अविभाज्य
गणित में, एक अविभाज्य वस्तु एक अभिव्यक्ति (गणित), समीकरण, फलन (गणित) या बहुपद है जिसमें केवल एक चर (गणित) सम्मिलित है। एक से अधिक चर वाली वस्तुएँ बहुचर होती हैं। कुछ प्रकरणों में अविभाज्य और बहुचर प्रकरणों के मध्य का भेद मौलिक है; उदाहरण के लिए, बीजगणित के मौलिक प्रमेय और बहुपदों के लिए यूक्लिड का एल्गोरिदम एकविभिन्न बहुपदों का मौलिक गुण हैं जिन्हें बहुचर बहुपदों के लिए सामान्यीकृत नहीं किया जा सकता है।
आँकड़ों में, एक अविभाज्य वितरण एक चर की विशेषता बताता है, हालाँकि इसे अन्य प्रकार से भी उपयोजित किया जा सकता है। उदाहरण के लिए, अविभाज्य डेटा एकल अदिश घटक से बना होता है। समय श्रृंखला विश्लेषण में, संपूर्ण समय श्रृंखला ''चर'' है: एक अविभाज्य समय श्रृंखला एक एकल मात्रा के समय के साथ मूल्यों की श्रृंखला है। परिणामस्वरूप, एक ''बहुचर समय श्रृंखला'' कई मात्राओं के समय के साथ बदलते मूल्यों की विशेषता बताता है। कुछ प्रकरणों में, शब्दावली अस्पष्ट है, क्योंकि एक अविभाज्य समय श्रृंखला के अंतर्गत मूल्यों को कुछ प्रकार के बहुचर सांख्यिकीय विश्लेषणों का उपयोग करके व्यवहार किया जा सकता है और बहुचर वितरण का उपयोग करके दर्शाया जा सकता है।
स्केलिंग के प्रश्न के अलावा, अविभाज्य आंकड़ों में एक मानदंड (चर) को दो महत्वपूर्ण माप (मुख्य आंकड़े या पैरामीटर) द्वारा वर्णित किया जा सकता है: स्थान और विचरण।[1]
- स्थान पैमानों के माप (जैसे माध्य, बहुलक, अंकगणितीय माध्यिका) बताते हैं कि डेटा किस क्षेत्र में केंद्रीय रूप से व्यवस्थित है।
- विचरण के माप (जैसे विस्तार, अंतरचतुर्थक दूरी, मानक विचलन) बताते हैं कि डेटा कितना समान या भिन्न प्रकीर्ण है।
यह भी देखें
- एरीटी
- द्विचर (बहुविकल्पी)
- बहुचर (बहुविकल्पी)
- अविभाज्य विश्लेषण
- एकचर द्विआधारी मॉडल
- अविभाज्य वितरण
संदर्भ
- ↑ Grünwald, Robert. "SPSS में यूनीवेरिएट सांख्यिकी". novustat.com (in Deutsch). Retrieved 29 October 2019.