विहित रूपान्तरण संबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
[[क्वांटम यांत्रिकी]] में, '''विहित रूपान्तरण संबंध''' [[विहित संयुग्म]] मात्राओं (मात्राएं जो परिभाषा से संबंधित होती हैं जैसे कि दूसरे का [[फूरियर रूपांतरण]] है) के मध्य मौलिक संबंध है। उदाहरण के लिए, | [[क्वांटम यांत्रिकी]] में, '''विहित रूपान्तरण संबंध''' [[विहित संयुग्म]] मात्राओं (मात्राएं जो परिभाषा से संबंधित होती हैं जैसे कि दूसरे का [[फूरियर रूपांतरण]] है) के मध्य मौलिक संबंध है। उदाहरण के लिए, | ||
<math display="block">[\hat x,\hat p_x] = i\hbar \mathbb{I}</math> | <math display="block">[\hat x,\hat p_x] = i\hbar \mathbb{I}</math> | ||
स्थिति | स्थिति संचालक में बिंदु कण की {{mvar|x}} दिशा में स्थिति {{mvar|x}} और संवेग {{mvar|p<sub>x</sub>}} संचालक के मध्य जहां आयाम में बिंदु कण की दिशा, जहां {{math|1= [''x'' , ''p''<sub>''x''</sub>] = ''x'' ''p''<sub>''x''</sub> − ''p''<sub>''x''</sub> ''x''}} और {{mvar|p<sub>x</sub> }}का कम्यूटेटर है, {{mvar|i}} [[काल्पनिक इकाई]] है, और {{math|ℏ}} घटा हुआ प्लैंक स्थिरांक है {{math|''h''/2π}}, और <math> \mathbb{I}</math> इकाई संचालक है. सामान्यतः, स्थिति और गति संचालको के वैक्टर हैं और स्थिति और गति के विभिन्न घटकों के मध्य उनके रूपान्तरण संबंध को इस प्रकार व्यक्त किया जा सकता है | ||
<math display="block">[\hat x_i,\hat p_j] = i\hbar \delta_{ij},</math> | <math display="block">[\hat x_i,\hat p_j] = i\hbar \delta_{ij},</math> | ||
कहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है। | कहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] है। | ||
इस संबंध का श्रेय [[वर्नर हाइजेनबर्ग]], [[मैक्स बोर्न]] और [[ पास्कल जॉर्डन ]] (1925) को दिया जाता है।<ref>{{cite web |title=क्वांटम यांत्रिकी का विकास|url=https://www.heisenberg-gesellschaft.de/3-the-development-of-quantum-mechanics-1925-ndash-1927.html}}</ref><ref>{{Cite journal | last1 = Born | first1 = M. | last2 = Jordan | first2 = P. | doi = 10.1007/BF01328531 | title = क्वांटम यांत्रिकी पर| journal = Zeitschrift für Physik | volume = 34 | pages = 858–888 | year = 1925 | issue = 1 |bibcode = 1925ZPhy...34..858B | s2cid = 186114542 }}</ref> जिन्होंने इसे सिद्धांत के अभिधारणा के रूप में कार्य करने वाली क्वांटम स्थिति कहा; इसे अर्ले हेस्से केनार्ड|ई द्वारा नोट किया गया था। केनार्ड (1927)<ref>{{Cite journal | last1 = Kennard | first1 = E. H. | title = सरल प्रकार की गति के क्वांटम यांत्रिकी पर| doi = 10.1007/BF01391200 | journal = Zeitschrift für Physik | volume = 44 | issue = 4–5 | pages = 326–352 | year = 1927 |bibcode = 1927ZPhy...44..326K | s2cid = 121626384 }}</ref> वर्नर हाइजेनबर्ग अनिश्चितता सिद्धांत को लागू करने के लिए। स्टोन-वॉन न्यूमैन प्रमेय विहित कम्यूटेशन संबंध को संतुष्ट करने वाले | इस संबंध का श्रेय [[वर्नर हाइजेनबर्ग]], [[मैक्स बोर्न]] और [[ पास्कल जॉर्डन ]] (1925) को दिया जाता है।<ref>{{cite web |title=क्वांटम यांत्रिकी का विकास|url=https://www.heisenberg-gesellschaft.de/3-the-development-of-quantum-mechanics-1925-ndash-1927.html}}</ref><ref>{{Cite journal | last1 = Born | first1 = M. | last2 = Jordan | first2 = P. | doi = 10.1007/BF01328531 | title = क्वांटम यांत्रिकी पर| journal = Zeitschrift für Physik | volume = 34 | pages = 858–888 | year = 1925 | issue = 1 |bibcode = 1925ZPhy...34..858B | s2cid = 186114542 }}</ref> जिन्होंने इसे सिद्धांत के अभिधारणा के रूप में कार्य करने वाली क्वांटम स्थिति कहा; इसे अर्ले हेस्से केनार्ड|ई द्वारा नोट किया गया था। केनार्ड (1927)<ref>{{Cite journal | last1 = Kennard | first1 = E. H. | title = सरल प्रकार की गति के क्वांटम यांत्रिकी पर| doi = 10.1007/BF01391200 | journal = Zeitschrift für Physik | volume = 44 | issue = 4–5 | pages = 326–352 | year = 1927 |bibcode = 1927ZPhy...44..326K | s2cid = 121626384 }}</ref> वर्नर हाइजेनबर्ग अनिश्चितता सिद्धांत को लागू करने के लिए। स्टोन-वॉन न्यूमैन प्रमेय विहित कम्यूटेशन संबंध को संतुष्ट करने वाले संचालको के लिए विशिष्टता परिणाम देता है। | ||
== शास्त्रीय यांत्रिकी से संबंध == | == शास्त्रीय यांत्रिकी से संबंध == | ||
Line 15: | Line 15: | ||
<math display="block">[\hat f,\hat g]= i\hbar\widehat{\{f,g\}} \, .</math> | <math display="block">[\hat f,\hat g]= i\hbar\widehat{\{f,g\}} \, .</math> | ||
1946 में, हिलब्रांड जे. ग्रोएनवॉल्ड ने प्रदर्शित किया कि क्वांटम कम्यूटेटर और पॉइसन ब्रैकेट के मध्य सामान्य व्यवस्थित पत्राचार लगातार कायम नहीं रह सकता है।<ref name="groenewold">{{Cite journal | last1 = Groenewold | first1 = H. J. | title = प्राथमिक क्वांटम यांत्रिकी के सिद्धांतों पर| doi = 10.1016/S0031-8914(46)80059-4 | journal = Physica | volume = 12 | issue = 7 | pages = 405–460 | year = 1946 |bibcode = 1946Phy....12..405G }}</ref><ref>{{harvnb|Hall|2013}} Theorem 13.13</ref> | 1946 में, हिलब्रांड जे. ग्रोएनवॉल्ड ने प्रदर्शित किया कि क्वांटम कम्यूटेटर और पॉइसन ब्रैकेट के मध्य सामान्य व्यवस्थित पत्राचार लगातार कायम नहीं रह सकता है।<ref name="groenewold">{{Cite journal | last1 = Groenewold | first1 = H. J. | title = प्राथमिक क्वांटम यांत्रिकी के सिद्धांतों पर| doi = 10.1016/S0031-8914(46)80059-4 | journal = Physica | volume = 12 | issue = 7 | pages = 405–460 | year = 1946 |bibcode = 1946Phy....12..405G }}</ref><ref>{{harvnb|Hall|2013}} Theorem 13.13</ref> | ||
हालाँकि, उन्होंने आगे सराहना की कि इस तरह का व्यवस्थित पत्राचार, वास्तव में, क्वांटम कम्यूटेटर और पॉइसन ब्रैकेट के [[विरूपण सिद्धांत]] के मध्य मौजूद है, जिसे आज [[मोयल ब्रैकेट]] कहा जाता है, और, | हालाँकि, उन्होंने आगे सराहना की कि इस तरह का व्यवस्थित पत्राचार, वास्तव में, क्वांटम कम्यूटेटर और पॉइसन ब्रैकेट के [[विरूपण सिद्धांत]] के मध्य मौजूद है, जिसे आज [[मोयल ब्रैकेट]] कहा जाता है, और, सामान्यतः, क्वांटम संचालको और शास्त्रीय वेधशालाओं और [[चरण स्थान]] में वितरण के मध्य मौजूद है। इस प्रकार उन्होंने अंततः सुसंगत पत्राचार तंत्र, विग्नर-वेइल ट्रांसफॉर्म को स्पष्ट किया, जो चरण-स्थान फॉर्मूलेशन के रूप में ज्ञात क्वांटम यांत्रिकी के वैकल्पिक समकक्ष गणितीय प्रतिनिधित्व को रेखांकित करता है।<ref name="groenewold"/><ref>{{Cite journal | last1 = Curtright | first1 = T. L. | last2 = Zachos | first2 = C. K. | doi = 10.1142/S2251158X12000069 | title = चरण अंतरिक्ष में क्वांटम यांत्रिकी| journal = Asia Pacific Physics Newsletter | volume = 01 | pages = 37–46 | year = 2012 | arxiv = 1104.5269 | s2cid = 119230734 }}</ref> | ||
'''हैमिल्टनियन यांत्रिकी से व्युत्पत्ति''' | '''हैमिल्टनियन यांत्रिकी से व्युत्पत्ति''' | ||
Line 29: | Line 29: | ||
<math display="block">\frac {d\hat{Q}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{Q}]</math> | <math display="block">\frac {d\hat{Q}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{Q}]</math> | ||
<math display="block">\frac {d\hat{P}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{P}] \,\, .</math> | <math display="block">\frac {d\hat{P}}{dt} = \frac {i}{\hbar} [\hat{H},\hat{P}] \,\, .</math> | ||
हैमिल्टन की गति के समीकरणों के साथ शास्त्रीय सीमा में सामंजस्य स्थापित करने के लिए, <math> [\hat{H},\hat{Q}]</math> की उपस्थिति पर पूरी तरह से निर्भर होना चाहिए <math>\hat{P}</math> हैमिल्टनियन में और <math>[\hat{H},\hat{P}]</math> की उपस्थिति पर पूरी तरह से निर्भर होना चाहिए <math>\hat{Q}</math> हैमिल्टनियन में. इसके अलावा, चूंकि हैमिल्टनियन ऑपरेटर (सामान्यीकृत) समन्वय और गति | हैमिल्टन की गति के समीकरणों के साथ शास्त्रीय सीमा में सामंजस्य स्थापित करने के लिए, <math> [\hat{H},\hat{Q}]</math> की उपस्थिति पर पूरी तरह से निर्भर होना चाहिए <math>\hat{P}</math> हैमिल्टनियन में और <math>[\hat{H},\hat{P}]</math> की उपस्थिति पर पूरी तरह से निर्भर होना चाहिए <math>\hat{Q}</math> हैमिल्टनियन में. इसके अलावा, चूंकि हैमिल्टनियन ऑपरेटर (सामान्यीकृत) समन्वय और गति संचालको पर निर्भर करता है, इसे कार्यात्मक के रूप में देखा जा सकता है, और हम लिख सकते हैं ([[कार्यात्मक व्युत्पन्न]] का उपयोग करके): | ||
<math display="block">[\hat{H},\hat{Q}] = \frac {\delta \hat{H}}{\delta \hat{P}} \cdot [\hat{P},\hat{Q}]</math> | <math display="block">[\hat{H},\hat{Q}] = \frac {\delta \hat{H}}{\delta \hat{P}} \cdot [\hat{P},\hat{Q}]</math> | ||
<math display="block">[\hat{H},\hat{P}] = \frac {\delta \hat{H}}{\delta \hat{Q}} \cdot [\hat{Q},\hat{P}] \, \, . </math> | <math display="block">[\hat{H},\hat{P}] = \frac {\delta \hat{H}}{\delta \hat{Q}} \cdot [\hat{Q},\hat{P}] \, \, . </math> | ||
Line 36: | Line 36: | ||
== <math display="block"> [\hat{Q},\hat{P}] = i \hbar ~ \mathbb{I}.</math>वेइल संबंध == | == <math display="block"> [\hat{Q},\hat{P}] = i \hbar ~ \mathbb{I}.</math>वेइल संबंध == | ||
[[झूठ समूह]] <math>H_3(\mathbb{R})</math> रूपान्तरण संबंध द्वारा निर्धारित 3-आयामी [[झूठ बीजगणित]] के [[घातीय मानचित्र (झूठ सिद्धांत)]] द्वारा उत्पन्न <math>[\hat{x},\hat{p}]=i\hbar</math> [[हाइजेनबर्ग समूह]] कहलाता है। इस समूह को समूह के रूप में महसूस किया जा सकता है <math>3\times 3</math> विकर्ण पर स्थित ऊपरी त्रिकोणीय आव्यूह।<ref>{{harvnb|Hall|2015}} Section 1.2.6 and Proposition 3.26</ref> | [[झूठ समूह]] <math>H_3(\mathbb{R})</math> रूपान्तरण संबंध द्वारा निर्धारित 3-आयामी [[झूठ बीजगणित]] के [[घातीय मानचित्र (झूठ सिद्धांत)]] द्वारा उत्पन्न <math>[\hat{x},\hat{p}]=i\hbar</math> [[हाइजेनबर्ग समूह]] कहलाता है। इस समूह को समूह के रूप में महसूस किया जा सकता है <math>3\times 3</math> विकर्ण पर स्थित ऊपरी त्रिकोणीय आव्यूह।<ref>{{harvnb|Hall|2015}} Section 1.2.6 and Proposition 3.26</ref> | ||
क्वांटम यांत्रिकी के मानक गणितीय सूत्रीकरण के अनुसार, क्वांटम वेधशालाएँ जैसे <math>\hat{x}</math> और <math>\hat{p}</math> कुछ [[हिल्बर्ट स्थान]] पर स्व-सहायक | क्वांटम यांत्रिकी के मानक गणितीय सूत्रीकरण के अनुसार, क्वांटम वेधशालाएँ जैसे <math>\hat{x}</math> और <math>\hat{p}</math> कुछ [[हिल्बर्ट स्थान]] पर स्व-सहायक संचालको के रूप में प्रतिनिधित्व किया जाना चाहिए। यह देखना अपेक्षाकृत आसान है कि उपरोक्त विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले दो [[ऑपरेटर (गणित)]] दोनों परिबद्ध ऑपरेटर नहीं हो सकते हैं। निश्चित रूप से, यदि <math>\hat{x}</math> और <math>\hat{p}</math> [[ट्रेस क्लास]] ऑपरेटर थे, संबंध <math>\operatorname{Tr}(AB)=\operatorname{Tr}(BA)</math> दाईं ओर शून्येतर संख्या और बाईं ओर शून्य देता है। | ||
वैकल्पिक रूप से, यदि <math>\hat{x}</math> और <math>\hat{p}</math> बाउंडेड ऑपरेटर थे, ध्यान दें <math>[\hat{x}^n,\hat{p}]=i\hbar n \hat{x}^{n-1}</math>, इसलिए ऑपरेटर मानदंड संतुष्ट होंगे | वैकल्पिक रूप से, यदि <math>\hat{x}</math> और <math>\hat{p}</math> बाउंडेड ऑपरेटर थे, ध्यान दें <math>[\hat{x}^n,\hat{p}]=i\hbar n \hat{x}^{n-1}</math>, इसलिए ऑपरेटर मानदंड संतुष्ट होंगे | ||
<math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}^{n-1}\right\| \left\|\hat{x}\right\| \geq n \hbar \left\|\hat{x}^{n-1}\right\|,</math> ताकि, किसी भी n के लिए, | <math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}^{n-1}\right\| \left\|\hat{x}\right\| \geq n \hbar \left\|\hat{x}^{n-1}\right\|,</math> ताकि, किसी भी n के लिए, | ||
<math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}\right\| \geq n \hbar</math> | <math display="block">2 \left\|\hat{p}\right\| \left\|\hat{x}\right\| \geq n \hbar</math> | ||
हालाँकि, {{mvar|n}} मनमाने ढंग से बड़ा हो सकता है, इसलिए कम से कम ऑपरेटर को सीमित नहीं किया जा सकता है, और अंतर्निहित हिल्बर्ट स्थान का आयाम सीमित नहीं हो सकता है। [[एकात्मक संचालक|ात्मक संचालक]] वेइल संबंधों (नीचे वर्णित विहित रूपान्तरण संबंधों का घातांकित संस्करण) को संतुष्ट करते हैं, तो स्टोन-वॉन न्यूमैन प्रमेय के परिणामस्वरूप, दोनों | हालाँकि, {{mvar|n}} मनमाने ढंग से बड़ा हो सकता है, इसलिए कम से कम ऑपरेटर को सीमित नहीं किया जा सकता है, और अंतर्निहित हिल्बर्ट स्थान का आयाम सीमित नहीं हो सकता है। [[एकात्मक संचालक|ात्मक संचालक]] वेइल संबंधों (नीचे वर्णित विहित रूपान्तरण संबंधों का घातांकित संस्करण) को संतुष्ट करते हैं, तो स्टोन-वॉन न्यूमैन प्रमेय के परिणामस्वरूप, दोनों संचालको को असीमित होना चाहिए। | ||
फिर भी, इन विहित रूपान्तरण संबंधों को (परिबद्ध) ात्मक | फिर भी, इन विहित रूपान्तरण संबंधों को (परिबद्ध) ात्मक संचालको के संदर्भ में लिखकर कुछ हद तक नियंत्रित किया जा सकता है <math>\exp(it\hat{x})</math> और <math>\exp(is\hat{p})</math>. इन संचालको के लिए परिणामी ब्रेडिंग संबंध तथाकथित स्टोन-वॉन न्यूमैन प्रमेय हैं | ||
<math display="block">\exp(it\hat{x})\exp(is\hat{p})=\exp(-ist/\hbar)\exp(is\hat{p})\exp(it\hat{x}).</math> | <math display="block">\exp(it\hat{x})\exp(is\hat{p})=\exp(-ist/\hbar)\exp(is\hat{p})\exp(it\hat{x}).</math> | ||
इन संबंधों को विहित रूपान्तरण संबंधों के घातांकित संस्करण के रूप में सोचा जा सकता है; वे दर्शाते हैं कि स्थिति में अनुवाद और गति में अनुवाद परिवर्तन नहीं करते हैं। स्टोन-वॉन न्यूमैन प्रमेय#द हाइजेनबर्ग समूह के संदर्भ में वेइल संबंधों को आसानी से दोबारा तैयार किया जा सकता है। | इन संबंधों को विहित रूपान्तरण संबंधों के घातांकित संस्करण के रूप में सोचा जा सकता है; वे दर्शाते हैं कि स्थिति में अनुवाद और गति में अनुवाद परिवर्तन नहीं करते हैं। स्टोन-वॉन न्यूमैन प्रमेय#द हाइजेनबर्ग समूह के संदर्भ में वेइल संबंधों को आसानी से दोबारा तैयार किया जा सकता है। | ||
Line 85: | Line 85: | ||
कहाँ <math display="block">U=\exp \left( \frac{iq\Lambda}{\hbar c}\right)</math> और {{math|1=Λ = Λ(''x'',''t'')}} गेज फ़ंक्शन है. | कहाँ <math display="block">U=\exp \left( \frac{iq\Lambda}{\hbar c}\right)</math> और {{math|1=Λ = Λ(''x'',''t'')}} गेज फ़ंक्शन है. | ||
कोणीय संवेग | कोणीय संवेग संचालक है | ||
<math display="block">L=r \times p \,\!</math> | <math display="block">L=r \times p \,\!</math> | ||
और विहित परिमाणीकरण संबंधों का पालन करता है | और विहित परिमाणीकरण संबंधों का पालन करता है | ||
Line 104: | Line 104: | ||
==अनिश्चितता संबंध और कम्यूटेटर == | ==अनिश्चितता संबंध और कम्यूटेटर == | ||
संचालको के जोड़े के लिए ऐसे सभी गैर-तुच्छ कम्यूटेशन संबंध संबंधित अनिश्चितता सिद्धांत की ओर ले जाते हैं,<ref name="robertson">{{cite journal |first=H. P. |last=Robertson |title=अनिश्चितता सिद्धांत|journal=[[Physical Review]] |volume=34 |issue=1 |year=1929 |pages=163–164 |doi=10.1103/PhysRev.34.163 |bibcode = 1929PhRv...34..163R }}</ref> उनके संबंधित कम्यूटेटर और एंटीकम्यूटेटर द्वारा सकारात्मक अर्ध-निश्चित अपेक्षा योगदान शामिल है। सामान्यतः, दो स्व-सहायक ऑपरेटर के लिए {{mvar|A}} और {{mvar|B}}, राज्य में प्रणाली में अपेक्षा मूल्यों पर विचार करें {{mvar|ψ}}, संगत अपेक्षा मूल्यों के आसपास भिन्नताएं हैं {{math|1=(Δ''A'')<sup>2</sup> ≡ {{langle}}(''A'' − {{langle}}''A''{{rangle}})<sup>2</sup>{{rangle}}}}, वगैरह। | |||
तब | तब | ||
Line 111: | Line 111: | ||
यह कॉची-श्वार्ज़ असमानता के उपयोग के बाद से होता है | यह कॉची-श्वार्ज़ असमानता के उपयोग के बाद से होता है | ||
{{math|{{!}}{{langle}}''A''<sup>2</sup>{{rangle}}{{!}} {{!}}{{langle}}''B''<sup>2</sup>{{rangle}}{{!}} ≥ {{!}}{{langle}}''A B''{{rangle}}{{!}}<sup>2</sup>}}, और {{math|1=''A B'' = ([''A'', ''B''] + {''A'', ''B''})/2 }}; और इसी तरह स्थानांतरित | {{math|{{!}}{{langle}}''A''<sup>2</sup>{{rangle}}{{!}} {{!}}{{langle}}''B''<sup>2</sup>{{rangle}}{{!}} ≥ {{!}}{{langle}}''A B''{{rangle}}{{!}}<sup>2</sup>}}, और {{math|1=''A B'' = ([''A'', ''B''] + {''A'', ''B''})/2 }}; और इसी तरह स्थानांतरित संचालको के लिए भी {{math|''A'' − {{langle}}''A''{{rangle}}}} और {{math|''B'' − {{langle}}''B''{{rangle}}}}. (सीएफ. [[अनिश्चितता सिद्धांत व्युत्पत्तियाँ]]।) | ||
के लिए स्थानापन्न {{mvar|A}} और {{mvar|B}} (और विश्लेषण का ध्यान रखते हुए) हेइज़ेनबर्ग के परिचित अनिश्चितता संबंध को प्राप्त करें {{mvar|x}} और {{mvar|p}}, हमेशा की तरह। | के लिए स्थानापन्न {{mvar|A}} और {{mvar|B}} (और विश्लेषण का ध्यान रखते हुए) हेइज़ेनबर्ग के परिचित अनिश्चितता संबंध को प्राप्त करें {{mvar|x}} और {{mvar|p}}, हमेशा की तरह। | ||
Line 119: | Line 119: | ||
कोणीय संवेग परिचालकों के लिए {{math|1=''L''<sub>''x''</sub> = ''y p<sub>z</sub>'' − ''z p<sub>y</sub>''}}, आदि, किसी के पास वह है | कोणीय संवेग परिचालकों के लिए {{math|1=''L''<sub>''x''</sub> = ''y p<sub>z</sub>'' − ''z p<sub>y</sub>''}}, आदि, किसी के पास वह है | ||
<math display="block"> [{L_x}, {L_y}] = i \hbar \epsilon_{xyz} {L_z}, </math> | <math display="block"> [{L_x}, {L_y}] = i \hbar \epsilon_{xyz} {L_z}, </math> | ||
कहाँ <math>\epsilon_{xyz}</math> लेवी-सिविटा प्रतीक है और सूचकांकों के जोड़ीवार आदान-प्रदान के तहत उत्तर के संकेत को उलट देता है। [[स्पिन (भौतिकी)]] | कहाँ <math>\epsilon_{xyz}</math> लेवी-सिविटा प्रतीक है और सूचकांकों के जोड़ीवार आदान-प्रदान के तहत उत्तर के संकेत को उलट देता है। [[स्पिन (भौतिकी)]] संचालको के लिए समान संबंध है। | ||
लिए यहाँ {{mvar|L<sub>x</sub>}} और {{mvar|L<sub>y</sub> }},<ref name="robertson" />कोणीय गति गुणकों में {{math|1=''ψ'' = {{!}}''{{ell}}'',''m''{{rangle}}}}, किसी के पास [[कासिमिर अपरिवर्तनीय]] के अनुप्रस्थ घटकों के लिए है {{math|''L<sub>x</sub>''<sup>2</sup> + ''L<sub>y</sub>''<sup>2</sup>+ ''L<sub>z</sub>''<sup>2</sup>}}, द {{mvar|z}}-सममितीय संबंध | लिए यहाँ {{mvar|L<sub>x</sub>}} और {{mvar|L<sub>y</sub> }},<ref name="robertson" />कोणीय गति गुणकों में {{math|1=''ψ'' = {{!}}''{{ell}}'',''m''{{rangle}}}}, किसी के पास [[कासिमिर अपरिवर्तनीय]] के अनुप्रस्थ घटकों के लिए है {{math|''L<sub>x</sub>''<sup>2</sup> + ''L<sub>y</sub>''<sup>2</sup>+ ''L<sub>z</sub>''<sup>2</sup>}}, द {{mvar|z}}-सममितीय संबंध |
Revision as of 22:14, 25 July 2023
क्वांटम यांत्रिकी में, विहित रूपान्तरण संबंध विहित संयुग्म मात्राओं (मात्राएं जो परिभाषा से संबंधित होती हैं जैसे कि दूसरे का फूरियर रूपांतरण है) के मध्य मौलिक संबंध है। उदाहरण के लिए,
इस संबंध का श्रेय वर्नर हाइजेनबर्ग, मैक्स बोर्न और पास्कल जॉर्डन (1925) को दिया जाता है।[1][2] जिन्होंने इसे सिद्धांत के अभिधारणा के रूप में कार्य करने वाली क्वांटम स्थिति कहा; इसे अर्ले हेस्से केनार्ड|ई द्वारा नोट किया गया था। केनार्ड (1927)[3] वर्नर हाइजेनबर्ग अनिश्चितता सिद्धांत को लागू करने के लिए। स्टोन-वॉन न्यूमैन प्रमेय विहित कम्यूटेशन संबंध को संतुष्ट करने वाले संचालको के लिए विशिष्टता परिणाम देता है।
शास्त्रीय यांत्रिकी से संबंध
इसके विपरीत, शास्त्रीय भौतिकी में, सभी अवलोकन योग्य वस्तुएँ आवागमन करती हैं और दिक्परिवर्तक शून्य होगा। हालाँकि, अनुरूप संबंध मौजूद है, जो कम्यूटेटर को पॉइसन ब्रैकेट से गुणा करके प्रतिस्थापित करके प्राप्त किया जाता है iℏ,
हैमिल्टनियन यांत्रिकी से व्युत्पत्ति
पत्राचार सिद्धांत के अनुसार, कुछ सीमाओं में राज्यों के क्वांटम समीकरणों को पॉइसन ब्रैकेट#हैमिल्टन की गति के समीकरण|हैमिल्टन की गति के समीकरणों के करीब आना चाहिए। उत्तरार्द्ध सामान्यीकृत समन्वय q (जैसे स्थिति) और सामान्यीकृत गति p के मध्य निम्नलिखित संबंध बताता है:
क्वांटम अवस्था का समय व्युत्पन्न है - (श्रोडिंगर समीकरण द्वारा)। समान रूप से, चूंकि ऑपरेटर स्पष्ट रूप से समय-निर्भर नहीं हैं, इसलिए उन्हें हैमिल्टनियन के साथ उनके कम्यूटेशन संबंध के अनुसार समय में विकसित होते देखा जा सकता है (हाइजेनबर्ग चित्र देखें):
वेइल संबंध
झूठ समूह रूपान्तरण संबंध द्वारा निर्धारित 3-आयामी झूठ बीजगणित के घातीय मानचित्र (झूठ सिद्धांत) द्वारा उत्पन्न हाइजेनबर्ग समूह कहलाता है। इस समूह को समूह के रूप में महसूस किया जा सकता है विकर्ण पर स्थित ऊपरी त्रिकोणीय आव्यूह।[7] क्वांटम यांत्रिकी के मानक गणितीय सूत्रीकरण के अनुसार, क्वांटम वेधशालाएँ जैसे और कुछ हिल्बर्ट स्थान पर स्व-सहायक संचालको के रूप में प्रतिनिधित्व किया जाना चाहिए। यह देखना अपेक्षाकृत आसान है कि उपरोक्त विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले दो ऑपरेटर (गणित) दोनों परिबद्ध ऑपरेटर नहीं हो सकते हैं। निश्चित रूप से, यदि और ट्रेस क्लास ऑपरेटर थे, संबंध दाईं ओर शून्येतर संख्या और बाईं ओर शून्य देता है।
वैकल्पिक रूप से, यदि और बाउंडेड ऑपरेटर थे, ध्यान दें , इसलिए ऑपरेटर मानदंड संतुष्ट होंगे
फिर भी, इन विहित रूपान्तरण संबंधों को (परिबद्ध) ात्मक संचालको के संदर्भ में लिखकर कुछ हद तक नियंत्रित किया जा सकता है और . इन संचालको के लिए परिणामी ब्रेडिंग संबंध तथाकथित स्टोन-वॉन न्यूमैन प्रमेय हैं
वेइल संबंधों के रूप में विहित रूपान्तरण संबंधों की विशिष्टता की गारंटी स्टोन-वॉन न्यूमैन प्रमेय द्वारा दी जाती है।
यह ध्यान रखना महत्वपूर्ण है कि तकनीकी कारणों से, वेइल संबंध सख्ती से विहित रूपान्तरण संबंध के बराबर नहीं हैं . अगर और बंधे हुए ऑपरेटर थे, तो बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला का विशेष मामला किसी को वेइल संबंधों के विहित कम्यूटेशन संबंधों को घातांकित करने की अनुमति देगा।[8] चूंकि, जैसा कि हमने नोट किया है, विहित कम्यूटेशन संबंधों को संतुष्ट करने वाले किसी भी ऑपरेटर को असीमित होना चाहिए, बेकर-कैंपबेल-हॉसडॉर्फ फॉर्मूला अतिरिक्त डोमेन मान्यताओं के बिना लागू नहीं होता है। वास्तव में, प्रति उदाहरण विहित रूपान्तरण संबंधों को संतुष्ट करने वाले मौजूद हैं लेकिन वेइल संबंधों को नहीं।[9] (ये वही संचालक अनिश्चितता सिद्धांत देते हैं#अनिश्चितता सिद्धांत के अनुभवहीन रूप का प्रति उदाहरण।) ये तकनीकी मुद्दे ही कारण हैं कि स्टोन-वॉन न्यूमैन प्रमेय को वेइल संबंधों के संदर्भ में तैयार किया गया है।
वेइल संबंधों का अलग संस्करण, जिसमें पैरामीटर एस और टी की सीमा होती है , पाउली मैट्रिसेस के सामान्यीकरण के माध्यम से परिमित-आयामी हिल्बर्ट स्थान पर महसूस किया जा सकता है#निर्माण: घड़ी और शिफ्ट मैट्रिसेस।
सामान्यीकरण
सरल सूत्र
इसके अलावा, यह आसानी से दिखाया जा सकता है
गेज अपरिवर्तन
कैनोनिकल परिमाणीकरण, परिभाषा के अनुसार, कैनोनिकल निर्देशांक पर लागू किया जाता है। हालाँकि, विद्युत चुम्बकीय क्षेत्र की उपस्थिति में, विहित गति p गेज अपरिवर्तनीय नहीं है. सही गेज-अपरिवर्तनीय गति (या गतिज गति) है
- (एस.आई. युवा) (गाऊसी इकाइयाँ),
कहाँ q कण का विद्युत आवेश है, A चुंबकीय वेक्टर क्षमता है, और c प्रकाश की गति है. यद्यपि मात्रा pkin भौतिक गति है, इसमें प्रयोगशाला प्रयोगों में गति के साथ पहचानी जाने वाली मात्रा है, यह विहित रूपान्तरण संबंधों को संतुष्ट नहीं करती है; केवल विहित गति ही ऐसा करती है। इस प्रकार इसे देखा जा सकता है।
द्रव्यमान के परिमाणित आवेशित कण के लिए गैर-सापेक्षवादी हैमिल्टनियन (क्वांटम यांत्रिकी)। m शास्त्रीय विद्युत चुम्बकीय क्षेत्र में (सीजीएस इकाइयों में) है
कोणीय संवेग संचालक है
अनिश्चितता संबंध और कम्यूटेटर
संचालको के जोड़े के लिए ऐसे सभी गैर-तुच्छ कम्यूटेशन संबंध संबंधित अनिश्चितता सिद्धांत की ओर ले जाते हैं,[12] उनके संबंधित कम्यूटेटर और एंटीकम्यूटेटर द्वारा सकारात्मक अर्ध-निश्चित अपेक्षा योगदान शामिल है। सामान्यतः, दो स्व-सहायक ऑपरेटर के लिए A और B, राज्य में प्रणाली में अपेक्षा मूल्यों पर विचार करें ψ, संगत अपेक्षा मूल्यों के आसपास भिन्नताएं हैं (ΔA)2 ≡ ⟨(A − ⟨A⟩)2⟩, वगैरह।
तब
यह कॉची-श्वार्ज़ असमानता के उपयोग के बाद से होता है |⟨A2⟩| |⟨B2⟩| ≥ |⟨A B⟩|2, और A B = ([A, B] + {A, B})/2 ; और इसी तरह स्थानांतरित संचालको के लिए भी A − ⟨A⟩ और B − ⟨B⟩. (सीएफ. अनिश्चितता सिद्धांत व्युत्पत्तियाँ।)
के लिए स्थानापन्न A और B (और विश्लेषण का ध्यान रखते हुए) हेइज़ेनबर्ग के परिचित अनिश्चितता संबंध को प्राप्त करें x और p, हमेशा की तरह।
कोणीय संवेग परिचालकों के लिए अनिश्चितता संबंध
कोणीय संवेग परिचालकों के लिए Lx = y pz − z py, आदि, किसी के पास वह है
लिए यहाँ Lx और Ly ,[12]कोणीय गति गुणकों में ψ = |ℓ,m⟩, किसी के पास कासिमिर अपरिवर्तनीय के अनुप्रस्थ घटकों के लिए है Lx2 + Ly2+ Lz2, द z-सममितीय संबंध
- ⟨Lx2⟩ = ⟨Ly2⟩ = (ℓ (ℓ + 1) − m2) ℏ2/2 ,
साथ ही ⟨Lx⟩ = ⟨Ly⟩ = 0 .
नतीजतन, इस रूपान्तरण संबंध पर लागू उपरोक्त असमानता निर्दिष्ट करती है
यह भी देखें
- विहित परिमाणीकरण
- सीसीआर और सीएआर बीजगणित
- संरूपस्थिक स्पेसटाइम
- झूठ व्युत्पन्न
- मोयल ब्रैकेट
- स्टोन-वॉन न्यूमैन प्रमेय
संदर्भ
- ↑ "क्वांटम यांत्रिकी का विकास".
- ↑ Born, M.; Jordan, P. (1925). "क्वांटम यांत्रिकी पर". Zeitschrift für Physik. 34 (1): 858–888. Bibcode:1925ZPhy...34..858B. doi:10.1007/BF01328531. S2CID 186114542.
- ↑ Kennard, E. H. (1927). "सरल प्रकार की गति के क्वांटम यांत्रिकी पर". Zeitschrift für Physik. 44 (4–5): 326–352. Bibcode:1927ZPhy...44..326K. doi:10.1007/BF01391200. S2CID 121626384.
- ↑ 4.0 4.1 Groenewold, H. J. (1946). "प्राथमिक क्वांटम यांत्रिकी के सिद्धांतों पर". Physica. 12 (7): 405–460. Bibcode:1946Phy....12..405G. doi:10.1016/S0031-8914(46)80059-4.
- ↑ Hall 2013 Theorem 13.13
- ↑ Curtright, T. L.; Zachos, C. K. (2012). "चरण अंतरिक्ष में क्वांटम यांत्रिकी". Asia Pacific Physics Newsletter. 01: 37–46. arXiv:1104.5269. doi:10.1142/S2251158X12000069. S2CID 119230734.
- ↑ Hall 2015 Section 1.2.6 and Proposition 3.26
- ↑ See Section 5.2 of Hall 2015 for an elementary derivation
- ↑ Hall 2013 Example 14.5
- ↑ Townsend, J. S. (2000). क्वांटम यांत्रिकी के लिए एक आधुनिक दृष्टिकोण. Sausalito, CA: University Science Books. ISBN 1-891389-13-0.
- ↑ McCoy, N. H. (1929), "On commutation formulas in the algebra of quantum mechanics", Transactions of the American Mathematical Society 31 (4), 793-806 online
- ↑ 12.0 12.1 Robertson, H. P. (1929). "अनिश्चितता सिद्धांत". Physical Review. 34 (1): 163–164. Bibcode:1929PhRv...34..163R. doi:10.1103/PhysRev.34.163.
- Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer.
- Hall, Brian C. (2015), Lie Groups, Lie Algebras and Representations, An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer.