गणना में, फ़ंक्शन (गणित) के किसी भी रैखिक संयोजन का व्युत्पन्न फ़ंक्शन के यौगिक के समान रैखिक संयोजन के बराबर होता है;[1] इस गुण को विभेदन की रैखिकता, रैखिकता के नियम के रूप में जाना जाता है,[2] या विभेदन के लिए सुपरपोज़िशन सिद्धांत।[3] यह व्युत्पन्न का मौलिक गुण है जो विभेदीकरण के दो सरल नियमों को ही नियम में समाविष्ट करता है, विभेदन में योग नियम (दो कार्यों के योग का व्युत्पन्न व्युत्पन्नों का योग है) और विभेदन में स्थिर कारक नियम (द) किसी फलन के अचर गुणज का व्युत्पन्न, व्युत्पन्न का ही अचर गुणज होता है)।[4][5] इस प्रकार यह कहा जा सकता है कि विभेदन रैखिक मानचित्र है, या विभेदक संचालिका रेखीय मानचित्र संचालिका है।[6]
होने देना f और g फ़ंक्शंस बनें, साथ α और β स्थिरांक. अब विचार करें
विभेदन में योग नियम के अनुसार, यह है
और विभेदन में स्थिर कारक नियम से, यह कम हो जाता है
इसलिए,
ब्रैकेट (गणित) फंक्शन्स को हटाकर, इसे अक्सर इस प्रकार लिखा जाता है:
परिभाषा से विस्तृत प्रमाण/व्युत्पन्न
हम संपूर्ण रैखिकता सिद्धांत को ही बार में सिद्ध कर सकते हैं, या, हम व्यक्तिगत चरणों (स्थिर कारक और जोड़ने के) को व्यक्तिगत रूप से सिद्ध कर सकते हैं। यहां दोनों को दिखाया जाएगा.
रैखिकता को सीधे सिद्ध करना स्थिर कारक नियम, योग नियम और अंतर नियम को विशेष मामलों के रूप में भी सिद्ध करता है। दोनों स्थिर गुणांकों को निर्धारित करके योग नियम प्राप्त किया जाता है . अंतर नियम पहला स्थिरांक गुणांक निर्धारित करके प्राप्त किया जाता है और दूसरा स्थिरांक गुणांक . स्थिर कारक नियम या तो दूसरे स्थिर गुणांक या दूसरे फ़ंक्शन को सेट करके प्राप्त किया जाता है . (तकनीकी दृष्टिकोण से, दूसरे फ़ंक्शन के फ़ंक्शन के डोमेन पर भी विचार किया जाना चाहिए - समस्याओं से बचने का तरीका दूसरे फ़ंक्शन को पहले फ़ंक्शन के बराबर और दूसरे निरंतर गुणांक को बराबर सेट करना है . कोई दूसरे स्थिरांक गुणांक और दूसरे फ़ंक्शन दोनों को 0 के रूप में परिभाषित कर सकता है, जहां दूसरे फ़ंक्शन का डोमेन अन्य संभावनाओं के बीच पहले फ़ंक्शन का सुपरसेट है।)
इसके विपरीत, यदि हम पहले स्थिर कारक नियम और योग नियम को सिद्ध करते हैं, तो हम रैखिकता और अंतर नियम को सिद्ध कर सकते हैं। रैखिकता को सिद्ध करना पहले और दूसरे कार्यों को दो अन्य कार्यों के रूप में परिभाषित करके निरंतर गुणांक द्वारा गुणा किया जाता है। फिर, जैसा कि पिछले अनुभाग से व्युत्पत्ति में दिखाया गया है, हम विभेदन करते समय पहले योग कानून का उपयोग कर सकते हैं, और फिर निरंतर कारक नियम का उपयोग कर सकते हैं, जो रैखिकता के लिए हमारे निष्कर्ष तक पहुंचेगा। अंतर नियम को सिद्ध करने के लिए, दूसरे फ़ंक्शन को स्थिर गुणांक द्वारा गुणा किए गए किसी अन्य फ़ंक्शन के रूप में फिर से परिभाषित किया जा सकता है . इसे सरल बनाने पर, हमें विभेदन के लिए अंतर नियम मिलेगा।
नीचे दिए गए प्रमाण/व्युत्पन्न में,[7][8] गुणांक उपयोग किया जाता है; वे गुणांकों के अनुरूप हैं ऊपर।
रैखिकता (सीधे)
होने देना . होने देना कार्य हो. होने देना समारोह हो, जहां केवल वहीं परिभाषित किया गया है और दोनों परिभाषित हैं. (दूसरे शब्दों में, का डोमेन के डोमेन का प्रतिच्छेदन है और ।) होने देना के क्षेत्र में हो . होने देना .
हम यह साबित करना चाहते हैं .
परिभाषा के अनुसार, हम इसे देख सकते हैं
सीमाओं के योग के लिए सीमा कानून का उपयोग करने के लिए, हमें यह जानना आवश्यक है और दोनों व्यक्तिगत रूप से मौजूद हैं। इन छोटी सीमाओं के लिए, हमें यह जानना आवश्यक है और सीमा के लिए गुणांक कानून का उपयोग करने के लिए दोनों व्यक्तिगत रूप से मौजूद हैं। परिभाषा से, और . तो, अगर हम यह जानते हैं और दोनों अस्तित्व में हैं, यह हम जान लेंगे और दोनों व्यक्तिगत रूप से मौजूद हैं। यह हमें लिखने की सीमा के लिए गुणांक कानून का उपयोग करने की अनुमति देता है
और
इसके साथ, हम सीमाओं के योग के लिए सीमा कानून को लागू करने के लिए वापस जा सकते हैं, क्योंकि हम यह जानते हैं और दोनों व्यक्तिगत रूप से मौजूद हैं। यहां से, हम सीधे उस व्युत्पन्न पर वापस जा सकते हैं जिस पर हम काम कर रहे थे।
अंततः, हमने वही दिखाया जो हमने शुरुआत में दावा किया था: .
योग
होने देना कार्य हो. होने देना समारोह हो, जहां केवल वहीं परिभाषित किया गया है और दोनों परिभाषित हैं.
(दूसरे शब्दों में, का डोमेन के डोमेन का प्रतिच्छेदन है और ।) होने देना के क्षेत्र में हो . होने देना .
हम यह साबित करना चाहते हैं .
परिभाषा के अनुसार, हम इसे देख सकते हैं
यहां सीमाओं के योग के लिए कानून का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, और दोनों मौजूद हैं. परिभाषा से, और , इसलिए जब भी डेरिवेटिव होते हैं तो सीमाएं मौजूद होती हैं और अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न मौजूद हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं
इस प्रकार, हमने वह दिखा दिया जो हम दिखाना चाहते थे, कि: .
अंतर
होने देना कार्य हो. होने देना समारोह हो, जहां केवल वहीं परिभाषित किया गया है और दोनों परिभाषित हैं. (दूसरे शब्दों में, का डोमेन के डोमेन का प्रतिच्छेदन है और ।) होने देना के क्षेत्र में हो . होने देना .
हम यह साबित करना चाहते हैं .
परिभाषा के अनुसार, हम यह देख सकते हैं:
यहां सीमाओं के अंतर के लिए कानून का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, और दोनों मौजूद हैं. परिभाषा से, ओर वो , इसलिए जब भी डेरिवेटिव होते हैं तो ये सीमाएँ मौजूद होती हैं और अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न मौजूद हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं
इस प्रकार, हमने वह दिखा दिया जो हम दिखाना चाहते थे, कि: .
स्थिर गुणांक
होने देना समारोह हो. होने देना ; स्थिर गुणांक होगा. होने देना फ़ंक्शन बनें, जहां j को केवल वहीं परिभाषित किया गया है परिभाषित किया गया। (दूसरे शब्दों में, का डोमेन के डोमेन के बराबर है ।) होने देना के क्षेत्र में हो . होने देना .
हम यह साबित करना चाहते हैं .
परिभाषा के अनुसार, हम यह देख सकते हैं:
अब, यह दिखाने के लिए स्थिर गुणांकों के लिए सीमा कानून का उपयोग करें
हमें वह दिखाने की जरूरत है मौजूद।
हालाँकि, , व्युत्पन्न की परिभाषा के अनुसार। तो यदि तो मौजूद है मौजूद।
इस प्रकार, यदि हम ऐसा मान लें मौजूद है, हम सीमा कानून का उपयोग कर सकते हैं और अपना प्रमाण जारी रख सकते हैं।
इस प्रकार, हमने यह सिद्ध कर दिया है कि कब , अपने पास .