कैनोनिकल एन्सेम्बल (विहित समुदाय): Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Use American English|date=January 2019}}
 
{{Use mdy dates|date=January 2019}}
{{Short description|Ensemble of possible states of a mechanical system at a fixed temperature}}
{{Short description|Ensemble of possible states of a mechanical system at a fixed temperature}}
{{Statistical mechanics|cTopic=Ensembles}}
{{Statistical mechanics|cTopic=Ensembles}}


[[सांख्यिकीय यांत्रिकी|सांख्यिकीय यांत्रिक]] में एक विहित पहनावा या [[सांख्यिकीय पहनावा (गणितीय भौतिकी)|सांख्यिकीय पहनावा भौतिक गणित]] है जो एक निश्चित तापमान पर ताप के साथ [[थर्मल संतुलन|तापीय संतुलन]] में एक यांत्रिक प्रणाली की संभावित स्थितियों का प्रतिनिधित्व करता है जो <ref name="gibbs">{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] |location=New York|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत}}</ref> प्रयुक्त ऊष्मा स्नान के साथ ऊर्जा का आदान-प्रदान कर सकता है जिससे प्रणाली तंत्र की स्थिति ऊर्जा भिन्न होगी
[[सांख्यिकीय यांत्रिकी|सांख्यिकीय यांत्रिक]] में एक विहित समूह एक [[सांख्यिकीय पहनावा (गणितीय भौतिकी)|सांख्यिकीय समूह]] है जो एक निश्चित तापमान पर [[ताप कुण्ड]] के साथ [[ऊष्मीय साम्य]] में एक यांत्रिक प्रणाली की संभावित स्थितियों का प्रतिनिधित्व करता है।<ref name="gibbs">{{cite book |last=Gibbs |first=Josiah Willard |author-link=Josiah Willard Gibbs |title=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत|year=1902 |publisher=[[Charles Scribner's Sons]] |location=New York|title-link=सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत}}</ref> प्रणाली ताप कुण्ड के साथ ऊर्जा का आदान-प्रदान कर सकता है, जिससे प्रणाली की स्थिति कुल ऊर्जा में भिन्न होगी।


इन राज्यों के संभाव्यता वितरण का निर्धारण करने वाले विहित समूह का प्रमुख थर्मोडायनामिक चर पूर्ण तापमान में है प्रतीक T संयोजन अधिकतर यांत्रिक चर पर निर्भर करता है जैसे तंत्र में कणों की संख्या का प्रतीक {{math|''N''}} और प्रणाली का आयतन प्रतीक {{math|''V''}} जिनमें से यह प्रत्येक प्रणाली की आंतरिक स्थितियों की प्रकृति को प्रभावित करता है तथा इन तीन मापदंडों वाले समूह को कभी-कभी {{math|''NVT''}} पहनावा कहा जाता है
अवस्थाओ के [[संभाव्यता वितरण|प्रायिकता वितरण]] को निर्धारित करने वाले विहित समूह का प्रमुख ऊष्मागतिक चर, [[परम ताप]] (प्रतीक, T) है। संयोजन आम तौर पर यांत्रिक चर पर भी निर्भर करता है जैसे तंत्र में कणों की संख्या का प्रतीक {{math|''N''}} और प्रणाली का आयतन प्रतीक {{math|''V''}} जिनमें से यह प्रत्येक प्रणाली की आंतरिक स्थितियों की प्रकृति को प्रभावित करता है तथा इन तीन मापदंडों वाले समूह को कभी-कभी {{math|''NVT''}} समूह कहा जाता है  


विहित पहनावा एक संभाव्यता निर्दिष्ट करता है तथा {{math|''P''}} प्रत्येक विशिष्ट सूक्ष्म अवस्था व [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सांख्यिकीय यांत्रिकी]] को निम्नलिखित घातांक द्वारा प्रदर्शित किया गया है
विहित समूह एक संभाव्यता निर्दिष्ट करता है तथा {{math|''P''}} प्रत्येक विशिष्ट सूक्ष्म अवस्था व [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सांख्यिकीय यांत्रिकी]] को निम्नलिखित घातांक द्वारा प्रदर्शित किया गया है


:<math>P = e^{(F - E)/(k T)},</math>
:<math>P = e^{(F - E)/(k T)},</math>
जहाँ {{math|''E''}} सूक्ष्म अवस्था की कुल ऊर्जा है और {{math|''k''}} बोल्ट्ज़मैन स्थिरांक है
जहाँ {{math|''E''}} सूक्ष्म अवस्था की कुल ऊर्जा है और {{math|''k''}} बोल्ट्ज़मैन स्थिरांक है


जहाँ {{math|''F''}} मुक्त ऊर्जा है विशेष रूप से [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]] समूह के लिए  स्थिरांक है जबकि संभावनाएँ math|''F हैं तो''  इनमें N, V, T का चयन किया जाता है मुक्त ऊर्जा {{math|''F''}} दो भूमिकाएँ निभाता है जबकि पहला यह संभाव्यता वितरण के लिए एक सामान्यीकरण कारक प्रदान करता है और सूक्ष्म अवस्था के पूरे समूह पर संभावनाओं को आगे तक जोड़ता है तथा दूसरा कई महत्वपूर्ण संयोजन औसतों की गणना सीधे समारोह से की जा सकती है जैसे {{math|''F''(''N'', ''V'', ''T'')}}.
जहाँ {{math|''F''}} मुक्त ऊर्जा है विशेष रूप से [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]] समूह के लिए  स्थिरांक है जबकि संभावनाएँ math|''F हैं तो''  इनमें N, V, T का चयन किया जाता है मुक्त ऊर्जा {{math|''F''}} दो भूमिकाएँ निभाता है जबकि पहला यह प्रायिकता वितरण के लिए एक सामान्यीकरण कारक प्रदान करता है और सूक्ष्म अवस्था के पूरे समूह पर संभावनाओं को आगे तक जोड़ता है तथा दूसरा कई महत्वपूर्ण संयोजन औसतों की गणना सीधे समारोह से की जा सकती है जैसे {{math|''F''(''N'', ''V'', ''T'')}}.


समान अवधारणा के लिए एक वैकल्पिक समतुल्य सूत्रीकरण संभाव्यता को इस प्रकार लिखता है  
समान अवधारणा के लिए एक वैकल्पिक समतुल्य सूत्रीकरण संभाव्यता को इस प्रकार लिखता है  
Line 28: Line 27:
==विहित संयोजन की प्रयोज्यता==
==विहित संयोजन की प्रयोज्यता==


विहित पहनावा वह पहनावा है जो एक प्रणाली की संभावित स्थितियों का वर्णन करता है जो ताप स्नान के साथ तापीय संतुलन में है इस तथ्य की व्युत्पत्ति गिब्स में पाई जा सकती है <ref name="gibbs"/>
विहित समूह वह समूह है जो एक प्रणाली की संभावित स्थितियों का वर्णन करता है जो ताप स्नान के साथ तापीय संतुलन में है इस तथ्य की व्युत्पत्ति गिब्स में पाई जा सकती है <ref name="gibbs"/>


विहित पहनावा किसी भी आकार की प्रणालियों पर लागू होता है जबकि यह मानना ​​आवश्यक है कि ताप स्नान बहुत बड़ा है यानी एक [[स्थूल सीमा]] प्रणाली छोटा या बड़ा हो सकता है  
विहित समूह किसी भी आकार की प्रणालियों पर लागू होता है जबकि यह मानना ​​आवश्यक है कि ताप स्नान बहुत बड़ा है यानी एक [[स्थूल सीमा]] प्रणाली छोटा या बड़ा हो सकता है  




प्रणाली यांत्रिक रूप से पृथक है इसको सुनिश्चित करने के लिए यह आवश्यक है कि यह ताप स्नान को छोड़कर किसी भी बाहरी वस्तु के साथ ऊर्जा का आदान-प्रदान नहीं करता है <ref name="gibbs" />सामान्य तौर पर उन प्रणालियों पर विहित पहनावा लागू करना वांछनीय है जो ताप स्नान के सीधे संपर्क में हैं क्योंकि यह वह संपर्क है जो संतुलन सुनिश्चित करता है तथा व्यावहारिक स्थितियों में विहित संयोजन के उपयोग पर यह उचित है इसका यह मानना है कि संपर्क यांत्रिक रूप से कमजोर है जो विश्लेषण के तहत प्रणाली में गर्म स्नान जोड़ का एक उपयुक्त हिस्सा सम्मिलित करके जुडा़व का यांत्रिक प्रभाव प्रणाली के भीतर प्रारूपित कर सकता है।
प्रणाली यांत्रिक रूप से पृथक है इसको सुनिश्चित करने के लिए यह आवश्यक है कि यह ताप स्नान को छोड़कर किसी भी बाहरी वस्तु के साथ ऊर्जा का आदान-प्रदान नहीं करता है <ref name="gibbs" />सामान्य तौर पर उन प्रणालियों पर विहित समूह लागू करना वांछनीय है जो ताप स्नान के सीधे संपर्क में हैं क्योंकि यह वह संपर्क है जो संतुलन सुनिश्चित करता है तथा व्यावहारिक स्थितियों में विहित संयोजन के उपयोग पर यह उचित है इसका यह मानना है कि संपर्क यांत्रिक रूप से कमजोर है जो विश्लेषण के तहत प्रणाली में गर्म स्नान जोड़ का एक उपयुक्त हिस्सा सम्मिलित करके जुडा़व का यांत्रिक प्रभाव प्रणाली के भीतर प्रारूपित कर सकता है।


जब कुल ऊर्जा निश्चित होती है तब प्रणाली की आंतरिक स्थिति अज्ञात होती है तथा उचित विवरण विहित पहनावा नहीं बल्कि [[माइक्रोकैनोनिकल पहनावा|सूक्ष्म विहित पहनावा]] होता है उन प्रणालियों के लिए कण संख्या परिवर्तनशील है कण भंडार के संपर्क के कारण सही विवरण [[भव्य विहित पहनावा]] है कण प्रणालियों की परस्पर क्रिया के लिए [[सांख्यिकीय भौतिकी]] पाठ्यपुस्तकों में तीन संयोजनों को [[थर्मोडायनामिक सीमा]] माना जाता है उनके औसत मूल्य के आसपास सूक्ष्मदर्शी की मात्रा में उतार-चढ़ाव छोटा हो जाता है और जैसे-जैसे कणों की संख्या अनंत हो जाती है तथा वे गायब हो जाते हैं बाद की सीमा में इसे थर्मोडायनामिक सीमा कहा जाता है इसमें औसत बाधाएं प्रभावी रूप से कठिन बाधाएं बन जाती हैं जबकि सांख्यिकीय पहनावा गणितीय भौतिकी तुल्यता की धारणा जोशिया विलार्ड गिब्स के समय से चली आ रही हैं और भौतिक प्रणालियों के कुछ प्रारूपों के लिए छोटी दूरी की अंतःक्रियाओं और छोटी संख्या में सूक्ष्म बाधाओं के अधीन सत्यापित की गई है इस तथ्य के बाद कि कई पाठ्यपुस्तकें अभी भी यह संदेश देती हैं कि संयोजन तुल्यता सभी भौतिक प्रणालियों के लिए होती है तथा पिछले दशकों में भौतिक प्रणालियों के विभिन्न उदाहरण पाए गए हैं जिनके लिए संयोजन तुल्यता का टूटना होता है।<ref>{{cite journal|last=Roccaverde|first=Andrea|date=August 2018|title=Is breaking of ensemble equivalence monotone in the number of constraints?|journal=Indagationes Mathematicae|volume=30|pages=7–25|doi=10.1016/j.indag.2018.08.001|issn=0019-3577|arxiv=1807.02791|s2cid=119173928 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2016-11-25|title=मॉड्यूलर संरचना के साथ यादृच्छिक ग्राफ़ में कोई भी समानता न जोड़ें|journal=Journal of Physics A: Mathematical and Theoretical|volume=50|issue=1|pages=015001|doi=10.1088/1751-8113/50/1/015001|issn=1751-8113|arxiv=1603.08759|s2cid=53578783 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2018-07-13|title=यादृच्छिक ग्राफ़ में समतुल्यता को तोड़ने के पीछे सहप्रसरण संरचना|journal=Journal of Statistical Physics|volume=173|issue=3–4|pages=644–662|doi=10.1007/s10955-018-2114-x|issn=0022-4715|arxiv=1711.04273|bibcode=2018JSP...173..644G|s2cid=52569377 }}</ref><ref>{{cite journal|last1=Hollander|first1=F. den|last2=Mandjes|first2=M.|last3=Roccaverde|first3=A.|last4=Starreveld|first4=N. J.|date=2018|title=घने ग्राफ़ के लिए समतुल्यता समूह|journal=Electronic Journal of Probability|volume=23|doi=10.1214/18-EJP135|issn=1083-6489|arxiv=1703.08058|s2cid=53610196 }}</ref><ref>{{cite journal|last1=Ellis|first1=Richard S.|last2=Haven|first2=Kyle|last3=Turkington|first3=Bruce|date=2002|title=अधिकांश संभावित प्रवाह के लिए कोई भी समतुल्य सांख्यिकीय संतुलन समूह और परिष्कृत स्थिरता प्रमेय नहीं|journal=Nonlinearity|volume=15|issue=2|pages=239|doi=10.1088/0951-7715/15/2/302|issn=0951-7715|arxiv=math-ph/0012022|bibcode=2002Nonli..15..239E |s2cid=18616132 }}</ref><ref>{{cite journal|last1=Barré|first1=Julien|last2=Gonçalves|first2=Bruno|date=December 2007|title=यादृच्छिक ग्राफ़ में असमानताओं को एकत्रित करें|journal=Physica A: Statistical Mechanics and Its Applications|volume=386|issue=1|pages=212–218|doi=10.1016/j.physa.2007.08.015|issn=0378-4371|arxiv=0705.2385|bibcode=2007PhyA..386..212B |s2cid=15399624 }}</ref>
जब कुल ऊर्जा निश्चित होती है तब प्रणाली की आंतरिक स्थिति अज्ञात होती है तथा उचित विवरण विहित समूह नहीं बल्कि [[माइक्रोकैनोनिकल पहनावा|सूक्ष्म विहित समूह]] होता है उन प्रणालियों के लिए कण संख्या परिवर्तनशील है कण भंडार के संपर्क के कारण सही विवरण [[भव्य विहित पहनावा|भव्य विहित समूह]] है कण प्रणालियों की परस्पर क्रिया के लिए [[सांख्यिकीय भौतिकी]] पाठ्यपुस्तकों में तीन संयोजनों को [[थर्मोडायनामिक सीमा|ऊष्मागतिक सीमा]] माना जाता है उनके औसत मूल्य के आसपास सूक्ष्मदर्शी की मात्रा में उतार-चढ़ाव छोटा हो जाता है और जैसे-जैसे कणों की संख्या अनंत हो जाती है तथा वे गायब हो जाते हैं बाद की सीमा में इसे ऊष्मागतिक सीमा कहा जाता है इसमें औसत बाधाएं प्रभावी रूप से कठिन बाधाएं बन जाती हैं जबकि सांख्यिकीय समूह गणितीय भौतिकी तुल्यता की धारणा जोशिया विलार्ड गिब्स के समय से चली आ रही हैं और भौतिक प्रणालियों के कुछ प्रारूपों के लिए छोटी दूरी की अंतःक्रियाओं और छोटी संख्या में सूक्ष्म बाधाओं के अधीन सत्यापित की गई है इस तथ्य के बाद कि कई पाठ्यपुस्तकें अभी भी यह संदेश देती हैं कि संयोजन तुल्यता सभी भौतिक प्रणालियों के लिए होती है तथा पिछले दशकों में भौतिक प्रणालियों के विभिन्न उदाहरण पाए गए हैं जिनके लिए संयोजन तुल्यता का टूटना होता है।<ref>{{cite journal|last=Roccaverde|first=Andrea|date=August 2018|title=Is breaking of ensemble equivalence monotone in the number of constraints?|journal=Indagationes Mathematicae|volume=30|pages=7–25|doi=10.1016/j.indag.2018.08.001|issn=0019-3577|arxiv=1807.02791|s2cid=119173928 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2016-11-25|title=मॉड्यूलर संरचना के साथ यादृच्छिक ग्राफ़ में कोई भी समानता न जोड़ें|journal=Journal of Physics A: Mathematical and Theoretical|volume=50|issue=1|pages=015001|doi=10.1088/1751-8113/50/1/015001|issn=1751-8113|arxiv=1603.08759|s2cid=53578783 }}</ref><ref>{{cite journal|last1=Garlaschelli|first1=Diego|last2=den Hollander|first2=Frank|last3=Roccaverde|first3=Andrea|date=2018-07-13|title=यादृच्छिक ग्राफ़ में समतुल्यता को तोड़ने के पीछे सहप्रसरण संरचना|journal=Journal of Statistical Physics|volume=173|issue=3–4|pages=644–662|doi=10.1007/s10955-018-2114-x|issn=0022-4715|arxiv=1711.04273|bibcode=2018JSP...173..644G|s2cid=52569377 }}</ref><ref>{{cite journal|last1=Hollander|first1=F. den|last2=Mandjes|first2=M.|last3=Roccaverde|first3=A.|last4=Starreveld|first4=N. J.|date=2018|title=घने ग्राफ़ के लिए समतुल्यता समूह|journal=Electronic Journal of Probability|volume=23|doi=10.1214/18-EJP135|issn=1083-6489|arxiv=1703.08058|s2cid=53610196 }}</ref><ref>{{cite journal|last1=Ellis|first1=Richard S.|last2=Haven|first2=Kyle|last3=Turkington|first3=Bruce|date=2002|title=अधिकांश संभावित प्रवाह के लिए कोई भी समतुल्य सांख्यिकीय संतुलन समूह और परिष्कृत स्थिरता प्रमेय नहीं|journal=Nonlinearity|volume=15|issue=2|pages=239|doi=10.1088/0951-7715/15/2/302|issn=0951-7715|arxiv=math-ph/0012022|bibcode=2002Nonli..15..239E |s2cid=18616132 }}</ref><ref>{{cite journal|last1=Barré|first1=Julien|last2=Gonçalves|first2=Bruno|date=December 2007|title=यादृच्छिक ग्राफ़ में असमानताओं को एकत्रित करें|journal=Physica A: Statistical Mechanics and Its Applications|volume=386|issue=1|pages=212–218|doi=10.1016/j.physa.2007.08.015|issn=0378-4371|arxiv=0705.2385|bibcode=2007PhyA..386..212B |s2cid=15399624 }}</ref>


==गुण==
==गुण==
Line 42: Line 41:
}}
}}


* ''विशिष्टता'' : विहित पहनावा किसी दिए गए भौतिक प्रणाली के लिए तथा किसी दिए गए तापमान पर विशिष्ट रूप से निर्धारित किया जाता है और समन्वय प्रणाली शास्त्रीय यांत्रिकी, आधार प्रमात्रा, यांत्रिकी ऊर्जा के शून्य की पसंद जैसे मनमाने विकल्पों पर निर्भर नहीं करता है विहित पहनावा निरंतर N , V और T के साथ एकमात्र पहनावा है जो मौलिक थर्मोडायनामिक संबंध को पुन: पेश करता है ।
* ''विशिष्टता'' : विहित समूह किसी दिए गए भौतिक प्रणाली के लिए तथा किसी दिए गए तापमान पर विशिष्ट रूप से निर्धारित किया जाता है और समन्वय प्रणाली शास्त्रीय यांत्रिकी, आधार प्रमात्रा, यांत्रिकी ऊर्जा के शून्य की पसंद जैसे मनमाने विकल्पों पर निर्भर नहीं करता है विहित समूह निरंतर N , V और T के साथ एकमात्र समूह है जो मौलिक ऊष्मागतिक संबंध को पुन: पेश करता है ।
* ''सांख्यिकीय संतुलन'' स्थिर अवस्था: एक विहित समूह समय के साथ विकसित नहीं होता है इस तथ्य के बाद अंतर्निहित प्रणाली निरंतर गति में है ऐसा इसलिए है क्योंकि संयोजन केवल प्रणाली ऊर्जा की संरक्षित मात्रा का एक कार्य है।
* ''सांख्यिकीय संतुलन'' स्थिर अवस्था: एक विहित समूह समय के साथ विकसित नहीं होता है इस तथ्य के बाद अंतर्निहित प्रणाली निरंतर गति में है ऐसा इसलिए है क्योंकि संयोजन केवल प्रणाली ऊर्जा की संरक्षित मात्रा का एक कार्य है।
* ''अन्य प्रणालियों के साथ तापीय संतुलन'' : दो प्रणालियाँ जिनमें से प्रत्येक को समान तापमान के एक विहित संयोजन द्वारा वर्णित किया गया है तथा इसे तापीय संपर्क में लाया गया है प्रत्येक एक ही संयोजन को बनाए रखेगा और परिणामी संयुक्त प्रणाली को समान तापमान के एक विहित समूह द्वारा वर्णित किया जाएगा।
* ''अन्य प्रणालियों के साथ तापीय संतुलन'' : दो प्रणालियाँ जिनमें से प्रत्येक को समान तापमान के एक विहित संयोजन द्वारा वर्णित किया गया है तथा इसे तापीय संपर्क में लाया गया है प्रत्येक एक ही संयोजन को बनाए रखेगा और परिणामी संयुक्त प्रणाली को समान तापमान के एक विहित समूह द्वारा वर्णित किया जाएगा।
* ''अधिकतम एन्ट्रापी'' : किसी दिए गए यांत्रिक प्रणाली निश्चित ''N'' , ''V''  के लिए विहित पहनावा औसत −⟨लॉग ''पी'' ⟩ ( एन्ट्रापी ) समान ⟨ ''ई'' ⟩ के साथ किसी भी संयोजन के लिए अधिकतम संभव है ।  
* ''अधिकतम एन्ट्रापी'' : किसी दिए गए यांत्रिक प्रणाली निश्चित ''N'' , ''V''  के लिए विहित समूह औसत −⟨लॉग ''पी'' ⟩ ( एन्ट्रापी ) समान ⟨ ''ई'' ⟩ के साथ किसी भी संयोजन के लिए अधिकतम संभव है ।  
* ''न्यूनतम मुक्त ऊर्जा'' : किसी दिए गए यांत्रिक प्रणाली निश्चित ''N'' , V  ''और T'' के दिए गए मान के लिए विहित संयोजन औसत ⟨ ''ई'' + ''केटी'' लॉग ''पी'' ⟩ हेल्महोल्ट्ज़ मुक्त ऊर्जा किसी भी संयोजन की तुलना में सबसे कम संभव है इसे आसानी से एन्ट्रापी को अधिकतम करने के बराबर देखा जा सकता है।
* ''न्यूनतम मुक्त ऊर्जा'' : किसी दिए गए यांत्रिक प्रणाली निश्चित ''N'' , V  ''और T'' के दिए गए मान के लिए विहित संयोजन औसत ⟨ ''ई'' + ''केटी'' लॉग ''पी'' ⟩ हेल्महोल्ट्ज़ मुक्त ऊर्जा किसी भी संयोजन की तुलना में सबसे कम संभव है इसे आसानी से एन्ट्रापी को अधिकतम करने के बराबर देखा जा सकता है।


Line 52: Line 51:
==मुक्त ऊर्जा, समग्र औसत और सटीक अंतर==
==मुक्त ऊर्जा, समग्र औसत और सटीक अंतर==


* समारोह का आंशिक व्युत्पन्न {{math|''F''(''N'', ''V'', ''T'')}} महत्वपूर्ण विहित पहनावा औसत मात्राएँ दें
* समारोह का आंशिक व्युत्पन्न {{math|''F''(''N'', ''V'', ''T'')}} महत्वपूर्ण विहित समूह औसत मात्राएँ दें
**औसत दबाव है<ref name="gibbs"/> <math display="block"> \langle p \rangle = -\frac{\partial F} {\partial V}, </math>
**औसत दबाव है<ref name="gibbs"/> <math display="block"> \langle p \rangle = -\frac{\partial F} {\partial V}, </math>
**[[गिब्स एन्ट्रापी]] है<ref name="gibbs"/> <math display="block"> S = -k \langle \log P \rangle = - \frac{\partial F} {\partial T}, </math>
**[[गिब्स एन्ट्रापी]] है<ref name="gibbs"/> <math display="block"> S = -k \langle \log P \rangle = - \frac{\partial F} {\partial T}, </math>
Line 58: Line 57:
**<math display="block"> \langle E \rangle = F + ST.</math>
**<math display="block"> \langle E \rangle = F + ST.</math>
* सटीक अंतर: उपरोक्त अभिव्यक्तियों से यह देखा जा सकता है कि समारोह {{math|''F''(''V'', ''T'')}}, किसी प्रदत्त के लिए {{math|''N''}} [[सटीक अंतर]] है<ref name="gibbs"/> <math display="block"> dF = - S \, dT - \langle p\rangle \, dV .</math>
* सटीक अंतर: उपरोक्त अभिव्यक्तियों से यह देखा जा सकता है कि समारोह {{math|''F''(''V'', ''T'')}}, किसी प्रदत्त के लिए {{math|''N''}} [[सटीक अंतर]] है<ref name="gibbs"/> <math display="block"> dF = - S \, dT - \langle p\rangle \, dV .</math>
* ऊष्मप्रवैगिकी का पहला नियम: उपरोक्त संबंध को प्रतिस्थापित करना {{math|⟨''E''⟩}} के सटीक अंतर में {{math|''F''}} कुछ मात्राओं पर औसत संकेतों को छोड़कर थर्मोडायनामिक्स के पहले नियम के समान एक समीकरण पाया जाता है <ref name="gibbs"/> <math display="block"> d\langle E \rangle = T \, dS - \langle p\rangle \, dV .</math>
* ऊष्मप्रवैगिकी का पहला नियम: उपरोक्त संबंध को प्रतिस्थापित करना {{math|⟨''E''⟩}} के सटीक अंतर में {{math|''F''}} कुछ मात्राओं पर औसत संकेतों को छोड़कर ऊष्मागतिक्स के पहले नियम के समान एक समीकरण पाया जाता है <ref name="gibbs"/> <math display="block"> d\langle E \rangle = T \, dS - \langle p\rangle \, dV .</math>
* तापीय उतार-चढ़ाव: तंत्र में ऊर्जा के विहित संयोजन में अनिश्चितता है जो ऊर्जा का विचरण करता है<ref name="gibbs"/> <math display="block"> \langle E^2 \rangle - \langle E \rangle^2 = k T^2 \frac{\partial \langle E \rangle}{\partial T}.</math>
* तापीय उतार-चढ़ाव: तंत्र में ऊर्जा के विहित संयोजन में अनिश्चितता है जो ऊर्जा का विचरण करता है<ref name="gibbs"/> <math display="block"> \langle E^2 \rangle - \langle E \rangle^2 = k T^2 \frac{\partial \langle E \rangle}{\partial T}.</math>


Line 68: Line 67:
यदि एक विहित समूह द्वारा वर्णित प्रणाली को स्वतंत्र भागों में विभाजित किया जा सकता है ऐसा तब होता है जब विभिन्न भाग परस्पर क्रिया नहीं करते हैं और उनमें से प्रत्येक भाग की एक निश्चित सामग्री संरचना होती है तथा प्रत्येक भाग को अपने आप में एक प्रणाली के रूप में देखा जा सकता है और है संपूर्ण तापमान के समान तापमान वाले एक विवर्णि करता है समूह द्वारा वर्णित तंत्र कई समान भागों से बना है तथा प्रत्येक भाग का वितरण अन्य भागों के समान ही होता है।
यदि एक विहित समूह द्वारा वर्णित प्रणाली को स्वतंत्र भागों में विभाजित किया जा सकता है ऐसा तब होता है जब विभिन्न भाग परस्पर क्रिया नहीं करते हैं और उनमें से प्रत्येक भाग की एक निश्चित सामग्री संरचना होती है तथा प्रत्येक भाग को अपने आप में एक प्रणाली के रूप में देखा जा सकता है और है संपूर्ण तापमान के समान तापमान वाले एक विवर्णि करता है समूह द्वारा वर्णित तंत्र कई समान भागों से बना है तथा प्रत्येक भाग का वितरण अन्य भागों के समान ही होता है।


इस तरह विहित पहनावा किसी भी संख्या में कणों की प्रणाली के लिए बिल्कुल बोल्ट्ज़मैन वितरण जिसे मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के रूप में भी जाना जाता है इसकी तुलना में सूक्ष्म विहित एकत्र से बोल्ट्ज़मैन वितरण का औचित्य केवल बड़ी संख्या में भागों अर्थात थर्मोडायनामिक सीमा में वाले तंत्र के लिए लागू होता है।
इस तरह विहित समूह किसी भी संख्या में कणों की प्रणाली के लिए बिल्कुल बोल्ट्ज़मैन वितरण जिसे मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के रूप में भी जाना जाता है इसकी तुलना में सूक्ष्म विहित एकत्र से बोल्ट्ज़मैन वितरण का औचित्य केवल बड़ी संख्या में भागों अर्थात ऊष्मागतिक सीमा में वाले तंत्र के लिए लागू होता है।


बोल्ट्ज़मैन वितरण वास्तविक प्रणालियों में सांख्यिकीय यांत्रिकी को लागू करने में सबसे महत्वपूर्ण उपकरणों में से एक है क्योंकि यह उन प्रणालियों के अध्ययन को व्यापक रूप से सरल बनाता है जिन्हें स्वतंत्र भागों में विभाजित किया जा सकता है उदाहरण के लिए [[मैक्सवेल गति वितरण]], प्लैंक का नियम, पॉलिमर भौतिकी आदि।
बोल्ट्ज़मैन वितरण वास्तविक प्रणालियों में सांख्यिकीय यांत्रिकी को लागू करने में सबसे महत्वपूर्ण उपकरणों में से एक है क्योंकि यह उन प्रणालियों के अध्ययन को व्यापक रूप से सरल बनाता है जिन्हें स्वतंत्र भागों में विभाजित किया जा सकता है उदाहरण के लिए [[मैक्सवेल गति वितरण]], प्लैंक का नियम, पॉलिमर भौतिकी आदि।
Line 76: Line 75:
{{main|Ising model}}
{{main|Ising model}}


एक दूसरे के साथ परस्पर क्रिया करने वाले टुकड़ों से बने तंत्र में आमतौर पर प्रणाली को स्वतंत्र उप प्रणालियों में अलग करने का तरीका खोजना संभव नहीं होता है जैसा कि बोल्ट्ज़मैन वितरण में किया गया है कि इन प्रणालियों में जब तंत्र को ताप स्नान के लिए ऊष्मातापी किया जाता है तो उसके थर्मोडायनामिक्स का वर्णन करने के लिए विहित पहनावा की पूर्ण अभिव्यक्ति का उपयोग करना आवश्यक होता है विहित पहनावा अधिकतर  सांख्यिकीय यांत्रिकी के अध्ययन के लिए सबसे सीधा ढांचा है और यहां तक ​​कि कुछ अंत:क्रिया प्रारूप तंत्र में सही समाधान प्राप्त करने की अनुमति भी देता है <ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  }}</ref>इसका एक उत्कृष्ट उदाहरण [[आइसिंग मॉडल|एकीकृत प्रारूप]] है जो लौह चुम्बकत्व और [[स्व-इकट्ठे मोनोलेयर]] गठन की घटनाओं के लिए एक व्यापक रूप से चर्चित प्रारूप है जो सबसे सरल प्रारूपों में से एक है एक [[चरण संक्रमण]] यह  है [[लार्स ऑनसागर|कि लार्स ऑनसागर]] ने विहित समूह में शून्य चुंबकीय क्षेत्र पर एक अनंत आकार के [[वर्ग-जाली आइसिंग मॉडल|वर्ग-जाली एकीकृतग प्रारूप]] की मुक्त ऊर्जा की गणना की।<ref>{{cite journal | last1 = Onsager | first1 = L. | title = क्रिस्टल सांख्यिकी। I. आदेश-विकार संक्रमण के साथ एक द्वि-आयामी मॉडल| doi = 10.1103/PhysRev.65.117 | journal = Physical Review | volume = 65 | issue = 3–4 | pages = 117–149 | year = 1944 |bibcode = 1944PhRv...65..117O }}</ref>
एक दूसरे के साथ परस्पर क्रिया करने वाले टुकड़ों से बने तंत्र में आमतौर पर प्रणाली को स्वतंत्र उप प्रणालियों में अलग करने का तरीका खोजना संभव नहीं होता है जैसा कि बोल्ट्ज़मैन वितरण में किया गया है कि इन प्रणालियों में जब तंत्र को ताप स्नान के लिए ऊष्मातापी किया जाता है तो उसके ऊष्मागतिक्स का वर्णन करने के लिए विहित समूह की पूर्ण अभिव्यक्ति का उपयोग करना आवश्यक होता है विहित समूह अधिकतर  सांख्यिकीय यांत्रिकी के अध्ययन के लिए सबसे सीधा ढांचा है और यहां तक ​​कि कुछ अंत:क्रिया प्रारूप तंत्र में सही समाधान प्राप्त करने की अनुमति भी देता है <ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  }}</ref>इसका एक उत्कृष्ट उदाहरण [[आइसिंग मॉडल|एकीकृत प्रारूप]] है जो लौह चुम्बकत्व और [[स्व-इकट्ठे मोनोलेयर]] गठन की घटनाओं के लिए एक व्यापक रूप से चर्चित प्रारूप है जो सबसे सरल प्रारूपों में से एक है एक [[चरण संक्रमण]] यह  है [[लार्स ऑनसागर|कि लार्स ऑनसागर]] ने विहित समूह में शून्य चुंबकीय क्षेत्र पर एक अनंत आकार के [[वर्ग-जाली आइसिंग मॉडल|वर्ग-जाली एकीकृतग प्रारूप]] की मुक्त ऊर्जा की गणना की।<ref>{{cite journal | last1 = Onsager | first1 = L. | title = क्रिस्टल सांख्यिकी। I. आदेश-विकार संक्रमण के साथ एक द्वि-आयामी मॉडल| doi = 10.1103/PhysRev.65.117 | journal = Physical Review | volume = 65 | issue = 3–4 | pages = 117–149 | year = 1944 |bibcode = 1944PhRv...65..117O }}</ref>




==समूह के लिए सटीक अभिव्यक्ति==
==समूह के लिए सटीक अभिव्यक्ति==


एक सांख्यिकीय समूह के लिए गणितीय अभिव्यक्ति विचाराधीन यांत्रिकी के प्रकार पर निर्भर करती है जैसे प्रमात्रा या शास्त्रीय इन दोनों स्थानों में सूक्ष्म अवस्था की धारणा काफी भिन्न है तथा प्रमात्रा यांत्रिकी में विहित पहनावा एक सरल विवरण प्रदान करता है क्योंकि [[मैट्रिक्स विकर्णीकरण|सममित विकर्णीकरण]] विशिष्ट ऊर्जाओं के साथ सूक्ष्म अवस्था व सांख्यिकीय यांत्रिकी का एक अलग समूह प्रदान करता है शास्त्रीय यांत्रिक की समष्टि अधिक जटिल है क्योंकि इसमें विहित [[चरण स्थान|चरण समष्टि]] पर एक अभिन्न अंग सम्मिलित है और चरण समष्टि में सूक्ष्म अवस्था का आकार कुछ जगह तक मनमाने ढंग से चुना जा सकता है।
एक सांख्यिकीय समूह के लिए गणितीय अभिव्यक्ति विचाराधीन यांत्रिकी के प्रकार पर निर्भर करती है जैसे प्रमात्रा या शास्त्रीय इन दोनों स्थानों में सूक्ष्म अवस्था की धारणा काफी भिन्न है तथा प्रमात्रा यांत्रिकी में विहित समूह एक सरल विवरण प्रदान करता है क्योंकि [[मैट्रिक्स विकर्णीकरण|सममित विकर्णीकरण]] विशिष्ट ऊर्जाओं के साथ सूक्ष्म अवस्था व सांख्यिकीय यांत्रिकी का एक अलग समूह प्रदान करता है शास्त्रीय यांत्रिक की समष्टि अधिक जटिल है क्योंकि इसमें विहित [[चरण स्थान|चरण समष्टि]] पर एक अभिन्न अंग सम्मिलित है और चरण समष्टि में सूक्ष्म अवस्था का आकार कुछ जगह तक मनमाने ढंग से चुना जा सकता है।


===क्वांटम मैकेनिकल ===
===क्वांटम मैकेनिकल ===
Line 110: Line 109:
जहाँ {{math|''Ĥ''}} तंत्र का कुल ऊर्जा चालक [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन प्रमात्रा यांत्रिकी]] है और {{math|exp()}} [[ मैट्रिक्स घातांक | सममिति घातांक]] चालक है मुक्त ऊर्जा {{math|''F''}} संभाव्यता सामान्यीकरण स्थिति द्वारा निर्धारित किया जाता है कि घनत्व सममिति में एक का चिन्ह रैखिक बीजगणित होता है, <math>\operatorname{Tr} \hat \rho=1</math>:
जहाँ {{math|''Ĥ''}} तंत्र का कुल ऊर्जा चालक [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन प्रमात्रा यांत्रिकी]] है और {{math|exp()}} [[ मैट्रिक्स घातांक | सममिति घातांक]] चालक है मुक्त ऊर्जा {{math|''F''}} संभाव्यता सामान्यीकरण स्थिति द्वारा निर्धारित किया जाता है कि घनत्व सममिति में एक का चिन्ह रैखिक बीजगणित होता है, <math>\operatorname{Tr} \hat \rho=1</math>:
:<math>e^{-\frac{F}{k T}} = \operatorname{Tr} \exp\left(-\tfrac{1}{kT} \hat H\right).</math>
:<math>e^{-\frac{F}{k T}} = \operatorname{Tr} \exp\left(-\tfrac{1}{kT} \hat H\right).</math>
यदि प्रणाली की स्थिर स्थिति और ऊर्जा के अभिलक्षण ​​​​ज्ञात हैं जिससे विहित पहनावा को वैकल्पिक रूप से संकेतन प्रारूप का उपयोग करके सरल रूप में लिखा जा सकता है ऊर्जा सहप्रसरण का पूरा आधार दिया गया है {{math|{{!}}''ψ''<sub>''i''</sub>⟩}}, द्वारा अनुक्रमित {{math|''i''}}, विहित पहनावा है इस प्रकार है-
यदि प्रणाली की स्थिर स्थिति और ऊर्जा के अभिलक्षण ​​​​ज्ञात हैं जिससे विहित समूह को वैकल्पिक रूप से संकेतन प्रारूप का उपयोग करके सरल रूप में लिखा जा सकता है ऊर्जा सहप्रसरण का पूरा आधार दिया गया है {{math|{{!}}''ψ''<sub>''i''</sub>⟩}}, द्वारा अनुक्रमित {{math|''i''}}, विहित समूह है इस प्रकार है-
:<math>\hat \rho = \sum_i e^{\frac{F - E_i}{k T}} |\psi_i\rangle \langle \psi_i | </math>
:<math>\hat \rho = \sum_i e^{\frac{F - E_i}{k T}} |\psi_i\rangle \langle \psi_i | </math>
:<math>e^{-\frac{F}{k T}} = \sum_i e^{\frac{- E_i}{k T}}.</math>
:<math>e^{-\frac{F}{k T}} = \sum_i e^{\frac{- E_i}{k T}}.</math>
जहां {{math|''E''<sub>''i''</sub>}} द्वारा निर्धारित ऊर्जा अभिलक्षण ​​हैं {{math|''Ĥ''{{!}}''ψ''<sub>''i''</sub>⟩ {{=}} ''E''<sub>''i''</sub>{{!}}''ψ''<sub>''i''</sub>⟩}}. तथा दूसरे शब्दों में प्रमात्रा यांत्रिकी में सूक्ष्म विहित का एक समूह जो स्थिर राज्यों के एक पूरे समूह द्वारा दिया जाता है इस आधार पर घनत्व गणितीय विकर्ण है जो विकर्ण प्रविष्टियाँ प्रत्येक सीधे एक संभाव्यता देती हैं।
जहां {{math|''E''<sub>''i''</sub>}} द्वारा निर्धारित ऊर्जा अभिलक्षण ​​हैं {{math|''Ĥ''{{!}}''ψ''<sub>''i''</sub>⟩ {{=}} ''E''<sub>''i''</sub>{{!}}''ψ''<sub>''i''</sub>⟩}}. तथा दूसरे शब्दों में प्रमात्रा यांत्रिकी में सूक्ष्म विहित का एक समूह जो स्थिर अवस्थाओ के एक पूरे समूह द्वारा दिया जाता है इस आधार पर घनत्व गणितीय विकर्ण है जो विकर्ण प्रविष्टियाँ प्रत्येक सीधे एक संभाव्यता देती हैं।


===शास्त्रीय यांत्रिक===
===शास्त्रीय यांत्रिक===

Revision as of 10:18, 18 July 2023

सांख्यिकीय यांत्रिक में एक विहित समूह एक सांख्यिकीय समूह है जो एक निश्चित तापमान पर ताप कुण्ड के साथ ऊष्मीय साम्य में एक यांत्रिक प्रणाली की संभावित स्थितियों का प्रतिनिधित्व करता है।[1] प्रणाली ताप कुण्ड के साथ ऊर्जा का आदान-प्रदान कर सकता है, जिससे प्रणाली की स्थिति कुल ऊर्जा में भिन्न होगी।

अवस्थाओ के प्रायिकता वितरण को निर्धारित करने वाले विहित समूह का प्रमुख ऊष्मागतिक चर, परम ताप (प्रतीक, T) है। संयोजन आम तौर पर यांत्रिक चर पर भी निर्भर करता है जैसे तंत्र में कणों की संख्या का प्रतीक N और प्रणाली का आयतन प्रतीक V जिनमें से यह प्रत्येक प्रणाली की आंतरिक स्थितियों की प्रकृति को प्रभावित करता है तथा इन तीन मापदंडों वाले समूह को कभी-कभी NVT समूह कहा जाता है

विहित समूह एक संभाव्यता निर्दिष्ट करता है तथा P प्रत्येक विशिष्ट सूक्ष्म अवस्था व सांख्यिकीय यांत्रिकी को निम्नलिखित घातांक द्वारा प्रदर्शित किया गया है

जहाँ E सूक्ष्म अवस्था की कुल ऊर्जा है और k बोल्ट्ज़मैन स्थिरांक है

जहाँ F मुक्त ऊर्जा है विशेष रूप से हेल्महोल्ट्ज़ मुक्त ऊर्जा समूह के लिए स्थिरांक है जबकि संभावनाएँ math|F हैं तो इनमें N, V, T का चयन किया जाता है मुक्त ऊर्जा F दो भूमिकाएँ निभाता है जबकि पहला यह प्रायिकता वितरण के लिए एक सामान्यीकरण कारक प्रदान करता है और सूक्ष्म अवस्था के पूरे समूह पर संभावनाओं को आगे तक जोड़ता है तथा दूसरा कई महत्वपूर्ण संयोजन औसतों की गणना सीधे समारोह से की जा सकती है जैसे F(N, V, T).

समान अवधारणा के लिए एक वैकल्पिक समतुल्य सूत्रीकरण संभाव्यता को इस प्रकार लिखता है

विभाजन समारोह सांख्यिकीय यांत्रिकी का उपयोग करना

मुफ्त ऊर्जा की जगह नीचे दिए गए समीकरणों को मुक्त ऊर्जा के संदर्भ में सरल गणितीय जोड़ द्वारा विहित विभाजन कार्यक्रम के संदर्भ में पुनर्स्थापित किया जा सकता है।

ऐतिहासिक रूप से विहित पहनावे का वर्णन सबसे पहले लुडविग बोल्ट्ज़मान जिन्होंने इसे होलोड कहा था इनके द्वारा 1884 में एक अपेक्षाकृत अज्ञात पेपर ज्ञात किया गया बाद में 1902 में जोशिया विलार्ड गिब्स द्वारा इसका पुनरुद्धार किया गया और व्यापक जांच की गई।[1]


विहित संयोजन की प्रयोज्यता

विहित समूह वह समूह है जो एक प्रणाली की संभावित स्थितियों का वर्णन करता है जो ताप स्नान के साथ तापीय संतुलन में है इस तथ्य की व्युत्पत्ति गिब्स में पाई जा सकती है [1]

विहित समूह किसी भी आकार की प्रणालियों पर लागू होता है जबकि यह मानना ​​आवश्यक है कि ताप स्नान बहुत बड़ा है यानी एक स्थूल सीमा प्रणाली छोटा या बड़ा हो सकता है


प्रणाली यांत्रिक रूप से पृथक है इसको सुनिश्चित करने के लिए यह आवश्यक है कि यह ताप स्नान को छोड़कर किसी भी बाहरी वस्तु के साथ ऊर्जा का आदान-प्रदान नहीं करता है [1]सामान्य तौर पर उन प्रणालियों पर विहित समूह लागू करना वांछनीय है जो ताप स्नान के सीधे संपर्क में हैं क्योंकि यह वह संपर्क है जो संतुलन सुनिश्चित करता है तथा व्यावहारिक स्थितियों में विहित संयोजन के उपयोग पर यह उचित है इसका यह मानना है कि संपर्क यांत्रिक रूप से कमजोर है जो विश्लेषण के तहत प्रणाली में गर्म स्नान जोड़ का एक उपयुक्त हिस्सा सम्मिलित करके जुडा़व का यांत्रिक प्रभाव प्रणाली के भीतर प्रारूपित कर सकता है।

जब कुल ऊर्जा निश्चित होती है तब प्रणाली की आंतरिक स्थिति अज्ञात होती है तथा उचित विवरण विहित समूह नहीं बल्कि सूक्ष्म विहित समूह होता है उन प्रणालियों के लिए कण संख्या परिवर्तनशील है कण भंडार के संपर्क के कारण सही विवरण भव्य विहित समूह है कण प्रणालियों की परस्पर क्रिया के लिए सांख्यिकीय भौतिकी पाठ्यपुस्तकों में तीन संयोजनों को ऊष्मागतिक सीमा माना जाता है उनके औसत मूल्य के आसपास सूक्ष्मदर्शी की मात्रा में उतार-चढ़ाव छोटा हो जाता है और जैसे-जैसे कणों की संख्या अनंत हो जाती है तथा वे गायब हो जाते हैं बाद की सीमा में इसे ऊष्मागतिक सीमा कहा जाता है इसमें औसत बाधाएं प्रभावी रूप से कठिन बाधाएं बन जाती हैं जबकि सांख्यिकीय समूह गणितीय भौतिकी तुल्यता की धारणा जोशिया विलार्ड गिब्स के समय से चली आ रही हैं और भौतिक प्रणालियों के कुछ प्रारूपों के लिए छोटी दूरी की अंतःक्रियाओं और छोटी संख्या में सूक्ष्म बाधाओं के अधीन सत्यापित की गई है इस तथ्य के बाद कि कई पाठ्यपुस्तकें अभी भी यह संदेश देती हैं कि संयोजन तुल्यता सभी भौतिक प्रणालियों के लिए होती है तथा पिछले दशकों में भौतिक प्रणालियों के विभिन्न उदाहरण पाए गए हैं जिनके लिए संयोजन तुल्यता का टूटना होता है।[2][3][4][5][6][7]

गुण

  • विशिष्टता : विहित समूह किसी दिए गए भौतिक प्रणाली के लिए तथा किसी दिए गए तापमान पर विशिष्ट रूप से निर्धारित किया जाता है और समन्वय प्रणाली शास्त्रीय यांत्रिकी, आधार प्रमात्रा, यांत्रिकी ऊर्जा के शून्य की पसंद जैसे मनमाने विकल्पों पर निर्भर नहीं करता है विहित समूह निरंतर N , V और T के साथ एकमात्र समूह है जो मौलिक ऊष्मागतिक संबंध को पुन: पेश करता है ।
  • सांख्यिकीय संतुलन स्थिर अवस्था: एक विहित समूह समय के साथ विकसित नहीं होता है इस तथ्य के बाद अंतर्निहित प्रणाली निरंतर गति में है ऐसा इसलिए है क्योंकि संयोजन केवल प्रणाली ऊर्जा की संरक्षित मात्रा का एक कार्य है।
  • अन्य प्रणालियों के साथ तापीय संतुलन : दो प्रणालियाँ जिनमें से प्रत्येक को समान तापमान के एक विहित संयोजन द्वारा वर्णित किया गया है तथा इसे तापीय संपर्क में लाया गया है प्रत्येक एक ही संयोजन को बनाए रखेगा और परिणामी संयुक्त प्रणाली को समान तापमान के एक विहित समूह द्वारा वर्णित किया जाएगा।
  • अधिकतम एन्ट्रापी : किसी दिए गए यांत्रिक प्रणाली निश्चित N , V के लिए विहित समूह औसत −⟨लॉग पी ⟩ ( एन्ट्रापी ) समान ⟨ ⟩ के साथ किसी भी संयोजन के लिए अधिकतम संभव है ।
  • न्यूनतम मुक्त ऊर्जा : किसी दिए गए यांत्रिक प्रणाली निश्चित N , V और T के दिए गए मान के लिए विहित संयोजन औसत ⟨ + केटी लॉग पी ⟩ हेल्महोल्ट्ज़ मुक्त ऊर्जा किसी भी संयोजन की तुलना में सबसे कम संभव है इसे आसानी से एन्ट्रापी को अधिकतम करने के बराबर देखा जा सकता है।


मुक्त ऊर्जा, समग्र औसत और सटीक अंतर

  • समारोह का आंशिक व्युत्पन्न F(N, V, T) महत्वपूर्ण विहित समूह औसत मात्राएँ दें
    • औसत दबाव है[1]
    • गिब्स एन्ट्रापी है[1]
    • आंशिक व्युत्पन्न F/∂N लगभग रासायनिक क्षमता से संबंधित है जबकि रासायनिक संतुलन की अवधारणा छोटी प्रणालियों के विहित समूहों पर लागू नहीं होती है [note 1]
  • सटीक अंतर: उपरोक्त अभिव्यक्तियों से यह देखा जा सकता है कि समारोह F(V, T), किसी प्रदत्त के लिए N सटीक अंतर है[1]
  • ऊष्मप्रवैगिकी का पहला नियम: उपरोक्त संबंध को प्रतिस्थापित करना E के सटीक अंतर में F कुछ मात्राओं पर औसत संकेतों को छोड़कर ऊष्मागतिक्स के पहले नियम के समान एक समीकरण पाया जाता है [1]
  • तापीय उतार-चढ़ाव: तंत्र में ऊर्जा के विहित संयोजन में अनिश्चितता है जो ऊर्जा का विचरण करता है[1]

उदाहरण समुच्चय

अभिलेख अवरोधन को एक ही प्रकृति की बड़ी संख्या में प्रणालियों की कल्पना कर सकते हैं लेकिन एक निश्चित समय पर उनके विन्यास और वेग में भिन्नता होती है तथा बहुत ही कम अंतर होता है जबकि यह इतना भिन्न हो सकता है कि प्रत्येक कल्पनीय संयोजन को गले लगा सके विन्यास और वेग... जे. डब्ल्यू. गिब्स (1903) के अनुसार है-[8]

बोल्ट्ज़मैन वितरण (वियोज्य प्रणाली)

यदि एक विहित समूह द्वारा वर्णित प्रणाली को स्वतंत्र भागों में विभाजित किया जा सकता है ऐसा तब होता है जब विभिन्न भाग परस्पर क्रिया नहीं करते हैं और उनमें से प्रत्येक भाग की एक निश्चित सामग्री संरचना होती है तथा प्रत्येक भाग को अपने आप में एक प्रणाली के रूप में देखा जा सकता है और है संपूर्ण तापमान के समान तापमान वाले एक विवर्णि करता है समूह द्वारा वर्णित तंत्र कई समान भागों से बना है तथा प्रत्येक भाग का वितरण अन्य भागों के समान ही होता है।

इस तरह विहित समूह किसी भी संख्या में कणों की प्रणाली के लिए बिल्कुल बोल्ट्ज़मैन वितरण जिसे मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी के रूप में भी जाना जाता है इसकी तुलना में सूक्ष्म विहित एकत्र से बोल्ट्ज़मैन वितरण का औचित्य केवल बड़ी संख्या में भागों अर्थात ऊष्मागतिक सीमा में वाले तंत्र के लिए लागू होता है।

बोल्ट्ज़मैन वितरण वास्तविक प्रणालियों में सांख्यिकीय यांत्रिकी को लागू करने में सबसे महत्वपूर्ण उपकरणों में से एक है क्योंकि यह उन प्रणालियों के अध्ययन को व्यापक रूप से सरल बनाता है जिन्हें स्वतंत्र भागों में विभाजित किया जा सकता है उदाहरण के लिए मैक्सवेल गति वितरण, प्लैंक का नियम, पॉलिमर भौतिकी आदि।

एकीकृत प्रारूप दृढ़ता से इंटरैक्ट करने वाला तंत्र

एक दूसरे के साथ परस्पर क्रिया करने वाले टुकड़ों से बने तंत्र में आमतौर पर प्रणाली को स्वतंत्र उप प्रणालियों में अलग करने का तरीका खोजना संभव नहीं होता है जैसा कि बोल्ट्ज़मैन वितरण में किया गया है कि इन प्रणालियों में जब तंत्र को ताप स्नान के लिए ऊष्मातापी किया जाता है तो उसके ऊष्मागतिक्स का वर्णन करने के लिए विहित समूह की पूर्ण अभिव्यक्ति का उपयोग करना आवश्यक होता है विहित समूह अधिकतर सांख्यिकीय यांत्रिकी के अध्ययन के लिए सबसे सीधा ढांचा है और यहां तक ​​कि कुछ अंत:क्रिया प्रारूप तंत्र में सही समाधान प्राप्त करने की अनुमति भी देता है [9]इसका एक उत्कृष्ट उदाहरण एकीकृत प्रारूप है जो लौह चुम्बकत्व और स्व-इकट्ठे मोनोलेयर गठन की घटनाओं के लिए एक व्यापक रूप से चर्चित प्रारूप है जो सबसे सरल प्रारूपों में से एक है एक चरण संक्रमण यह है कि लार्स ऑनसागर ने विहित समूह में शून्य चुंबकीय क्षेत्र पर एक अनंत आकार के वर्ग-जाली एकीकृतग प्रारूप की मुक्त ऊर्जा की गणना की।[10]


समूह के लिए सटीक अभिव्यक्ति

एक सांख्यिकीय समूह के लिए गणितीय अभिव्यक्ति विचाराधीन यांत्रिकी के प्रकार पर निर्भर करती है जैसे प्रमात्रा या शास्त्रीय इन दोनों स्थानों में सूक्ष्म अवस्था की धारणा काफी भिन्न है तथा प्रमात्रा यांत्रिकी में विहित समूह एक सरल विवरण प्रदान करता है क्योंकि सममित विकर्णीकरण विशिष्ट ऊर्जाओं के साथ सूक्ष्म अवस्था व सांख्यिकीय यांत्रिकी का एक अलग समूह प्रदान करता है शास्त्रीय यांत्रिक की समष्टि अधिक जटिल है क्योंकि इसमें विहित चरण समष्टि पर एक अभिन्न अंग सम्मिलित है और चरण समष्टि में सूक्ष्म अवस्था का आकार कुछ जगह तक मनमाने ढंग से चुना जा सकता है।

क्वांटम मैकेनिकल

Example of canonical ensemble for a quantum system consisting of one particle in a potential well.
Plot of all possible states of this system. The available stationary states displayed as horizontal bars of varying darkness according to |ψi(x)|2.
A canonical ensemble for this system, for the temperature shown. The states are weighted exponentially in energy.
The particle's Hamiltonian is Schrödinger-type, Ĥ = U(x) + p2/2m (the potential U(x) is plotted as a red curve). Each panel shows an energy-position plot with the various stationary states, along with a side plot showing the distribution of states in energy.

प्रमात्रा यांत्रिकी में एक सांख्यिकीय समूह को घनत्व गणितीय द्वारा दर्शाया जाता है जिसे द्वारा दर्शाया जाता है आधार मुक्त संकेतन में विहित संयोजन घनत्व गणित है जो इस प्रकार है-[citation needed]

जहाँ Ĥ तंत्र का कुल ऊर्जा चालक हैमिल्टनियन प्रमात्रा यांत्रिकी है और exp() सममिति घातांक चालक है मुक्त ऊर्जा F संभाव्यता सामान्यीकरण स्थिति द्वारा निर्धारित किया जाता है कि घनत्व सममिति में एक का चिन्ह रैखिक बीजगणित होता है, :

यदि प्रणाली की स्थिर स्थिति और ऊर्जा के अभिलक्षण ​​​​ज्ञात हैं जिससे विहित समूह को वैकल्पिक रूप से संकेतन प्रारूप का उपयोग करके सरल रूप में लिखा जा सकता है ऊर्जा सहप्रसरण का पूरा आधार दिया गया है |ψi, द्वारा अनुक्रमित i, विहित समूह है इस प्रकार है-

जहां Ei द्वारा निर्धारित ऊर्जा अभिलक्षण ​​हैं Ĥ|ψi⟩ = Ei|ψi. तथा दूसरे शब्दों में प्रमात्रा यांत्रिकी में सूक्ष्म विहित का एक समूह जो स्थिर अवस्थाओ के एक पूरे समूह द्वारा दिया जाता है इस आधार पर घनत्व गणितीय विकर्ण है जो विकर्ण प्रविष्टियाँ प्रत्येक सीधे एक संभाव्यता देती हैं।

शास्त्रीय यांत्रिक

Example of canonical ensemble for a classical system consisting of one particle in a potential well.
Plot of all possible states of this system. The available physical states are evenly distributed in phase space, but with an uneven distribution in energy; the side-plot displays dv/dE.
A canonical ensemble for this system, for the temperature shown. The states are weighted exponentially in energy.
Each panel shows phase space (upper graph) and energy-position space (lower graph). The particle's Hamiltonian is H = U(x) + p2/2m, with the potential U(x) shown as a red curve. The side plot shows the distribution of states in energy.

शास्त्रीय यांत्रिकी में एक सांख्यिकीय समूह को प्रणाली के चरण समष्टि में एक संयुक्त संभाव्यता घनत्व समारोह द्वारा दर्शाया जाता है

ρ(p1, … pn, q1, … qn), जहां p1, … pn और q1, … qn प्रणाली की स्वतंत्रता की आंतरिक डिग्री के विहित निर्देशांक सामान्यीकृत संवेग और सामान्यीकृत निर्देशांक हैं।

कणों की एक प्रणाली में स्वतंत्रता की घात की संख्या n कणों की संख्या पर निर्भर करता है N एक तरह से जो भौतिक स्थिति पर निर्भर करता है प्रस्तुतीकरण अणु की त्रि-आयामी गैस के लिए n = 3N. द्विपरमाणुक गैसों में स्वतंत्रता की घूर्णी और धनात्मक घात भी होंगी

विहित समूह के लिए संभाव्यता घनत्व कार्यक्रम यह है

जहॉं

  • E प्रणाली की ऊर्जा है तथा चरण कार्य है। (p1, … qn)
  • h की इकाइयों के साथ एक मनमाना पूर्व निर्धारित स्थिरांक है जो energy×time एक सूक्ष्म विहित की सीमा निर्धारित करता है और सही आयाम प्रदान करता है।
  • C एक सुधार कारक है जिसका उपयोग अधिकतर कण प्रणालियों के लिए किया जाता है जहां समान कण एक दूसरे के साथ समष्टि बदलने में सक्षम होते हैं ।[note 2]
  • F एक सामान्यीकरण कारक प्रदान करता है और यह विशिष्ट अवस्था समारोह मुक्त ऊर्जा भी है।

फिर से इसका मूल्य F उसकी मांग करके निर्धारित किया जाता है ρ एक सामान्यीकृत संभाव्यता घनत्व समारोह है ।

यह अभिन्न अंग पूरे चरण समष्टि पर लिया गया है

दूसरे शब्दों में शास्त्रीय यांत्रिकी में एक सूक्ष्म चरण अंतरिक्ष क्षेत्र है और इस क्षेत्र में आयतन है hnC. इसका मतलब यह है कि प्रत्येक सूक्ष्म विहित ऊर्जा की एक सीमा तक फैला हुआ है जबकि इस सीमा को चुनकर मनमाने ढंग से संकीर्ण बनाया जा सकता है h लघु चरण स्थान समाकलन को सूक्ष्म विहित एक योग में परिवर्तित किया जा सकता है तथा एक बार चरण समष्टि को पर्याप्त घात तक बारीक रूप से विभाजित किया गया है।

टिप्पणियाँ

  1. Since N is an integer, this "derivative" actually refers to a finite difference expression such as F(N) − F(N − 1), or F(N + 1) − F(N), or [F(N + 1) − F(N − 1)]/2. These finite difference expressions are equivalent only in the thermodynamic limit (very large N).
  2. In a system of N identical particles, C = N! (factorial of N). This factor corrects the overcounting in phase space due to identical physical states being found in multiple locations. See the statistical ensemble article for more information on this overcounting.


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Gibbs, Josiah Willard (1902). सांख्यिकीय यांत्रिकी में प्राथमिक सिद्धांत. New York: Charles Scribner's Sons.
  2. Roccaverde, Andrea (August 2018). "Is breaking of ensemble equivalence monotone in the number of constraints?". Indagationes Mathematicae. 30: 7–25. arXiv:1807.02791. doi:10.1016/j.indag.2018.08.001. ISSN 0019-3577. S2CID 119173928.
  3. Garlaschelli, Diego; den Hollander, Frank; Roccaverde, Andrea (2016-11-25). "मॉड्यूलर संरचना के साथ यादृच्छिक ग्राफ़ में कोई भी समानता न जोड़ें". Journal of Physics A: Mathematical and Theoretical. 50 (1): 015001. arXiv:1603.08759. doi:10.1088/1751-8113/50/1/015001. ISSN 1751-8113. S2CID 53578783.
  4. Garlaschelli, Diego; den Hollander, Frank; Roccaverde, Andrea (2018-07-13). "यादृच्छिक ग्राफ़ में समतुल्यता को तोड़ने के पीछे सहप्रसरण संरचना". Journal of Statistical Physics. 173 (3–4): 644–662. arXiv:1711.04273. Bibcode:2018JSP...173..644G. doi:10.1007/s10955-018-2114-x. ISSN 0022-4715. S2CID 52569377.
  5. Hollander, F. den; Mandjes, M.; Roccaverde, A.; Starreveld, N. J. (2018). "घने ग्राफ़ के लिए समतुल्यता समूह". Electronic Journal of Probability. 23. arXiv:1703.08058. doi:10.1214/18-EJP135. ISSN 1083-6489. S2CID 53610196.
  6. Ellis, Richard S.; Haven, Kyle; Turkington, Bruce (2002). "अधिकांश संभावित प्रवाह के लिए कोई भी समतुल्य सांख्यिकीय संतुलन समूह और परिष्कृत स्थिरता प्रमेय नहीं". Nonlinearity. 15 (2): 239. arXiv:math-ph/0012022. Bibcode:2002Nonli..15..239E. doi:10.1088/0951-7715/15/2/302. ISSN 0951-7715. S2CID 18616132.
  7. Barré, Julien; Gonçalves, Bruno (December 2007). "यादृच्छिक ग्राफ़ में असमानताओं को एकत्रित करें". Physica A: Statistical Mechanics and Its Applications. 386 (1): 212–218. arXiv:0705.2385. Bibcode:2007PhyA..386..212B. doi:10.1016/j.physa.2007.08.015. ISSN 0378-4371. S2CID 15399624.
  8. Gibbs, J.W. (1928). The Collected Works, Vol. 2. Green & Co, London, New York: Longmans.
  9. Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.
  10. Onsager, L. (1944). "क्रिस्टल सांख्यिकी। I. आदेश-विकार संक्रमण के साथ एक द्वि-आयामी मॉडल". Physical Review. 65 (3–4): 117–149. Bibcode:1944PhRv...65..117O. doi:10.1103/PhysRev.65.117.