सेमीपैरामीट्रिक मॉडल: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 39: | Line 39: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:09, 25 July 2023
सांख्यिकी में, अर्धप्राचलिक मॉडल एक सांख्यिकीय मॉडल होता है जिसमें प्राचलिक और गैर-प्राचलिक घटक होते है।
एक सांख्यिकीय मॉडल वितरण का एक मानकीकृत गुण है: एक सांख्यिकीय मापदंड द्वारा अनुक्रमित है .
- प्राचलिक मॉडल एक ऐसा मॉडल होता है जिसमें सूचीकरण मापदंड होता है में एक वेक्टर है -आयामी यूक्लिडियन स्थान, कुछ गैर-ऋणात्मक पूर्णांक के लिए .[1] इस प्रकार, परिमित-आयामी है, और .
- एक गैर-प्राचलिक_सांख्यिकी गैर-प्राचलिक_मॉडल के साथ, मापदंड के संभावित मानों का समूह का एक उपसमुच्चय है , जो आवश्यक रूप से परिमित-आयामी नहीं है। उदाहरण के लिए, हम माध्य 0 वाले सभी वितरणों के समूह पर विचार कर सकते है। ऐसे स्थान टोपोलॉजिकल वेक्टर स्थान होते है, लेकिन वेक्टर स्थान के रूप में परिमित-आयामी नहीं हो सकते है। इस प्रकार, कुछ संभवतः अनंत-आयामी वेक्टर है .
- अर्धप्राचलिक मॉडल के साथ, मापदंड में एक परिमित-आयामी घटक और एक अनंत-आयामी घटक (अधिकांशतः वास्तविक रेखा पर परिभाषित एक वास्तविक-मूल्यवान फलन) दोनों होते है। इस प्रकार, , जहाँ एक अनंत-आयामी स्थान है।
पहली बार में ऐसा लग सकता है कि अर्धप्राचलिक मॉडल में गैर-प्राचलिक मॉडल सम्मलित होते है, क्योंकि उनमें एक अनंत-आयामी के साथ-साथ एक परिमित-आयामी घटक भी होता है। चूँकि, एक अर्धप्राचलिक मॉडल को पूरी तरह से गैरप्राचलिक मॉडल से छोटा माना जाता है क्योंकि हम अधिकांशतः केवल परिमित-आयामी घटक में रुचि रखते है। . अर्थात्, अनंत-आयामी घटक को एक उपद्रव मापदंड के रूप में माना जाता है।[2] इसके विपरीत, गैरप्राचलिक मॉडल में, प्राथमिक रुचि अनंत-आयामी मापदंड का अनुमान लगाने में होती है। इस प्रकार गैर-प्राचलिक मॉडल में अनुमान लगाने का कार्य सांख्यिकीय रूप से कठिन होता है।
यह मॉडल अधिकांशतः सुचारु या कर्नेल (सांख्यिकी) का उपयोग करते है।
उदाहरण
अर्धप्राचलिक मॉडल का एक प्रसिद्ध उदाहरण आनुपातिक समस्या मॉडल होता है।[3] यदि हमें समय का अध्ययन करने में रुचि है कैंसर के कारण मृत्यु या प्रकाश बल्ब की विफलता जैसी किसी घटना के लिए, कॉक्स मॉडल निम्नलिखित वितरण फलन निर्दिष्ट करता है :
जहाँ सहसंयोजक सदिश है, और और अज्ञात मापदंड है. . यहाँ परिमित-आयामी है और रुचिकर है; समय का एक अज्ञात गैर-ऋणात्मक कार्य है (आधारभूत समस्या फलन के रूप में जाना जाता है) और अधिकांशतः एक उपद्रव मापदंड होता है। इसके लिए संभावित समूह अनंत-आयामी होता है।
यह भी देखें
- अर्धप्राचलिक प्रतिगमन
- सांख्यिकीय मॉडल
- क्षणों की सामान्यीकृत विधि
टिप्पणियाँ
- ↑ Bickel, P. J.; Klaassen, C. A. J.; Ritov, Y.; Wellner, J. A. (2006), "Semiparametrics", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
- ↑ Oakes, D. (2006), "Semi-parametric models", in Kotz, S.; et al. (eds.), Encyclopedia of Statistical Sciences, Wiley.
- ↑ Balakrishnan, N.; Rao, C. R. (2004). Handbook of Statistics 23: Advances in Survival Analysis. Elsevier. p. 126.
संदर्भ
- Bickel, P. J.; Klaassen, C. A. J.; Ritov, Y.; Wellner, J. A. (1998), Efficient and Adaptive Estimation for Semiparametric Models, Springer
- Härdle, Wolfgang; Müller, Marlene; Sperlich, Stefan; Werwatz, Axel (2004), Nonparametric and Semiparametric Models, Springer
- Kosorok, Michael R. (2008), Introduction to Empirical Processes and Semiparametric Inference, Springer
- Tsiatis, Anastasios A. (2006), Semiparametric Theory and Missing Data, Springer
- Begun, Janet M.; Hall, W. J.; Huang, Wei-Min; Wellner, Jon A. (1983), "Information and asymptotic efficiency in parametric--nonparametric models", Annals of Statistics, 11 (1983), no. 2, 432--452