समसंगति: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Being equally consistent}} गणितीय तर्क में, दो सिद्धांत (गणितीय तर्क) समस...")
 
No edit summary
Line 1: Line 1:
{{Short description|Being equally consistent}}
{{Short description|Being equally consistent}}
[[गणितीय तर्क]] में, दो [[सिद्धांत (गणितीय तर्क)]] समसंगत होते हैं यदि एक सिद्धांत की संगति दूसरे सिद्धांत की संगति को दर्शाती है, और इसके विपरीत। इस मामले में, मोटे तौर पर कहें तो वे एक-दूसरे की तरह सुसंगत हैं।
[[गणितीय तर्क]] में, दो [[सिद्धांत (गणितीय तर्क)]] समसंगत होते हैं यदि सिद्धांत की संगति दूसरे सिद्धांत की संगति को दर्शाती है, और इसके विपरीत। इस मामले में, मोटे तौर पर कहें तो वे -दूसरे की तरह सुसंगत हैं।


सामान्य तौर पर, किसी सिद्धांत ''टी'' की पूर्ण स्थिरता को साबित करना संभव नहीं है। इसके बजाय हम आमतौर पर एक सिद्धांत ''एस'' लेते हैं, जिसे सुसंगत माना जाता है, और कमजोर कथन को साबित करने का प्रयास करते हैं कि यदि ''एस'' सुसंगत है तो ''टी'' भी सुसंगत होना चाहिए - यदि हम ऐसा कर सकते हैं तो हम कहें कि ''T'', ''S के सापेक्ष सुसंगत'' है। यदि ''S'' भी ''T'' के सापेक्ष सुसंगत है तो हम कहते हैं कि ''S'' और ''T'' समसंगत हैं।
सामान्य तौर पर, किसी सिद्धांत ''टी'' की पूर्ण स्थिरता को साबित करना संभव नहीं है। इसके बजाय हम आमतौर पर सिद्धांत ''एस'' लेते हैं, जिसे सुसंगत माना जाता है, और कमजोर कथन को साबित करने का प्रयास करते हैं कि यदि ''एस'' सुसंगत है तो ''टी'' भी सुसंगत होना चाहिए - यदि हम ऐसा कर सकते हैं तो हम कहें कि ''T'', ''S के सापेक्ष सुसंगत'' है। यदि ''S'' भी ''T'' के सापेक्ष सुसंगत है तो हम कहते हैं कि ''S'' और ''T'' समसंगत हैं।


== संगति ==
== संगति ==
Line 8: Line 8:
गणितीय तर्क में, औपचारिक सिद्धांतों का अध्ययन [[गणितीय वस्तु]]ओं के रूप में किया जाता है। चूँकि कुछ सिद्धांत विभिन्न गणितीय वस्तुओं को मॉडल करने के लिए पर्याप्त शक्तिशाली हैं, इसलिए उनकी अपनी स्थिरता के बारे में आश्चर्य होना स्वाभाविक है।
गणितीय तर्क में, औपचारिक सिद्धांतों का अध्ययन [[गणितीय वस्तु]]ओं के रूप में किया जाता है। चूँकि कुछ सिद्धांत विभिन्न गणितीय वस्तुओं को मॉडल करने के लिए पर्याप्त शक्तिशाली हैं, इसलिए उनकी अपनी स्थिरता के बारे में आश्चर्य होना स्वाभाविक है।


[[डेविड हिल्बर्ट]] ने 20वीं सदी की शुरुआत में एक हिल्बर्ट कार्यक्रम का प्रस्ताव रखा जिसका अंतिम लक्ष्य गणितीय तरीकों का उपयोग करके गणित की स्थिरता को दिखाना था। चूँकि अधिकांश गणितीय विषयों को [[अंकगणित]] में घटाया जा सकता है, कार्यक्रम जल्दी ही अंकगणित के भीतर औपचारिक तरीकों द्वारा अंकगणित की स्थिरता की स्थापना बन गया।
[[डेविड हिल्बर्ट]] ने 20वीं सदी की शुरुआत में हिल्बर्ट कार्यक्रम का प्रस्ताव रखा जिसका अंतिम लक्ष्य गणितीय तरीकों का उपयोग करके गणित की स्थिरता को दिखाना था। चूँकि अधिकांश गणितीय विषयों को [[अंकगणित]] में घटाया जा सकता है, कार्यक्रम जल्दी ही अंकगणित के भीतर औपचारिक तरीकों द्वारा अंकगणित की स्थिरता की स्थापना बन गया।


कर्ट गोडेल|गोडेल के अपूर्णता प्रमेय से पता चलता है कि हिल्बर्ट के कार्यक्रम को साकार नहीं किया जा सकता है: यदि एक सुसंगत [[पुनरावर्ती गणना योग्य सेट]] सिद्धांत अपने स्वयं के [[ मेटागणित ]] को औपचारिक रूप देने के लिए पर्याप्त मजबूत है (चाहे कुछ प्रमाण हो या नहीं), यानी अंकगणित के कमजोर टुकड़े को मॉडल करने के लिए पर्याप्त मजबूत है ([[रॉबिन्सन अंकगणित]] पर्याप्त है), तो सिद्धांत अपनी स्वयं की स्थिरता साबित नहीं कर सकता है। इस बारे में कुछ तकनीकी चेतावनियाँ हैं कि मेटामैथमैटिकल कथन का प्रतिनिधित्व करने वाले औपचारिक कथन की क्या आवश्यकताएँ हैं, सिद्धांत को लगातार संतुष्ट करने की आवश्यकता है, लेकिन इसका परिणाम यह है कि यदि कोई (पर्याप्त रूप से मजबूत) सिद्धांत अपनी स्वयं की स्थिरता साबित कर सकता है, तो पहचानने का कोई गणना योग्य तरीका नहीं है। क्या कोई कथन सिद्धांत का एक [[स्वयंसिद्ध]] है या नहीं, या फिर सिद्धांत स्वयं असंगत है (ऐसी स्थिति में यह कुछ भी साबित कर सकता है, जिसमें झूठे कथन जैसे कि इसकी अपनी स्थिरता भी शामिल है)।
कर्ट गोडेल|गोडेल के अपूर्णता प्रमेय से पता चलता है कि हिल्बर्ट के कार्यक्रम को साकार नहीं किया जा सकता है: यदि सुसंगत [[पुनरावर्ती गणना योग्य सेट]] सिद्धांत अपने स्वयं के [[ मेटागणित ]] को औपचारिक रूप देने के लिए पर्याप्त मजबूत है (चाहे कुछ प्रमाण हो या नहीं), यानी अंकगणित के कमजोर टुकड़े को मॉडल करने के लिए पर्याप्त मजबूत है ([[रॉबिन्सन अंकगणित]] पर्याप्त है), तो सिद्धांत अपनी स्वयं की स्थिरता साबित नहीं कर सकता है। इस बारे में कुछ तकनीकी चेतावनियाँ हैं कि मेटामैथमैटिकल कथन का प्रतिनिधित्व करने वाले औपचारिक कथन की क्या आवश्यकताएँ हैं, सिद्धांत को लगातार संतुष्ट करने की आवश्यकता है, लेकिन इसका परिणाम यह है कि यदि कोई (पर्याप्त रूप से मजबूत) सिद्धांत अपनी स्वयं की स्थिरता साबित कर सकता है, तो पहचानने का कोई गणना योग्य तरीका नहीं है। क्या कोई कथन सिद्धांत का [[स्वयंसिद्ध]] है या नहीं, या फिर सिद्धांत स्वयं असंगत है (ऐसी स्थिति में यह कुछ भी साबित कर सकता है, जिसमें झूठे कथन जैसे कि इसकी अपनी स्थिरता भी शामिल है)।


इसे देखते हुए, एकमुश्त स्थिरता के बजाय, आमतौर पर सापेक्ष स्थिरता पर विचार किया जाता है: मान लीजिए कि एस और टी औपचारिक सिद्धांत हैं। मान लें कि S एक सुसंगत सिद्धांत है। क्या इसका तात्पर्य यह है कि T सुसंगत है? यदि ऐसा है, तो T, S के सापेक्ष सुसंगत है। दो सिद्धांत समसंगत हैं यदि प्रत्येक एक दूसरे के सापेक्ष सुसंगत है।
इसे देखते हुए, मुश्त स्थिरता के बजाय, आमतौर पर सापेक्ष स्थिरता पर विचार किया जाता है: मान लीजिए कि एस और टी औपचारिक सिद्धांत हैं। मान लें कि S सुसंगत सिद्धांत है। क्या इसका तात्पर्य यह है कि T सुसंगत है? यदि ऐसा है, तो T, S के सापेक्ष सुसंगत है। दो सिद्धांत समसंगत हैं यदि प्रत्येक दूसरे के सापेक्ष सुसंगत है।


==संगति शक्ति==
==संगति शक्ति==


यदि T, S के सापेक्ष सुसंगत है, लेकिन S को T के सापेक्ष सुसंगत नहीं माना जाता है, तो हम कहते हैं कि S में T की तुलना में अधिक 'स्थिरता शक्ति' है। स्थिरता शक्ति के इन मुद्दों पर चर्चा करते समय [[समुच्चय सिद्धान्त]] में चर्चा होती है, उसकी आवश्यकता होती है ध्यान से संबोधित किया जाना चाहिए. दूसरे क्रम के अंकगणित के स्तर पर सिद्धांतों के लिए, रिवर्स गणित कार्यक्रम के पास कहने के लिए बहुत कुछ है। संगति शक्ति के मुद्दे सेट सिद्धांत का एक सामान्य हिस्सा हैं, क्योंकि यह एक पुनरावर्ती सिद्धांत है जो निश्चित रूप से अधिकांश गणित को मॉडल कर सकता है। सेट सिद्धांत के स्वयंसिद्धों के सबसे व्यापक रूप से उपयोग किए जाने वाले सेट को [[ZFC]] कहा जाता है। जब एक सेट-सैद्धांतिक कथन {{var|A}} को दूसरे के समसंगत कहा जाता है {{var|B}}, वास्तव में जो दावा किया जा रहा है वह यह है कि मेटाथ्योरी (इस मामले में [[पीनो अंकगणित]]) में यह साबित किया जा सकता है कि सिद्धांत ZFC+{{var|A}} और ZFC+{{var|B}} समसंगत हैं। आमतौर पर, [[आदिम पुनरावर्ती अंकगणित]] को प्रश्न में रूपक के रूप में अपनाया जा सकता है, लेकिन भले ही रूपक ZFC या इसका विस्तार हो, धारणा सार्थक है। मजबूर करने की विधि (गणित) किसी को यह दिखाने की अनुमति देती है कि सिद्धांत ZFC, ZFC+CH और ZFC+¬CH सभी समसंगत हैं (जहाँ CH सातत्य परिकल्पना को दर्शाता है)।
यदि T, S के सापेक्ष सुसंगत है, लेकिन S को T के सापेक्ष सुसंगत नहीं माना जाता है, तो हम कहते हैं कि S में T की तुलना में अधिक 'स्थिरता शक्ति' है। स्थिरता शक्ति के इन मुद्दों पर चर्चा करते समय [[समुच्चय सिद्धान्त]] में चर्चा होती है, उसकी आवश्यकता होती है ध्यान से संबोधित किया जाना चाहिए. दूसरे क्रम के अंकगणित के स्तर पर सिद्धांतों के लिए, रिवर्स गणित कार्यक्रम के पास कहने के लिए बहुत कुछ है। संगति शक्ति के मुद्दे सेट सिद्धांत का सामान्य हिस्सा हैं, क्योंकि यह पुनरावर्ती सिद्धांत है जो निश्चित रूप से अधिकांश गणित को मॉडल कर सकता है। सेट सिद्धांत के स्वयंसिद्धों के सबसे व्यापक रूप से उपयोग किए जाने वाले सेट को [[ZFC]] कहा जाता है। जब सेट-सैद्धांतिक कथन {{var|A}} को दूसरे के समसंगत कहा जाता है {{var|B}}, वास्तव में जो दावा किया जा रहा है वह यह है कि मेटाथ्योरी (इस मामले में [[पीनो अंकगणित]]) में यह साबित किया जा सकता है कि सिद्धांत ZFC+{{var|A}} और ZFC+{{var|B}} समसंगत हैं। आमतौर पर, [[आदिम पुनरावर्ती अंकगणित]] को प्रश्न में रूपक के रूप में अपनाया जा सकता है, लेकिन भले ही रूपक ZFC या इसका विस्तार हो, धारणा सार्थक है। मजबूर करने की विधि (गणित) किसी को यह दिखाने की अनुमति देती है कि सिद्धांत ZFC, ZFC+CH और ZFC+¬CH सभी समसंगत हैं (जहाँ CH सातत्य परिकल्पना को दर्शाता है)।


ZFC के अंशों या उनके विस्तारों (उदाहरण के लिए, ZF, पसंद के सिद्धांत के बिना सेट सिद्धांत, या ZF+AD, निर्धारण के सिद्धांत के साथ सेट सिद्धांत) पर चर्चा करते समय, ऊपर वर्णित धारणाओं को तदनुसार अनुकूलित किया जाता है। इस प्रकार, ZF, ZFC के बराबर है, जैसा कि गोडेल द्वारा दिखाया गया है।
ZFC के अंशों या उनके विस्तारों (उदाहरण के लिए, ZF, पसंद के सिद्धांत के बिना सेट सिद्धांत, या ZF+AD, निर्धारण के सिद्धांत के साथ सेट सिद्धांत) पर चर्चा करते समय, ऊपर वर्णित धारणाओं को तदनुसार अनुकूलित किया जाता है। इस प्रकार, ZF, ZFC के बराबर है, जैसा कि गोडेल द्वारा दिखाया गया है।


अनेक संयोजक कथनों की संगति शक्ति को बड़े कार्डिनल्स द्वारा अंशांकित किया जा सकता है। उदाहरण के लिए:
अनेक संयोजक कथनों की संगति शक्ति को बड़े कार्डिनल्स द्वारा अंशांकित किया जा सकता है। उदाहरण के लिए:
* कुरेपा वृक्ष का निषेध| कुरेपा की परिकल्पना एक [[बड़ा कार्डिनल]] के अस्तित्व के अनुरूप है,
* कुरेपा वृक्ष का निषेध| कुरेपा की परिकल्पना [[बड़ा कार्डिनल]] के अस्तित्व के अनुरूप है,
*विशेष का अस्तित्व न होना <math>\omega_2</math>-एरोन्सज़जन पेड़ एक [[कार्डिनल आँखें]] के अस्तित्व के साथ समरूप है,
*विशेष का अस्तित्व न होना <math>\omega_2</math>-एरोन्सज़जन पेड़ [[कार्डिनल आँखें]] के अस्तित्व के साथ समरूप है,
* का अस्तित्व न होना <math>\omega_2</math>-एरोन्सज़जन पेड़ एक [[कमजोर रूप से कॉम्पैक्ट कार्डिनल]] के अस्तित्व के साथ समरूप हैं।<ref>*{{citation | last=Kunen | first=Kenneth | authorlink=Kenneth Kunen | title=Set theory | zbl=1262.03001 | series=Studies in Logic | volume=34 | location=London | publisher=College Publications | isbn=978-1-84890-050-9 | year=2011 | page=225 }}</ref>
* का अस्तित्व न होना <math>\omega_2</math>-एरोन्सज़जन पेड़ [[कमजोर रूप से कॉम्पैक्ट कार्डिनल]] के अस्तित्व के साथ समरूप हैं।<ref>*{{citation | last=Kunen | first=Kenneth | authorlink=Kenneth Kunen | title=Set theory | zbl=1262.03001 | series=Studies in Logic | volume=34 | location=London | publisher=College Publications | isbn=978-1-84890-050-9 | year=2011 | page=225 }}</ref>


 
== यह भी देखें ==
==यह भी देखें==
*[[बड़ी कार्डिनल संपत्ति]]
*[[बड़ी कार्डिनल संपत्ति]]



Revision as of 20:08, 19 July 2023

गणितीय तर्क में, दो सिद्धांत (गणितीय तर्क) समसंगत होते हैं यदि सिद्धांत की संगति दूसरे सिद्धांत की संगति को दर्शाती है, और इसके विपरीत। इस मामले में, मोटे तौर पर कहें तो वे -दूसरे की तरह सुसंगत हैं।

सामान्य तौर पर, किसी सिद्धांत टी की पूर्ण स्थिरता को साबित करना संभव नहीं है। इसके बजाय हम आमतौर पर सिद्धांत एस लेते हैं, जिसे सुसंगत माना जाता है, और कमजोर कथन को साबित करने का प्रयास करते हैं कि यदि एस सुसंगत है तो टी भी सुसंगत होना चाहिए - यदि हम ऐसा कर सकते हैं तो हम कहें कि T, S के सापेक्ष सुसंगत है। यदि S भी T के सापेक्ष सुसंगत है तो हम कहते हैं कि S और T समसंगत हैं।

संगति

गणितीय तर्क में, औपचारिक सिद्धांतों का अध्ययन गणितीय वस्तुओं के रूप में किया जाता है। चूँकि कुछ सिद्धांत विभिन्न गणितीय वस्तुओं को मॉडल करने के लिए पर्याप्त शक्तिशाली हैं, इसलिए उनकी अपनी स्थिरता के बारे में आश्चर्य होना स्वाभाविक है।

डेविड हिल्बर्ट ने 20वीं सदी की शुरुआत में हिल्बर्ट कार्यक्रम का प्रस्ताव रखा जिसका अंतिम लक्ष्य गणितीय तरीकों का उपयोग करके गणित की स्थिरता को दिखाना था। चूँकि अधिकांश गणितीय विषयों को अंकगणित में घटाया जा सकता है, कार्यक्रम जल्दी ही अंकगणित के भीतर औपचारिक तरीकों द्वारा अंकगणित की स्थिरता की स्थापना बन गया।

कर्ट गोडेल|गोडेल के अपूर्णता प्रमेय से पता चलता है कि हिल्बर्ट के कार्यक्रम को साकार नहीं किया जा सकता है: यदि सुसंगत पुनरावर्ती गणना योग्य सेट सिद्धांत अपने स्वयं के मेटागणित को औपचारिक रूप देने के लिए पर्याप्त मजबूत है (चाहे कुछ प्रमाण हो या नहीं), यानी अंकगणित के कमजोर टुकड़े को मॉडल करने के लिए पर्याप्त मजबूत है (रॉबिन्सन अंकगणित पर्याप्त है), तो सिद्धांत अपनी स्वयं की स्थिरता साबित नहीं कर सकता है। इस बारे में कुछ तकनीकी चेतावनियाँ हैं कि मेटामैथमैटिकल कथन का प्रतिनिधित्व करने वाले औपचारिक कथन की क्या आवश्यकताएँ हैं, सिद्धांत को लगातार संतुष्ट करने की आवश्यकता है, लेकिन इसका परिणाम यह है कि यदि कोई (पर्याप्त रूप से मजबूत) सिद्धांत अपनी स्वयं की स्थिरता साबित कर सकता है, तो पहचानने का कोई गणना योग्य तरीका नहीं है। क्या कोई कथन सिद्धांत का स्वयंसिद्ध है या नहीं, या फिर सिद्धांत स्वयं असंगत है (ऐसी स्थिति में यह कुछ भी साबित कर सकता है, जिसमें झूठे कथन जैसे कि इसकी अपनी स्थिरता भी शामिल है)।

इसे देखते हुए, मुश्त स्थिरता के बजाय, आमतौर पर सापेक्ष स्थिरता पर विचार किया जाता है: मान लीजिए कि एस और टी औपचारिक सिद्धांत हैं। मान लें कि S सुसंगत सिद्धांत है। क्या इसका तात्पर्य यह है कि T सुसंगत है? यदि ऐसा है, तो T, S के सापेक्ष सुसंगत है। दो सिद्धांत समसंगत हैं यदि प्रत्येक दूसरे के सापेक्ष सुसंगत है।

संगति शक्ति

यदि T, S के सापेक्ष सुसंगत है, लेकिन S को T के सापेक्ष सुसंगत नहीं माना जाता है, तो हम कहते हैं कि S में T की तुलना में अधिक 'स्थिरता शक्ति' है। स्थिरता शक्ति के इन मुद्दों पर चर्चा करते समय समुच्चय सिद्धान्त में चर्चा होती है, उसकी आवश्यकता होती है ध्यान से संबोधित किया जाना चाहिए. दूसरे क्रम के अंकगणित के स्तर पर सिद्धांतों के लिए, रिवर्स गणित कार्यक्रम के पास कहने के लिए बहुत कुछ है। संगति शक्ति के मुद्दे सेट सिद्धांत का सामान्य हिस्सा हैं, क्योंकि यह पुनरावर्ती सिद्धांत है जो निश्चित रूप से अधिकांश गणित को मॉडल कर सकता है। सेट सिद्धांत के स्वयंसिद्धों के सबसे व्यापक रूप से उपयोग किए जाने वाले सेट को ZFC कहा जाता है। जब सेट-सैद्धांतिक कथन A को दूसरे के समसंगत कहा जाता है B, वास्तव में जो दावा किया जा रहा है वह यह है कि मेटाथ्योरी (इस मामले में पीनो अंकगणित) में यह साबित किया जा सकता है कि सिद्धांत ZFC+A और ZFC+B समसंगत हैं। आमतौर पर, आदिम पुनरावर्ती अंकगणित को प्रश्न में रूपक के रूप में अपनाया जा सकता है, लेकिन भले ही रूपक ZFC या इसका विस्तार हो, धारणा सार्थक है। मजबूर करने की विधि (गणित) किसी को यह दिखाने की अनुमति देती है कि सिद्धांत ZFC, ZFC+CH और ZFC+¬CH सभी समसंगत हैं (जहाँ CH सातत्य परिकल्पना को दर्शाता है)।

ZFC के अंशों या उनके विस्तारों (उदाहरण के लिए, ZF, पसंद के सिद्धांत के बिना सेट सिद्धांत, या ZF+AD, निर्धारण के सिद्धांत के साथ सेट सिद्धांत) पर चर्चा करते समय, ऊपर वर्णित धारणाओं को तदनुसार अनुकूलित किया जाता है। इस प्रकार, ZF, ZFC के बराबर है, जैसा कि गोडेल द्वारा दिखाया गया है।

अनेक संयोजक कथनों की संगति शक्ति को बड़े कार्डिनल्स द्वारा अंशांकित किया जा सकता है। उदाहरण के लिए:

यह भी देखें

संदर्भ

  1. *Kunen, Kenneth (2011), Set theory, Studies in Logic, vol. 34, London: College Publications, p. 225, ISBN 978-1-84890-050-9, Zbl 1262.03001