सामान्य रैखिक मॉडल: Difference between revisions
(Created page with "{{Short description|Statistical linear model}} {{distinguish|text=Multiple linear regression, Generalized linear model or General linear methods}} {{Regression bar...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Statistical linear model}} | {{Short description|Statistical linear model}} | ||
{{distinguish|text=[[ | {{distinguish|text=[[एकाधिक रैखिक प्रतिगमन]], [[सामान्यीकृत रैखिक मॉडल]] या [[सामान्य रैखिक विधियां]]}} | ||
{{Regression bar}} | {{Regression bar}} | ||
सामान्य [[रैखिक मॉडल]] या सामान्य बहुभिन्नरूपी प्रतिगमन मॉडल एक साथ कई एकाधिक रैखिक प्रतिगमन मॉडल लिखने का | '''सामान्य [[रैखिक मॉडल]]''' या सामान्य बहुभिन्नरूपी प्रतिगमन मॉडल एक साथ कई एकाधिक रैखिक प्रतिगमन मॉडल लिखने का सघन (कॉम्पैक्ट) तरीका है। इस अर्थ में यह एक अलग सांख्यिकीय रैखिक मॉडल नहीं है। विभिन्न एकाधिक रैखिक प्रतिगमन मॉडल को सघन रूप से इस प्रकार लिखा जा सकता है<ref name="MardiaK1979Multivariate">{{Cite book | author = [[K. V. Mardia]], J. T. Kent and J. M. Bibby | title = बहुभिन्नरूपी विश्लेषण| publisher = [[Academic Press]] | year = 1979 | isbn = 0-12-471252-5}}</ref> | ||
: <math>\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{U},</math> | : <math>\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{U},</math> | ||
जहां Y बहुभिन्नरूपी मापों की श्रृंखला के साथ एक [[मैट्रिक्स (गणित)]] है (प्रत्येक कॉलम आश्रित चर में से एक पर माप का एक सेट है), एक्स [[स्वतंत्र चर]] पर टिप्पणियों का एक मैट्रिक्स है जो एक [[डिज़ाइन मैट्रिक्स]] हो सकता है (प्रत्येक कॉलम एक सेट है) स्वतंत्र चरों में से एक पर अवलोकनों का), बी एक मैट्रिक्स है जिसमें पैरामीटर होते हैं जिनका आमतौर पर अनुमान लगाया जाता है और यू एक मैट्रिक्स है जिसमें आंकड़ों (शोर) में त्रुटियां और अवशेष होते हैं। | जहां Y बहुभिन्नरूपी मापों की श्रृंखला के साथ एक [[मैट्रिक्स (गणित)]] है (प्रत्येक कॉलम आश्रित चर में से एक पर माप का एक सेट है), एक्स [[स्वतंत्र चर]] पर टिप्पणियों का एक मैट्रिक्स है जो एक [[डिज़ाइन मैट्रिक्स]] हो सकता है (प्रत्येक कॉलम एक सेट है) स्वतंत्र चरों में से एक पर अवलोकनों का), बी एक मैट्रिक्स है जिसमें पैरामीटर होते हैं जिनका आमतौर पर अनुमान लगाया जाता है और यू एक मैट्रिक्स है जिसमें आंकड़ों (शोर) में त्रुटियां और अवशेष होते हैं। | ||
Line 36: | Line 36: | ||
{| class="wikitable" | {| class="wikitable" | ||
! | ! | ||
! | !सामान्य रैखिक मॉडल | ||
![[Generalized linear model]] | ![[Generalized linear model|सामान्यीकृत रैखिक मॉडल]] | ||
|- | |- | ||
| | |विशिष्ट अनुमान विधि | ||
|[[Least squares]], [[best linear unbiased prediction]] | |[[Least squares|न्यूनतम वर्ग]], [[best linear unbiased prediction|उत्कृष्ट रैखिक अनभिनत पूर्वानुमान]] | ||
|[[Maximum likelihood]] | |[[Maximum likelihood|अधिकतम संभावना]] या [[Bayesian probability|बायेसियन]] | ||
|- | |- | ||
| | |उदाहरण | ||
|[[ANOVA]], [[ANCOVA]], [[linear regression]] | |[[ANOVA]], [[ANCOVA]], [[linear regression|रैखिक प्रतिगमन]] | ||
|[[linear regression]], [[logistic regression]], [[Poisson regression]], | |[[linear regression|रैखिक प्रतिगमन]], [[logistic regression|लॉजिस्टिक प्रतिगमन]], [[Poisson regression|पॉइसन प्रतिगमन]], गामा प्रतिगमन,<ref name=":02">{{cite book|title=Generalized Linear Models, Second Edition|last=McCullagh|first=Peter|author2=Nelder, John|publisher=Boca Raton: Chapman and Hall/CRC|year=1989|isbn=978-0-412-31760-6|ref=McCullagh1989|author-link=Peter McCullagh|author-link2=John Nelder}}</ref> सामान्य रैखिक मॉडल | ||
|- | |- | ||
| | |विस्तारण और संबंधित विधियाँ | ||
|[[Multivariate analysis of variance|MANOVA]], [[Multivariate analysis of covariance|MANCOVA]], [[Mixed model| | |[[Multivariate analysis of variance|MANOVA]], [[Multivariate analysis of covariance|MANCOVA]], [[Mixed model|रैखिक मिश्रित मॉडल]] | ||
|[[generalized linear mixed model]] (GLMM), [[Generalized estimating equation| | |[[generalized linear mixed model|सामान्यीकृत रैखिक मिश्रित मॉडल]] (GLMM), [[Generalized estimating equation|सामान्यीकृत आकलन समीकरण]] (GEE) | ||
|- | |- | ||
|[[R (programming language)|R]] | |[[R (programming language)|R]] संपुष्टि और फलन | ||
|[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html lm()] | |[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html lm()] आँकड़े संपुष्टि में (आधार R) | ||
|[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html glm()] | |[https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html glm()] आँकड़े संपुष्टि में (आधार R) | ||
|- | |- | ||
|[[Matlab (programming language)| | |[[Matlab (programming language)|मैटलैब]] फलन | ||
|mvregress() | |mvregress() | ||
|glmfit() | |glmfit() | ||
|- | |- | ||
|[[SAS System|SAS]] | |[[SAS System|SAS]] प्रक्रियाऐ | ||
|[https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#glm_toc.htm PROC GLM], [https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#reg_toc.htm PROC REG] | |[https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#glm_toc.htm PROC GLM], [https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#reg_toc.htm PROC REG] | ||
|[https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#genmod_toc.htm PROC GENMOD], [https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#logistic_toc.htm PROC LOGISTIC] ( | |[https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#genmod_toc.htm PROC GENMOD], [https://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#logistic_toc.htm PROC LOGISTIC] (बाइनरी और क्रमबद्ध या अव्यवस्थित श्रेणीबद्ध परिणामों के लिए) | ||
|- | |- | ||
|[[Stata]] | |[[Stata]] समादेश | ||
|regress | |regress | ||
|glm | |glm | ||
|- | |- | ||
|[[SPSS]] | |[[SPSS]] समादेश | ||
|[https://stats.idre.ucla.edu/spss/output/regression-analysis/ regression], [https://stats.idre.ucla.edu/spss/library/spss-librarymanova-and-glm-2/ glm] | |[https://stats.idre.ucla.edu/spss/output/regression-analysis/ regression], [https://stats.idre.ucla.edu/spss/library/spss-librarymanova-and-glm-2/ glm] | ||
|genlin, logistic | |genlin, logistic | ||
|- | |- | ||
|[[Wolfram Language]] & [[Mathematica]] | |[[Wolfram Language|वोल्फ्राम लैंगग्विज]] & [[Mathematica|मेथेमेटिका]] फलन | ||
| | |रैखिक मॉडलफिट[]<ref>[http://reference.wolfram.com/language/ref/LinearModelFit.html LinearModelFit], Wolfram Language Documentation Center.</ref> | ||
| | |सामान्यीकृत रैखिक मॉडल फिट[]<ref>[http://reference.wolfram.com/language/ref/GeneralizedLinearModelFit.html GeneralizedLinearModelFit], Wolfram Language Documentation Center.</ref> | ||
|- | |- | ||
|[[EViews]] | |[[EViews]] समादेश | ||
|ls<ref>[http://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-ls.html ls], EViews Help.</ref> | |ls<ref>[http://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-ls.html ls], EViews Help.</ref> | ||
|glm<ref>[http://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-glm.html glm], EViews Help.</ref> | |glm<ref>[http://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-glm.html glm], EViews Help.</ref> | ||
|- | |- | ||
|[[statsmodels]] | |[[statsmodels|आँकड़ेमॉडल]] पायथन संपुष्टि | ||
|[https://www.statsmodels.org/dev/user-guide.html#regression-and-linear-models regression-and-linear-models] | |[https://www.statsmodels.org/dev/user-guide.html#regression-and-linear-models regression-and-linear-models] | ||
|[https://www.statsmodels.org/dev/glm.html GLM] | |[https://www.statsmodels.org/dev/glm.html GLM] |
Revision as of 12:50, 19 July 2023
एक श्रृंखला का हिस्सा |
प्रतिगमन विश्लेषण |
---|
मॉडल |
अनुमान |
पार्श्वभूमि |
|
सामान्य रैखिक मॉडल या सामान्य बहुभिन्नरूपी प्रतिगमन मॉडल एक साथ कई एकाधिक रैखिक प्रतिगमन मॉडल लिखने का सघन (कॉम्पैक्ट) तरीका है। इस अर्थ में यह एक अलग सांख्यिकीय रैखिक मॉडल नहीं है। विभिन्न एकाधिक रैखिक प्रतिगमन मॉडल को सघन रूप से इस प्रकार लिखा जा सकता है[1]
जहां Y बहुभिन्नरूपी मापों की श्रृंखला के साथ एक मैट्रिक्स (गणित) है (प्रत्येक कॉलम आश्रित चर में से एक पर माप का एक सेट है), एक्स स्वतंत्र चर पर टिप्पणियों का एक मैट्रिक्स है जो एक डिज़ाइन मैट्रिक्स हो सकता है (प्रत्येक कॉलम एक सेट है) स्वतंत्र चरों में से एक पर अवलोकनों का), बी एक मैट्रिक्स है जिसमें पैरामीटर होते हैं जिनका आमतौर पर अनुमान लगाया जाता है और यू एक मैट्रिक्स है जिसमें आंकड़ों (शोर) में त्रुटियां और अवशेष होते हैं। त्रुटियों को आमतौर पर मापों में असंबद्ध माना जाता है, और एक बहुभिन्नरूपी सामान्य वितरण का पालन करते हैं। यदि त्रुटियाँ बहुभिन्नरूपी सामान्य वितरण का पालन नहीं करती हैं, तो Y और U के बारे में धारणाओं को शिथिल करने के लिए सामान्यीकृत रैखिक मॉडल का उपयोग किया जा सकता है।
सामान्य रैखिक मॉडल में कई अलग-अलग सांख्यिकीय मॉडल शामिल होते हैं: एनोवा, एएनसीओवीए, परिवर्तन, मनकोवा , साधारण रैखिक प्रतिगमन, टी-टेस्ट|टी-टेस्ट और एफ-टेस्ट|एफ-टेस्ट। सामान्य रैखिक मॉडल एक से अधिक आश्रित चर के मामले में एकाधिक रैखिक प्रतिगमन का सामान्यीकरण है। यदि Y, B, और U स्तंभ सदिश थे, तो उपरोक्त मैट्रिक्स समीकरण एकाधिक रैखिक प्रतिगमन का प्रतिनिधित्व करेगा।
सामान्य रैखिक मॉडल के साथ परिकल्पना परीक्षण दो तरीकों से किए जा सकते हैं: बहुभिन्नरूपी आँकड़े या कई स्वतंत्र अविभाज्य परीक्षण। बहुभिन्नरूपी परीक्षणों में Y के स्तंभों का एक साथ परीक्षण किया जाता है, जबकि एकविभिन्न परीक्षणों में Y के स्तंभों का स्वतंत्र रूप से परीक्षण किया जाता है, अर्थात, एक ही डिज़ाइन मैट्रिक्स के साथ कई अविभाज्य परीक्षणों के रूप में।
एकाधिक रैखिक प्रतिगमन की तुलना
एकाधिक रैखिक प्रतिगमन एक से अधिक स्वतंत्र चर के मामले में सरल रैखिक प्रतिगमन का एक सामान्यीकरण है, और सामान्य रैखिक मॉडल का एक विशेष मामला है, जो एक आश्रित चर तक सीमित है। एकाधिक रैखिक प्रतिगमन के लिए मूल मॉडल है
- या अधिक सघन रूप से
प्रत्येक अवलोकन के लिए i = 1, ... , n.
उपरोक्त सूत्र में हम एक आश्रित चर और p स्वतंत्र चर के n अवलोकनों पर विचार करते हैं। इस प्रकार, वाईi मैं हैवेंनिर्भर चर का अवलोकन, एक्सij क्या मैंवेंजे का अवलोकनवेंस्वतंत्र चर, जे = 1, 2, ..., पी। मान βj अनुमानित किए जाने वाले मापदंडों का प्रतिनिधित्व करें, और εi मैं हैवें स्वतंत्र समान रूप से वितरित सामान्य त्रुटि।
अधिक सामान्य बहुभिन्नरूपी रैखिक प्रतिगमन में, प्रत्येक m > 1 आश्रित चर के लिए उपरोक्त रूप का एक समीकरण होता है जो व्याख्यात्मक चर के समान सेट को साझा करता है और इसलिए एक दूसरे के साथ एक साथ अनुमान लगाया जाता है:
- या अधिक सघन रूप से
सभी अवलोकनों को i = 1, ..., n के रूप में अनुक्रमित किया गया है और सभी आश्रित चर को j = 1, ..., m के रूप में अनुक्रमित किया गया है।
ध्यान दें, चूंकि प्रत्येक आश्रित चर में फिट किए जाने वाले प्रतिगमन मापदंडों का अपना सेट होता है, इसलिए कम्प्यूटेशनल दृष्टिकोण से सामान्य बहुभिन्नरूपी प्रतिगमन समान व्याख्यात्मक चर का उपयोग करके मानक एकाधिक रैखिक प्रतिगमन का एक अनुक्रम है।
सामान्यीकृत रैखिक मॉडल की तुलना
सामान्य रैखिक मॉडल और सामान्यीकृत रैखिक मॉडल|सामान्यीकृत रैखिक मॉडल (जीएलएम)[2][3] सांख्यिकी के दो सामान्य रूप से उपयोग किए जाने वाले परिवार हैं जो कुछ संख्या में निरंतर और/या श्रेणीबद्ध आश्रित और स्वतंत्र चर को एक आश्रित और स्वतंत्र चर से जोड़ते हैं।
दोनों दृष्टिकोणों के बीच मुख्य अंतर यह है कि सामान्य रैखिक मॉडल सख्ती से मानता है कि त्रुटियां और अवशेष सशर्त संभाव्यता वितरण सामान्य वितरण का पालन करेंगे,[4] जबकि जीएलएम इस धारणा को ढीला कर देता है और अवशेषों के लिए घातीय परिवार से कई अन्य वितरण (गणित) की अनुमति देता है।[2]ध्यान दें, सामान्य रैखिक मॉडल जीएलएम का एक विशेष मामला है जिसमें अवशेषों का वितरण सशर्त रूप से सामान्य वितरण का पालन करता है।
अवशेषों का वितरण काफी हद तक परिणाम चर के प्रकार और वितरण पर निर्भर करता है; विभिन्न प्रकार के परिणाम चर जीएलएम परिवार के भीतर मॉडलों की विविधता को जन्म देते हैं। जीएलएम परिवार में आमतौर पर इस्तेमाल किए जाने वाले मॉडल में संभार तन्त्र परावर्तन शामिल है[5] द्विआधारी या द्विभाजित परिणामों के लिए, पॉइसन प्रतिगमन[6] गणना परिणामों के लिए, और निरंतर, सामान्य रूप से वितरित परिणामों के लिए रैखिक प्रतिगमन। इसका मतलब यह है कि जीएलएम को सांख्यिकीय मॉडल के एक सामान्य परिवार के रूप में या विशिष्ट परिणाम प्रकारों के लिए विशिष्ट मॉडल के रूप में कहा जा सकता है।
सामान्य रैखिक मॉडल | सामान्यीकृत रैखिक मॉडल | |
---|---|---|
विशिष्ट अनुमान विधि | न्यूनतम वर्ग, उत्कृष्ट रैखिक अनभिनत पूर्वानुमान | अधिकतम संभावना या बायेसियन |
उदाहरण | ANOVA, ANCOVA, रैखिक प्रतिगमन | रैखिक प्रतिगमन, लॉजिस्टिक प्रतिगमन, पॉइसन प्रतिगमन, गामा प्रतिगमन,[7] सामान्य रैखिक मॉडल |
विस्तारण और संबंधित विधियाँ | MANOVA, MANCOVA, रैखिक मिश्रित मॉडल | सामान्यीकृत रैखिक मिश्रित मॉडल (GLMM), सामान्यीकृत आकलन समीकरण (GEE) |
R संपुष्टि और फलन | lm() आँकड़े संपुष्टि में (आधार R) | glm() आँकड़े संपुष्टि में (आधार R) |
मैटलैब फलन | mvregress() | glmfit() |
SAS प्रक्रियाऐ | PROC GLM, PROC REG | PROC GENMOD, PROC LOGISTIC (बाइनरी और क्रमबद्ध या अव्यवस्थित श्रेणीबद्ध परिणामों के लिए) |
Stata समादेश | regress | glm |
SPSS समादेश | regression, glm | genlin, logistic |
वोल्फ्राम लैंगग्विज & मेथेमेटिका फलन | रैखिक मॉडलफिट[][8] | सामान्यीकृत रैखिक मॉडल फिट[][9] |
EViews समादेश | ls[10] | glm[11] |
आँकड़ेमॉडल पायथन संपुष्टि | regression-and-linear-models | GLM |
अनुप्रयोग
सामान्य रैखिक मॉडल का एक अनुप्रयोग वैज्ञानिक प्रयोगों में कई मस्तिष्क स्कैन के विश्लेषण में दिखाई देता है Y मस्तिष्क स्कैनर से डेटा शामिल है, X में प्रायोगिक डिज़ाइन चर और उलझनें शामिल हैं। इसका परीक्षण आमतौर पर यूनीवेरिएट तरीके से किया जाता है (आमतौर पर इस सेटिंग में इसे मास-यूनिवेरिएट कहा जाता है) और इसे अक्सर सांख्यिकीय पैरामीट्रिक मानचित्रण के रूप में जाना जाता है।[12]
यह भी देखें
टिप्पणियाँ
- ↑ K. V. Mardia, J. T. Kent and J. M. Bibby (1979). बहुभिन्नरूपी विश्लेषण. Academic Press. ISBN 0-12-471252-5.
- ↑ 2.0 2.1 McCullagh, P.; Nelder, J. A. (1989), "An outline of generalized linear models", Generalized Linear Models, Springer US, pp. 21–47, doi:10.1007/978-1-4899-3242-6_2, ISBN 9780412317606
- ↑ Fox, J. (2015). Applied regression analysis and generalized linear models. Sage Publications.
- ↑ Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences.
- ↑ Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.
- ↑ Gardner, W.; Mulvey, E. P.; Shaw, E. C. (1995). "Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models". Psychological Bulletin. 118 (3): 392–404. doi:10.1037/0033-2909.118.3.392. PMID 7501743.
- ↑ McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 978-0-412-31760-6.
- ↑ LinearModelFit, Wolfram Language Documentation Center.
- ↑ GeneralizedLinearModelFit, Wolfram Language Documentation Center.
- ↑ ls, EViews Help.
- ↑ glm, EViews Help.
- ↑ K.J. Friston; A.P. Holmes; K.J. Worsley; J.-B. Poline; C.D. Frith; R.S.J. Frackowiak (1995). "Statistical Parametric Maps in functional imaging: A general linear approach". Human Brain Mapping. 2 (4): 189–210. doi:10.1002/hbm.460020402. S2CID 9898609.
संदर्भ
- Christensen, Ronald (2020). Plane Answers to Complex Questions: The Theory of Linear Models (Fifth ed.). New York: Springer. ISBN 978-3-030-32096-6.
- Wichura, Michael J. (2006). The coordinate-free approach to linear models. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press. pp. xiv+199. ISBN 978-0-521-86842-6. MR 2283455.
- Rawlings, John O.; Pantula, Sastry G.; Dickey, David A., eds. (1998). Applied Regression Analysis. Springer Texts in Statistics. doi:10.1007/b98890. ISBN 0-387-98454-2.