टी-स्कीमा: Difference between revisions

From Vigyanwiki
No edit summary
Line 42: Line 42:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 10:44, 28 July 2023

टी-स्कीमा (''सत्य या ट्रूथ स्कीमा'' (तर्क), ''कन्वेंशन टी'' के साथ भ्रमित न हों) का उपयोग यह जांचने के लिए किया जाता है कि क्या सत्य की आगमनात्मक परिभाषा वैध है, जो अल्फ्रेड टार्स्की के सत्य के अर्थ सिद्धांत के किसी भी अहसास के केंद्र में है। कुछ लेखक इसे ''समतुल्यता स्कीमा'' के रूप में संदर्भित करते हैं, जो माइकल डमेट द्वारा प्रस्तुत एक पर्यायवाची है।[1]

टी-स्कीमा को प्रायः प्राकृतिक भाषा में व्यक्त किया जाता है, लेकिन इसे विधेय तर्क; कई-क्रमबद्ध प्रेडिकेट लॉजिक या मोडल तर्क में औपचारिक रूप दिया जा सकता है; ऐसी औपचारिकता को ''टी-सिद्धांत'' कहा जाता है। टी-सिद्धांत दार्शनिक तर्क में बहुत मौलिक कार्य का आधार बनते हैं, जहां उन्हें विश्लेषणात्मक दर्शन में कई महत्वपूर्ण विवादों में लागू किया जाता है।

जैसा कि अर्ध-प्राकृतिक भाषा में व्यक्त किया गया है (जहाँ 'S' S से संक्षिप्त वाक्य का नाम है): 'S' सत्य है यदि और केवल यदि S.''

उदाहरण: 'बर्फ सफेद है' तभी सत्य है जब बर्फ सफेद हो।

आगमनात्मक परिभाषा

स्कीमा का उपयोग करके कोई भी यौगिक वाक्यों की सच्चाई के लिए एक आगमनात्मक परिभाषा दे सकता है। परमाणु वाक्यों को सत्य मान असंदिग्ध सिद्धांत सौंपा गया है। उदाहरण के लिए, वाक्य 'बर्फ सफेद है' सत्य है, यह वाक्य बर्फ सफेद है के साथ भौतिक रूप से समतुल्य हो जाता है, अर्थात 'बर्फ सफेद है' तभी सत्य है जब बर्फ सफेद है। अधिक जटिल वाक्यों की सच्चाई वाक्य के घटकों के संदर्भ में परिभाषित की जाती है:

  • ''A और B'' रूप का एक वाक्य सत्य है यदि और केवल यदि A सत्य है और B सत्य है
  • ''A और B'' रूप का एक वाक्य सत्य है यदि और केवल यदि A सत्य है या B सत्य है
  • इस प्रकार का एक वाक्य ''यदि A है तो B'' सत्य है यदि और केवल यदि A असत्य है या B सत्य है; भौतिक निहितार्थ (अनुमान का नियम) देखें।
  • A रूप का एक वाक्य सत्य है यदि और केवल यदि ''A गलत'' है
  • ''सभी x, A(x)'' के लिए फॉर्म का एक वाक्य सत्य है यदि और केवल यदि, x के प्रत्येक संभावित मान के लिए, A(x) सत्य है।
  • ''कुछ x, A(x)'' के लिए फॉर्म का एक वाक्य सत्य है यदि और केवल यदि, x के कुछ संभावित मान के लिए, A(x) सत्य है।

सत्य के लिए विधेय जो इन सभी मानदंडों को पूरा करते हैं उन्हें ''संतुष्टि वर्ग'' कहा जाता है, एक धारणा जिसे प्रायः एक निश्चित भाषा (जैसे पीनो अंकगणित की भाषा) के संबंध में परिभाषित किया जाता है; इन वर्गों को सत्य की धारणा के लिए स्वीकार्य परिभाषाएँ माना जाता है।[2]

प्राकृतिक भाषाएँ

जोसेफ हीथ बताते हैं[3] टार्स्की की स्कीमा टी द्वारा प्रदान किया गया सत्य विधेय का विश्लेषण प्राकृतिक भाषा में सत्य विधेय की सभी घटनाओं को संभालने में सक्षम नहीं है। विशेष रूप से, स्कीमा टी विधेय के केवल ''फ्रीस्टैंडिंग'' उपयोगों पर विचार करती है - ऐसे परिस्थितियों में जब इसे पूर्ण वाक्यों पर लागू किया जाता है। वह स्पष्ट समस्या के रूप में यह वाक्य देता है:

  • बिल जो कुछ भी मानता है वह सत्य है।

हीथ का तर्क है कि टी-स्कीमा का उपयोग करके इस वाक्य का विश्लेषण करने से वाक्य खंड उत्पन्न होता है - वह सब कुछ जो बिल मानता है - द्विशर्त के दाईं ओर तार्किक द्विशर्तात्मक।

यह भी देखें

संदर्भ

  1. Künne, Wolfgang (2003). सत्य की अवधारणाएँ. Clarendon Press. p. 18. ISBN 978-0-19-928019-3.
  2. H. Kotlarski, Full Satisfaction Classes: A Survey (1991, Notre Dame Journal of Formal Logic, p.573). Accessed 9 September 2022.
  3. Heath, Joseph (2001). संचारी कार्रवाई और तर्कसंगत विकल्प. MIT Press. p. 186. ISBN 978-0-262-08291-4.

बाहरी संबंध