]] में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक।<ref>{{cite web
| url = https://people.math.harvard.edu/~lurie/252xnotes/Lecture21.pdf
| url = https://people.math.harvard.edu/~lurie/252xnotes/Lecture21.pdf
| title = Lubin-Tate Theory (Lecture 21).
| title = Lubin-Tate Theory (Lecture 21).
Line 152: Line 160:
| website = harvard.edu
| website = harvard.edu
| access-date = June 23, 2023}}</ref>
| access-date = June 23, 2023}}</ref>
==यह भी देखें==
==यह भी देखें==
*विट वेक्टर
*विट वेक्टर

Revision as of 00:10, 22 July 2023

गणित में, एक आकारिक वर्ग नियम (सामान्यतः) एक आकारिक शक्ति श्रृंखला है, जो ऐसा व्यवहार करता है, जैसे कि यह एक लाई वर्ग का उत्पाद था। उन्हें एस बोचनर (1946) द्वारा पेश किया गया था। आकारिक वर्ग शब्द का अर्थ कभी-कभी आकारिक वर्ग नियम के समान होता है, और कभी-कभी इसका अर्थ कई सामान्यीकरणों में से एक होता है। आकारिक वर्ग लाई वर्ग (या बीजगणितीय वर्गों) और लाई बीजगणित के बीच मध्यवर्ती हैं। उनका उपयोग बीजगणितीय संख्या सिद्धांत और बीजगणितीय टोपोलॉजी में किया जाता है।

परिभाषाएँ

एक क्रमविनिमेय वलय आर पर एक आयामी आकारिक वर्ग नियम एक शक्ति श्रृंखला एफ (x, y) है जिसमें आर में गुणांक होते हैं, जैसे कि

  1. F(x,y) = x + y + उच्च डिग्री के पद
  2. F(x, F(y,z)) = F(F(x ,y), z) (सहयोगिता)।

सबसे सरल उदाहरण योजक आकारिक वर्ग कानून एफ(x, y) = x + y है। परिभाषा का विचार यह है, कि एफ को एक लाई वर्ग के उत्पाद के आकारिक शक्ति श्रृंखला विस्तार की तरह कुछ होना चाहिए, जहां हम निर्देशांक चुनते हैं, ताकि लाई वर्ग की पहचान मूल सकती है।

अधिक आम तौर पर, एक एन-आयामी आकारिक वर्ग कानून 2n चर में एन पावर श्रृंखला एफआई Fi(x1, x2, ..., xn, y1, y2, ..., yn)) का एक संग्रह है, जैसे कि

  1. F(x,y) = x + y + उच्च डिग्री के पद
  2. F(x, F(y,z)) = F(F(x,y), z)

जहां हम एफ के लिए (F1, ..., Fn), x के लिए (x1, ..., xn), और इसी तरह लिखते हैं।

आकारिक वर्ग कानून को कम्यूटेटिव कहा जाता है, यदि F(x,y) = F(y,x) यदि आर टॉरशन फ्री है, तो कोई आर को क्यू-बीजगणित में एम्बेड कर सकता है, और किसी भी एक-आयामी आकारिक वर्ग कानून एफ को F(x,y) = exp(log(x) + log(y)) के रूप में लिखने के लिए घातांकीय और लघुगणक का उपयोग कर सकता है, इसलिए एफ आवश्यक रूप से कम्यूटेटिव है।[1] अधिक आम तौर पर, हमारे पास है।

प्रमेय. आर पर प्रत्येक एक-आयामी आकारिक वर्ग कानून क्रमविनिमेय है, यदि आर में कोई नॉनज़ीरो टोरसन निलपोटेंट नहीं है, (यानी, कोई गैर-शून्य तत्व नहीं है जो मरोड़ और निलपोटेंट दोनों हैं)।[2]

वर्ग (गणित) के लिए व्युत्क्रम तत्वों के अस्तित्व के अनुरूप स्वयंसिद्ध की कोई आवश्यकता नहीं है, क्योंकि यह आकारिक वर्ग कानून की परिभाषा से स्वचालित रूप से अनुसरण करता है। जैसे कि F(x,G(x)) = 0 दूसरे शब्दों में, हम हमेशा एक (अद्वितीय) पावर श्रृंखला पा सकते हैं।

आयाम m के आकारिक वर्ग नियम F से आयाम n के आकारिक वर्ग नियम जी तक एक समरूपता m चर में n शक्ति श्रृंखला का एक संग्रह f है, जैसे कि

G(f(x), f(y)) = f(F(x,y)).

व्युत्क्रम के साथ एक समरूपता को आइसोमोर्फिज्म कहा जाता है, और इसे सख्त आइसोमोर्फिज्म कहा जाता है, यदि इसके अलावाf(x) = x + उच्च डिग्री की शर्तें, उनके बीच एक आइसोमोर्फिज्म के साथ दो आकारिक वर्ग कानून अनिवार्य रूप से समान हैं, वे केवल "निर्देशांक के परिवर्तन" से भिन्न होते हैं।

उदाहरण

  • योगात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
  • गुणात्मक आकारिक वर्ग नियम द्वारा दिया गया है।
इस नियम को इस प्रकार समझा जा सकता है। रिंग आर के गुणक समूह में गुणनफल G को G(a,b) = ab द्वारा दिया गया है। यदि हम a = 1 + x, b = 1 + y, और G = 1 + F डालकर 0 को पहचान बनाने के लिए "निर्देशांक बदलते हैं", तो हम पाते हैं कि F(x,y) = x + y + xy.

तर्कसंगत संख्याओं पर, योगात्मक आकारिक वर्ग नियम से गुणक तक एक आइसोमोर्फिज्म होता है, जो एक्सपी (एक्स) − 1 द्वारा दिया जाता है। सामान्य कम्यूटेटिव रिंग्स आर पर ऐसा कोई समरूपता नहीं है, क्योंकि इसे परिभाषित करने के लिए गैर-अभिन्न तर्कसंगत संख्याओं की आवश्यकता होती है, और योजक और गुणक आकारिक वर्ग आमतौर पर आइसोमोर्फिक नहीं होते हैं।

  • सामान्यतः, आम तौर पर, हम पहचान पर निर्देशांक लेकर और उत्पाद मानचित्र के आकारिक शक्ति श्रृंखला विस्तार को लिखकर किसी भी बीजगणितीय समूह या आयाम एन के लाई समूह से आयाम एन के एक आकारिक समूह कानून का निर्माण कर सकते हैं। योगात्मक और गुणक आकारिक समूह कानून इस तरह से योगात्मक और गुणक बीजगणितीय वर्गों से प्राप्त किए जाते हैं। इसका एक और महत्वपूर्ण विशेष मामला एक अंडाकार वक्र (या एबेलियन किस्म) का आकारिक समूह (नियम) है।
  • F(x,y) = (x + y)/(1 + xy) हाइपरबॉलिक स्पर्शरेखा फ़ंक्शन के लिए अतिरिक्त सूत्र से आने वाला एक आकारिक समूह नियम है: tanh(x + y) = F(tanh(x), tanh(y)), और यह विशेष सापेक्षता में वेगों को जोड़ने का सूत्र भी है (1 के बराबर प्रकाश की गति के साथ)।
  • जेड पर एक आकारिक समूह कानून है[1/2] यूलर द्वारा पाया गया, एक एलिप्टिक इंटीग्रल (स्ट्रिकलैंड) के लिए अतिरिक्त सूत्र के रूप में:

लाई बीजगणित

कोई भी एन-आयामी आकारिक समूह कानून रिंग आर पर एक एन-आयामी लाई बीजगणित देता है, जिसे आकारिक समूह कानून के द्विघात भाग एफ 2 के संदर्भ में परिभाषित किया गया है।

[x,y] = एफ2(एक्स,वाई) - एफ2(वाई,एक्स)

लाई वर्गों या बीजगणितीय समूहों से लाई बीजगणित तक के प्राकृतिक कार्य को लाई वर्गों से आकारिक समूह कानूनों में शामिल किया जा सकता है, इसके बाद आकारिक समूह के लाई बीजगणित को लिया जा सकता है:

लाई वर्ग → आकारिक वर्ग नियम → लाई बीजगणित

विशेषता (बीजगणित) 0 के क्षेत्रों में, आकारिक समूह कानून अनिवार्य रूप से परिमित-आयामी लाई बीजगणित के समान होते हैं, अधिक सटीक रूप से, परिमित-आयामी आकारिक समूह कानूनों से परिमित-आयामी लाई बीजगणित तक फ़ैक्टर श्रेणियों का एक समतुल्य है।[3] गैर-शून्य विशेषता वाले क्षेत्रों में, आकारिक समूह कानून लाई बीजगणित के समकक्ष नहीं हैं। वास्तव में, इस मामले में यह सर्वविदित है, कि एक बीजगणितीय समूह से उसके लाई बीजगणित में जाने से अक्सर बहुत अधिक जानकारी दूर हो जाती है, लेकिन इसके बजाय आकारिक समूह कानून में जाने से अक्सर पर्याप्त जानकारी बच जाती है। तो कुछ अर्थों में आकारिक समूह कानून विशेषता पी > 0 में लाई बीजगणित के लिए "सही" विकल्प हैं।

क्रमविनिमेय आकारिक वर्ग नियम का लघुगणक

यदि एफ एक कम्यूटेटिव क्यू-बीजगणित आर पर एक कम्यूटेटिव एन-आयामी आकारिक समूह कानून है, तो यह योगात्मक आकारिक समूह कानून के लिए सख्ती से आइसोमोर्फिक है।[4] दूसरे शब्दों में, योगात्मक आकारिक समूह से एफ तक एक सख्त आइसोमोर्फिज्म एफ है, जिसे एफ का लघुगणक कहा जाता है, ताकि

f(F(x,y)) = f(x) + f(y).

उदाहरण:

  • F(x,y) = x + y का लघुगणक f(x) = है एक्स
  • F(x,y) = x + y +xy का लघुगणक f(x) है ) = लॉग(1+x), क्योंकि लॉग(1+x+y+xy) = लॉग(1+x)+ लॉग(1+y).

यदि आर में परिमेय नहीं है, तो आर ⊗ क्यू तक अदिश राशि के विस्तार द्वारा एक मानचित्र एफ का निर्माण किया जा सकता है, लेकिन यदि आर में सकारात्मक विशेषता है, तो यह सब कुछ शून्य पर भेज दिया जाता है। रिंग आर पर आकारिक समूह कानून अक्सर उनके लघुगणक को आर ⊗ क्यू में गुणांक के साथ एक शक्ति श्रृंखला के रूप में लिखकर बनाया जाता है, और फिर यह साबित किया जाता है, कि आर ⊗ क्यू पर संबंधित आकारिक समूह के गुणांक वास्तव में आर में हैं। सकारात्मक में काम करते समय विशेषता, कोई आम तौर पर आर को एक मिश्रित विशेषता रिंग से बदल देता है, जिसका आर पर प्रक्षेपण होता है, जैसे कि विट वैक्टर की रिंग डब्ल्यू (आर), और अंत में आर तक कम हो जाती है।

अपरिवर्तनीय अंतर

जब एफ एक-आयामी होता है, तो कोई इसके लघुगणक को अपरिवर्तनीय विभेदक ω(t) के संदर्भ में लिख सकता है।[5] होने देना

कहाँ नि: शुल्क है, -एक प्रतीक डीटी पर रैंक 1 का मॉड्यूल, तो फिर ω इस अर्थ में अनुवाद अपरिवर्तनीय है कि
अगर हम लिखते हैं, , तो परिभाषा के अनुसार
यदि कोई विस्तार पर विचार करता है।, सूत्र
एफ के लघुगणक को परिभाषित करता है।

आकारिक वर्ग नियम का आकारिक वर्ग वलय

एक आकारिक वर्ग नियम की आकारिक वर्ग वलय एक वर्ग के वर्ग वलय के अनुरूप एक सह-विनिमेय हॉपफ बीजगणित है, और एक ली बीजगणित के सार्वभौमिक आवरण बीजगणित के समान है, जिनमें से दोनों कोकम्यूटेटिव हॉफ बीजगणित भी हैं। सामान्य तौर पर सह-विनिमेय हॉपफ बीजगणित वर्गों की तरह व्यवहार करते हैं।

सादगी के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है, सिवाय इसके कि नोटेशन अधिक शामिल हो जाता है।

सरलता के लिए हम 1-आयामी मामले का वर्णन करते हैं; उच्च-आयामी मामला समान है सिवाय इसके कि अंकन अधिक शामिल हो जाता है।

मान लीजिए कि एफ, आर पर एक (1-आयामी) आकारिक समूह कानून है। इसकी आकारिक समूह वलय (जिसे हाइपरलेजेब्रा या इसका 'सहसंयोजक बायलजेब्रा' भी कहा जाता है) एक सह-विनिमेय हॉपफ बीजगणित एच है जिसका निर्माण निम्नानुसार किया गया है।

  • एक आर-मॉड्यूल (गणित) के रूप में, एच एक आधार 1 = डी (0), डी (1), डी (2), ...
  • सह-उत्पाद त्रिभुज (n) = Σडी(i)‍⊗ डी(n−i) द्वारा दिया गया है, (इसलिए इस को बीजगणित का कोलजेब्रा का द्वैत केवल आकारिक शक्ति श्रृंखला की वलय है)।
  • गणक η डी (0) के गुणांक द्वारा दिया गया है।
  • पहचान 1 = डी(0) है।
  • एंटीपोड एस डी (n) से (−1)एनडी(एन) तक ले जाता है।
  • गुणांक डी(i)डी(j) में डी(1) का गुणांक, F(x,y) में xiyj का गुणांक है।

इसके विपरीत, एक हॉपफ बीजगणित को देखते हुए जिसकी को बीजगणित संरचना ऊपर दी गई है, हम इससे एक आकारिक समूह कानून एफ पुनर्प्राप्त कर सकते हैं। इसलिए 1-आयामी आकारिक समूह कानून अनिवार्य रूप से हॉपफ बीजगणित के समान हैं जिनकी को बीजगणित संरचना ऊपर दी गई है।

कार्यकर्ताओं के रूप में आकारिक वर्ग नियम

आर पर एक n-आयामी आकारिक वर्ग नियम एफ और एक क्रमविनिमेय आर-बीजगणित स को देखते हुए, हम एक समूह एफ(स) बना सकते हैं, जिसका अंतर्निहित सेट Nn है जहां N, स के निलपोटेंट तत्वों का समुच्चय है। उत्पाद को एनएन के तत्वों को गुणा करने के लिए एफ का उपयोग करके दिया जाता है, मुद्दा यह है, कि सभी आकारिक शक्ति श्रृंखलाएं अब एकत्रित करती हैं, क्योंकि उन्हें निलपोटेंट तत्वों पर लागू किया जा रहा है, इसलिए केवल गैर-शून्य शब्दों की एक सीमित संख्या है।

यह एफ को क्रमविनिमेय आर-बीजगणित एस से समूहों में एक फ़नकार बनाता है।

हम एफ (एस) की परिभाषा को कुछ टोपोलॉजिकल आर-बीजगणित तक बढ़ा सकते हैं। विशेष रूप से, यदि एस असतत आर बीजगणित की व्युत्क्रम सीमा है, तो हम एफ (एस) को संबंधित वर्गों की व्युत्क्रम सीमा के रूप में परिभाषित कर सकते हैं। उदाहरण के लिए, यह हमें पी-एडिक संख्याओं में मानों के साथ एफ (जेडपी) को परिभाषित करने की अनुमति देता है।

एफ के वर्ग-मूल्यवान फ़ैक्टर को एफ के आकारिक समूह रिंग एच का उपयोग करके भी वर्णित किया जा सकता है। सरलता के लिए हम मान लेंगे कि एफ 1-आयामी है; सामान्य मामला समान है। किसी भी सह-विनिमेय हॉपफ बीजगणित के लिए, एक तत्व जी को 'वर्ग-समान' कहा जाता है, यदि Δg = g ⊗ g और εg = 1, और समूह जैसे तत्व गुणन के तहत एक समूह बनाते हैं। एक रिंग पर एक आकारिक समूह कानून के हॉपफ बीजगणित के मामले में, समूह जैसे तत्व बिल्कुल फॉर्म के होते हैं।

D(0) + D(1)x + D(2)x2 + ...

निलोपोटेंट तत्वों के लिए x, विशेष रूप से हम एस के निलपोटेंट तत्वों के साथ एच ⊗ एस के समूह जैसे तत्वों की पहचान कर सकते हैं, और एच ⊗ एस के वर्ग जैसे तत्वों पर समूह संरचना को तब एफ (एस) पर समूह संरचना के साथ पहचाना जाता है।

ऊंचाई

मान लीजिए कि एफ विशेषता पी > 0 के क्षेत्र पर एक-आयामी आकारिक समूह कानूनों के बीच एक समरूपता है। फिर f या तो शून्य है, या इसकी शक्ति श्रृंखला विस्तार में पहला गैर-शून्य पद क्या है?

कुछ गैर-ऋणात्मक पूर्णांक H के लिए ax^{p^h}, जिसे समरूपता f की ऊंचाई कहा जाता है। शून्य समरूपता की ऊंचाई को ∞ के रूप में परिभाषित किया गया है।

विशेषता p > 0 के क्षेत्र पर एक आयामी आकारिक समूह कानून की ऊंचाई को p मानचित्र द्वारा इसके गुणन की ऊंचाई के रूप में परिभाषित किया गया है।

विशेषता p > 0 के बीजगणितीय रूप से बंद क्षेत्र पर दो एक-आयामी आकारिक समूह नियम आइसोमोर्फिक हैं यदि उनके पास समान ऊंचाई है, और ऊंचाई कोई भी सकारात्मक पूर्णांक या ∞ हो सकती है।

उदाहरण:

  • योगात्मक आकारिक समूह कानून F(x,y) = x + y की ऊंचाई ∞ है, क्योंकि इसका pth पावर मैप 0 है।
  • गुणक आकारिक समूह नियम F(x,y) = x + y + xy की ऊंचाई 1 है, क्योंकि इसका pth पावर मैप (1 + x)p − 1 = xp है।
  • एक अंडाकार वक्र के आकारिक समूह नियम में ऊंचाई या तो एक या दो होती है, जो इस बात पर निर्भर करता है कि वक्र साधारण है, या सुपरसिंगुलर। आइसेनस्टीन श्रृंखला के लुप्त होने से सुपरसिंगुलैरिटी का पता लगाया जा सकता है। .

लेज़ार्ड रिंग

एक सार्वभौमिक क्रमविनिमेय वलय पर एक सार्वभौमिक क्रमविनिमेय एक-आयामी आकारिक समूह कानून निम्नानुसार परिभाषित है। हम अनुमति देते हैं।

एफ(एक्स,वाई)

होना

x + y + Σci,j xमैंy

अनिश्चित के लिए

सीi,j,

और हम सार्वभौमिक रिंग आर को तत्वों द्वारा उत्पन्न क्रमविनिमेय वलय के रूप में परिभाषित करते हैं, जो आकारिक समूह कानूनों के लिए संबद्धता और क्रमविनिमेयता नियमों द्वारा मजबूर संबंधों के साथ हैं। परिभाषा के अनुसार कम या ज्यादा, वलय आर में निम्नलिखित सार्वभौमिक गुण हैं।

किसी भी कम्यूटेटिव वलय एस के लिए, एस पर एक-आयामी आकारिक वर्ग नियम आर से एस तक वलय समरूपता के अनुरूप हैं।

ऊपर निर्मित कम्यूटेटिव वलय आर को लाजार्ड की सार्वभौमिक वलय के रूप में जाना जाता है। पहली नज़र में यह अविश्वसनीय रूप से जटिल लगता है: इसके जनरेटर के बीच संबंध बहुत गड़बड़ हैं। हालांकि लाजार्ड ने साबित कर दिया कि इसकी एक बहुत ही सरल संरचना है। यह डिग्री 2, 4, 6, ... (जहां ci, j की डिग्री 2 (i + j − 1)) है। डेनियल क्विलेन ने साबित किया कि जटिल कोबोर्डिज्म की गुणांक रिंग स्वाभाविक रूप से लाजार्ड की सार्वभौमिक रिंग के लिए एक वर्गीकृत रिंग के रूप में आइसोमोर्फिक है, जो असामान्य ग्रेडिंग की व्याख्या करती है।

आकारिक वर्ग

एक आकारिक वर्ग आकारिक योजनाओं की श्रेणी (गणित) में एक वर्ग वस्तु है।

  • अगर आर्टिन बीजगणित से उन वर्गों तक एक नियम है जिन्हें सटीक छोड़ दिया जाता है, तो यह प्रतिनिधित्व योग्य है (G एक आकारिक समूह के बिंदुओं का कारक है)। (एक लापरवाह की बाईं सटीकता परिमित प्रोजेक्टिव सीमाओं के साथ यात्रा करने के बराबर है)।
  • अगर तब एक वर्ग योजना है ,, पहचान पर G के आकारिक समापन में, एक आकारिक समूह की संरचना है।
  • एक सुचारु वर्ग योजना का आकारिक समापन समरूपी के लिए आइसोमोर्फिक है, , कुछ लोग एक आकारिक समूह योजना को सुचारू कहते हैं, यदि विपरीत प्रभाव होती है, अन्य इस रूप की स्थानीय वस्तुओं के लिए "आकारिक वर्ग" शब्द आरक्षित करते हैं।[6]
  • आकारिक सहजता विकृतियों की लिफ्टों के अस्तित्व का जोर करती है, और आकारिक योजनाओं पर लागू हो सकती है, जो बिंदुओं से बड़ी हैं। एक सहज आकारिक समूह योजना एक आकारिक समूह योजना का एक विशेष मामला है।
  • एक सहज आकारिक समूह को देखते हुए, कोई भी वर्गों के एक समान सेट का चयन करके एक आकारिक समूह कानून और एक क्षेत्र का निर्माण कर सकता है।
  • मापदंडों के परिवर्तन से प्रेरित आकारिक समूह कानूनों के बीच (गैर-सख्त) आइसोमोर्फिज्म आकारिक समूह पर समन्वय परिवर्तनों के समूह के तत्वों को बनाते हैं।

आकारिक वर्गों और आकारिक वर्ग नियमों को मनमानी योजना (गणित) पर भी परिभाषित किया जा सकता है, न कि केवल क्रमविनिमेय रिंगों या क्षेत्रों पर, और परिवारों को आधार से एक परमेट्रिंग ऑब्जेक्ट तक मानचित्रों द्वारा वर्गीकृत किया जा सकता है।

आकारिक वर्ग नियमों का मॉड्यूलि स्पेस अनंत-आयामी एफिन रिक्त स्थान का एक असंयुक्त संघ है, जिसके घटकों को आयाम द्वारा परमेट्राइज्ड किया जाता है, और जिनके बिंदुओं को पावर श्रृंखला एफ के स्वीकार्य गुणांक द्वारा परमेट्राइज्ड किया जाता है। सुचारू आकारिक वर्गों का संबंधित मॉड्यूलि स्टैक समन्वय परिवर्तनों के अनंत-आयामी वर्ग की विहित कार्रवाई द्वारा इस स्थान का एक भागफल है।

बीजगणितीय रूप से बंद क्षेत्र पर, एक-आयामी आकारिक समूहों का उप-स्टैक या तो एक बिंदु (विशेषता शून्य में) या स्टैकी पॉइंट पैरामीट्रिज़िंग ऊंचाइयों की एक अनंत श्रृंखला है। विशेषता शून्य में, प्रत्येक बिंदु के बंद होने में अधिक ऊंचाई के सभी बिंदु शामिल होते हैं। यह अंतर आकारिक वर्गों को सकारात्मक और मिश्रित विशेषता में एक समृद्ध ज्यामितीय सिद्धांत देता है, जिसमें स्टीनरोड बीजगणित, पी-विभाज्य वर्ग, डायडोने सिद्धांत और गैलोइस अभ्यावेदन के संबंध हैं। उदाहरण के लिए, सेरे-टेट प्रमेय का तात्पर्य है कि एक वर्ग योजना की विकृतियाँ उसके आकारिक समूह द्वारा दृढ़ता से नियंत्रित की जाती हैं, विशेष रूप से सुपरसिंगुलर एबेलियन किस्मों के मामले में। सुपरसिंगुलर अण्डाकार वक्रों के लिए, यह नियंत्रण पूर्ण है, और यह विशेषता शून्य स्थिति से काफी अलग है जहां आकारिक समूह में कोई विकृति नहीं है।

एक आकारिक वर्ग को कभी-कभी सह-विनिमेय हॉपफ बीजगणित के रूप में परिभाषित किया जाता है (आमतौर पर कुछ अतिरिक्त शर्तों के साथ, जैसे कि पॉइंटेड या जुड़ा होना)।[7] यह उपरोक्त धारणा के लिए कमोबेश दोहरा है। सहज मामले में, निर्देशांक चुनना आकारिक समूह रिंग का एक विशिष्ट आधार लेने के बराबर है।

कुछ लेखक आकारिक समूह शब्द का उपयोग आकारिक समूह कानून के अर्थ के लिए करते हैं।

लुबिन-टेट आकारिक वर्ग नियम

हम जेडपी को पी-एडीक पूर्णांक की वलय मानते हैं। लुबिन-टेट औपचारिक समूह कानून अद्वितीय (1-आयामी) औपचारिक समूह कानून एफ है जैसे कि ई (एक्स) = पीएक्स + एक्सपी दूसरे शब्दों में एफ का एक एंडोमोर्फिज्म है।

अधिक आम तौर पर हम ई को किसी भी पावर श्रृंखला होने की अनुमति दे सकते हैं जैसे कि ई (एक्स) = पीएक्स + उच्च-डिग्री शब्द और ई (एक्स) = एक्सपी मॉड पी। इन शर्तों को पूरा करने के विभिन्न विकल्पों के लिए सभी समूह कानून सख्ती से आइसोमोर्फिक हैं।[8]

'Z' में प्रत्येक तत्व ए के लिए लुबिन-टेट औपचारिक समूह कानून का एक अद्वितीय एंडोमोर्फिज्म एफ है, जैसे कि एफ (एक्स) = एक्स + उच्च-डिग्री शब्द। यह लुबिन-टेट औपचारिक समूह कानून पर रिंग जेडपी की कार्रवाई देता है।

Z के साथ एक समान निर्माण है, जिसे परिमित अवशेष वर्ग क्षेत्र के साथ किसी भी पूर्ण असतत मूल्यांकन रिंग द्वारा प्रतिस्थापित किया गया है।[9]

यह निर्माण ल्यूबिन और टेट (1965) द्वारा अण्डाकार कार्यों के जटिल गुणन के शास्त्रीय सिद्धांत के स्थानीय क्षेत्र भाग को अलग करने के एक सफल प्रयास में पेश किया गया था। यह स्थानीय वर्ग क्षेत्र सिद्धांत के कुछ दृष्टिकोणों में एक प्रमुख घटक है।[10] और रंगीन समरूपता सिद्धांत में मोरावा ई-सिद्धांत के निर्माण में एक आवश्यक घटक है।[11]

यह भी देखें

संदर्भ

  1. Note that the formula for the logarithm in terms of the invariant differential given in dimension one does not assume that F is commutative.
  2. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §6.1.
  3. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §14.2.3.
  4. Hazewinkel, Michiel. औपचारिक समूह और अनुप्रयोग. §11.1.6.
  5. Mavraki, Niki Myrto. "औपचारिक समूह" (PDF). Archived (PDF) from the original on 2022-09-12.
  6. Weinstein, Jared. "ल्यूबिन-टेट स्पेस की ज्यामिति" (PDF).
  7. Underwood, Robert G. (2011). हॉपफ बीजगणित का परिचय. Berlin: Springer-Verlag. p. 121. ISBN 978-0-387-72765-3. Zbl 1234.16022.
  8. Manin, Yu. I.; Panchishkin, A. A. (2007). आधुनिक संख्या सिद्धांत का परिचय. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 168. ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.
  9. Koch, Helmut (1997). बीजगणितीय संख्या सिद्धांत. Encycl. Math. Sci. Vol. 62 (2nd printing of 1st ed.). Springer-Verlag. pp. 62–63. ISBN 3-540-63003-1. Zbl 0819.11044.
  10. e.g. Serre, Jean-Pierre (1967). "Local class field theory". In Cassels, J.W.S.; Fröhlich, Albrecht (eds.). Algebraic Number Theory. Academic Press. pp. 128–161. Zbl 0153.07403.Hazewinkel, Michiel (1975). "Local class field theory is easy". Advances in Mathematics. 18 (2): 148–181. doi:10.1016/0001-8708(75)90156-5. Zbl 0312.12022.Iwasawa, Kenkichi (1986). Local class field theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press. ISBN 978-0-19-504030-2. MR 0863740. Zbl 0604.12014.
  11. Lurie, Jacob (April 27, 2010). "Lubin-Tate Theory (Lecture 21)" (PDF). harvard.edu. Retrieved June 23, 2023.