अवकल रैखिकता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Calculus property}}
{{Short description|Calculus property}}
[[ गणना |गणना]] में, किसी भी [[फ़ंक्शन (गणित)|फलन (गणित)]] के [[रैखिक संयोजन]] का व्युत्पन्न फलन के [[ यौगिक |यौगिक]] के समान रैखिक संयोजन के बराबर होता है;<ref>{{citation|title=Calculus: Single Variable, Volume 1|first1=Brian E.|last1=Blank|first2=Steven George|last2=Krantz|publisher=Springer|year=2006|isbn=9781931914598|page=177|url=https://books.google.com/books?id=hMY8lbX87Y8C&pg=PA177}}.</ref> इस गुण को '''विभेदन की रैखिकता''' के नियम के रूप में जाना जाता है,<ref>{{citation|title=Calculus, Volume 1|first=Gilbert|last=Strang|publisher=SIAM|year=1991|isbn=9780961408824|pages=71–72|url=https://books.google.com/books?id=OisInC1zvEMC&pg=PA71}}.</ref> या विभिन्निता के लिए सुपरपोजीशन नियम के नाम से जाना जाता है।।<ref>{{citation|title=Calculus Using Mathematica|first=K. D.|last=Stroyan|publisher=Academic Press|year=2014|isbn=9781483267975|page=89|url=https://books.google.com/books?id=C8DiBQAAQBAJ&pg=PA89}}.</ref> यह एक मूलभूत गुणसूत्र है जो विभेदीकरण के तत्वों को एक ही नियम में सम्मिलित करता है, [[विभेदन में योग नियम]] (दो कार्यों के योग का व्युत्पन्न व्युत्पन्नों का योग है) और [[विभेदन में स्थिर कारक नियम]] किसी फलन के अचर गुणज का व्युत्पन्न, व्युत्पन्न का ही अचर गुणज होता है)।<ref>{{citation|title=Practical Analysis in One Variable|series=[[Undergraduate Texts in Mathematics]]|first=Donald|last=Estep|publisher=Springer|year=2002|isbn=9780387954844|pages=259–260|url=https://books.google.com/books?id=trC-jTRffesC&pg=PA259|contribution=20.1 Linear Combinations of Functions}}.</ref><ref>{{citation|title=Understanding Real Analysis|first=Paul|last=Zorn|publisher=CRC Press|year=2010|isbn=9781439894323|page=184|url=https://books.google.com/books?id=1WLNBQAAQBAJ&pg=PA184}}.</ref> इसलिए इसका कहना है कि विभेदन रैखिक मानचित्र है, या विभेदक संचालिका [[रेखीय मानचित्र]] संचालिका है।<ref>{{citation|title=Finite-Dimensional Linear Algebra|series=Discrete Mathematics and Its Applications|first=Mark S.|last=Gockenbach|publisher=CRC Press|year=2011|isbn=9781439815649|page=103|url=https://books.google.com/books?id=xP0RFUHWQI0C&pg=PA103}}.</ref>
[[ गणना |गणना]] में, किसी भी [[फ़ंक्शन (गणित)|फलन (गणित)]] के [[रैखिक संयोजन]] का व्युत्पन्न फलन के [[ यौगिक |यौगिक]] के समान रैखिक संयोजन के बराबर होता है;<ref>{{citation|title=Calculus: Single Variable, Volume 1|first1=Brian E.|last1=Blank|first2=Steven George|last2=Krantz|publisher=Springer|year=2006|isbn=9781931914598|page=177|url=https://books.google.com/books?id=hMY8lbX87Y8C&pg=PA177}}.</ref> इस गुण को '''विभेदन की रैखिकता''' के नियम के रूप में जाना जाता है,<ref>{{citation|title=Calculus, Volume 1|first=Gilbert|last=Strang|publisher=SIAM|year=1991|isbn=9780961408824|pages=71–72|url=https://books.google.com/books?id=OisInC1zvEMC&pg=PA71}}.</ref> या विभिन्निता के लिए सुपरपोजीशन नियम के नाम से जाना जाता है।<ref>{{citation|title=Calculus Using Mathematica|first=K. D.|last=Stroyan|publisher=Academic Press|year=2014|isbn=9781483267975|page=89|url=https://books.google.com/books?id=C8DiBQAAQBAJ&pg=PA89}}.</ref> यह मूलभूत गुणसूत्र है जो विभेदीकरण के तत्वों को ही नियम में सम्मिलित करता है, [[विभेदन में योग नियम]] (दो फलन के योग का व्युत्पन्न व्युत्पन्नों का योग है) और [[विभेदन में स्थिर कारक नियम]] किसी फलन के अचर गुणज का व्युत्पन्न, व्युत्पन्न का ही अचर गुणज होता है)।<ref>{{citation|title=Practical Analysis in One Variable|series=[[Undergraduate Texts in Mathematics]]|first=Donald|last=Estep|publisher=Springer|year=2002|isbn=9780387954844|pages=259–260|url=https://books.google.com/books?id=trC-jTRffesC&pg=PA259|contribution=20.1 Linear Combinations of Functions}}.</ref><ref>{{citation|title=Understanding Real Analysis|first=Paul|last=Zorn|publisher=CRC Press|year=2010|isbn=9781439894323|page=184|url=https://books.google.com/books?id=1WLNBQAAQBAJ&pg=PA184}}.</ref> इसलिए इसका कहना है कि विभेदन रैखिक मानचित्र है, या विभेदक संचालिका [[रेखीय मानचित्र]] संचालिका है।<ref>{{citation|title=Finite-Dimensional Linear Algebra|series=Discrete Mathematics and Its Applications|first=Mark S.|last=Gockenbach|publisher=CRC Press|year=2011|isbn=9781439815649|page=103|url=https://books.google.com/books?id=xP0RFUHWQI0C&pg=PA103}}.</ref>


== कथन और व्युत्पत्ति ==
== कथन और व्युत्पत्ति ==
मान लीजिए कि {{math|''f''}} और {{math|''g''}} फलन बनें, साथ {{math|''α''}} और {{math|''β''}} स्थिरांक. अब विचार करें
मान लीजिए कि {{math|''f''}} और {{math|''g''}} फलन बनें, साथ {{math|''α''}} और {{math|''β''}} स्थिरांक अब विचार करें


:<math>\frac{\mbox{d}}{\mbox{d} x} ( \alpha \cdot f(x) + \beta \cdot g(x) ).</math>
:<math>\frac{\mbox{d}}{\mbox{d} x} ( \alpha \cdot f(x) + \beta \cdot g(x) ).</math>
Line 20: Line 20:


== परिभाषा से विस्तृत प्रमाण/व्युत्पन्न ==
== परिभाषा से विस्तृत प्रमाण/व्युत्पन्न ==
हम संपूर्ण रैखिकता सिद्धांत को ही बार में सिद्ध कर सकते हैं, या, हम व्यक्तिगत चरणों (स्थिर कारक और जोड़ने के) को व्यक्तिगत रूप से सिद्ध कर सकते हैं। यहां दोनों को दिखाया जाएगा.
हम संपूर्ण रैखिकता सिद्धांत को ही बार में सिद्ध कर सकते हैं, या हम व्यक्तिगत चरणों (स्थिर कारक और जोड़ने के) को व्यक्तिगत रूप से सिद्ध कर सकते हैं। यहां दोनों को दिखाया जाएगा.


रैखिकता को सीधे सिद्ध करना स्थिर कारक नियम, योग नियम और अंतर नियम को विशेष स्थितियों के रूप में भी सिद्ध करता है। दोनों स्थिर गुणांकों को निर्धारित करके योग नियम प्राप्त किया जाता है <math>1</math>. अंतर नियम पहला स्थिरांक गुणांक निर्धारित करके प्राप्त किया जाता है <math>1</math> और दूसरा स्थिरांक गुणांक <math>-1</math>. स्थिर कारक नियम या तो दूसरे स्थिर गुणांक या दूसरे फलन को समुच्चय करके प्राप्त किया जाता है <math>0</math>. (तकनीकी दृष्टिकोण से, दूसरे फलन के फलन के डोमेन पर भी विचार किया जाना चाहिए - समस्याओं से बचने का विधि दूसरे फलन को पहले फलन के बराबर और दूसरे निरंतर गुणांक को बराबर समुच्चय करना है <math>0</math>. कोई दूसरे स्थिरांक गुणांक और दूसरे फलन दोनों को 0 के रूप में परिभाषित कर सकता है, जहां दूसरे फलन का डोमेन अन्य संभावनाओं के बीच पहले फलन का सुपरसमुच्चय है।)
रैखिकता को सीधे सिद्ध करना स्थिर कारक नियम, योग नियम और अंतर नियम को विशेष स्थितियों के रूप में भी सिद्ध करता है। दोनों स्थिर गुणांकों को निर्धारित करके योग नियम प्राप्त किया जाता है <math>1</math>. अंतर नियम पहला स्थिरांक गुणांक निर्धारित करके प्राप्त किया जाता है <math>1</math> और दूसरा स्थिरांक गुणांक <math>-1</math>. स्थिर कारक नियम या तो दूसरे स्थिर गुणांक या दूसरे फलन को समुच्चय करके प्राप्त किया जाता है <math>0</math>. (तकनीकी दृष्टिकोण से, दूसरे फलन के फलन के डोमेन पर भी विचार किया जाना चाहिए - समस्याओं से बचने का विधि दूसरे फलन को पहले फलन के बराबर और दूसरे निरंतर गुणांक को बराबर समुच्चय करना है <math>0</math>. कोई दूसरे स्थिरांक गुणांक और दूसरे फलन दोनों को 0 के रूप में परिभाषित कर सकता है, जहां दूसरे फलन का डोमेन अन्य संभावनाओं के बीच पहले फलन का सुपरसमुच्चय है।)


इसके विपरीत, यदि हम पहले स्थिर कारक नियम और योग नियम को सिद्ध करते हैं, तो हम रैखिकता और अंतर नियम को सिद्ध कर सकते हैं। रैखिकता को सिद्ध करना पहले और दूसरे कार्यों को दो अन्य कार्यों के रूप में परिभाषित करके निरंतर गुणांक द्वारा गुणा किया जाता है। फिर, जैसा कि पिछले अनुभाग से व्युत्पत्ति में दिखाया गया है, हम विभेदन करते समय पहले योग कानून का उपयोग कर सकते हैं, और फिर निरंतर कारक नियम का उपयोग कर सकते हैं, जो रैखिकता के लिए हमारे निष्कर्ष तक पहुंचेगा। अंतर नियम को सिद्ध करने के लिए, दूसरे फलन को स्थिर गुणांक द्वारा गुणा किए गए किसी अन्य फलन के रूप में फिर से परिभाषित किया जा सकता है <math>-1</math>. इसे सरल बनाने पर, हमें विभेदन के लिए अंतर नियम मिलेगा।
इसके विपरीत, यदि हम पहले स्थिर कारक नियम और योग नियम को सिद्ध करते हैं, तो हम रैखिकता और अंतर नियम को सिद्ध कर सकते हैं। रैखिकता को सिद्ध करना पहले और दूसरे फलन को दो अन्य फलन के रूप में परिभाषित करके निरंतर गुणांक द्वारा गुणा किया जाता है। फिर, जैसा कि पिछले अनुभाग से व्युत्पत्ति में दिखाया गया है, हम विभेदन करते समय पहले योग विधि का उपयोग कर सकते हैं, और फिर निरंतर कारक नियम का उपयोग कर सकते हैं, जो रैखिकता के लिए हमारे निष्कर्ष तक पहुंचेगा। अंतर नियम को सिद्ध करने के लिए, दूसरे फलन को स्थिर गुणांक द्वारा गुणा किए गए किसी अन्य फलन के रूप में फिर से परिभाषित किया जा सकता है <math>-1</math>. इसे सरल बनाने पर, हमें विभेदन के लिए अंतर नियम मिलेगा।


नीचे दिए गए प्रमाण/व्युत्पन्न में,<ref>{{cite web |title=विभेदन नियम|url=https://courseware.cemc.uwaterloo.ca/11/assignments/47/6 |website=CEMC's Open Courseware |access-date=3 May 2022}}</ref><ref>{{cite web |last1=Dawkins |first1=Paul |title=विभिन्न व्युत्पन्न गुणों का प्रमाण|url=https://tutorial.math.lamar.edu/Classes/CalcI/DerivativeProofs.aspx |website=Paul's Online Notes |access-date=3 May 2022}}</ref> गुणांक <math>a, b</math> उपयोग किया जाता है; वे गुणांकों के अनुरूप हैं <math>\alpha, \beta</math> ऊपर।
नीचे दिए गए प्रमाण/व्युत्पन्न में,<ref>{{cite web |title=विभेदन नियम|url=https://courseware.cemc.uwaterloo.ca/11/assignments/47/6 |website=CEMC's Open Courseware |access-date=3 May 2022}}</ref><ref>{{cite web |last1=Dawkins |first1=Paul |title=विभिन्न व्युत्पन्न गुणों का प्रमाण|url=https://tutorial.math.lamar.edu/Classes/CalcI/DerivativeProofs.aspx |website=Paul's Online Notes |access-date=3 May 2022}}</ref> गुणांक <math>a, b</math> उपयोग किया जाता है; वे गुणांकों के अनुरूप हैं <math>\alpha, \beta</math> ऊपर।
Line 45: Line 45:
&= \lim_{h \rightarrow 0} \left( a\frac{f(x + h) - f(x)}{h} + b\frac{g(x + h) - g(x)}{h} \right) \\
&= \lim_{h \rightarrow 0} \left( a\frac{f(x + h) - f(x)}{h} + b\frac{g(x + h) - g(x)}{h} \right) \\
\end{align}</math>
\end{align}</math>
सीमाओं के योग के लिए सीमा कानून का उपयोग करने के लिए, हमें यह जानना आवश्यक है <math display="inline">\lim_{h \to 0} a\frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \to 0} b\frac{g(x + h) - g(x)}{h}</math> दोनों व्यक्तिगत रूप से उपस्थित हैं। इन छोटी सीमाओं के लिए, हमें यह जानना आवश्यक है <math display="inline">\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math> सीमा के लिए गुणांक कानून का उपयोग करने के लिए दोनों व्यक्तिगत रूप से उपस्थित हैं। परिभाषा से, <math display="inline">f^{\prime}(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">g^{\prime}(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math>. तो, यदि हम यह जानते हैं <math>f^{\prime}(x)</math> और <math>g^{\prime}(x)</math> दोनों अस्तित्व में हैं, यह हम जान लेंगे <math display="inline">\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math> दोनों व्यक्तिगत रूप से उपस्थित हैं। यह हमें लिखने की सीमा के लिए गुणांक कानून का उपयोग करने की अनुमति देता है
सीमाओं के योग के लिए सीमा विधि का उपयोग करने के लिए, हमें यह जानना आवश्यक है <math display="inline">\lim_{h \to 0} a\frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \to 0} b\frac{g(x + h) - g(x)}{h}</math> दोनों व्यक्तिगत रूप से उपस्थित हैं। इन छोटी सीमाओं के लिए, हमें यह जानना आवश्यक है <math display="inline">\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math> सीमा के लिए गुणांक विधि का उपयोग करने के लिए दोनों व्यक्तिगत रूप से उपस्थित हैं। परिभाषा से, <math display="inline">f^{\prime}(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">g^{\prime}(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math>. तो, यदि हम यह जानते हैं <math>f^{\prime}(x)</math> और <math>g^{\prime}(x)</math> दोनों अस्तित्व में हैं, यह हम जान लेंगे <math display="inline">\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}</math> दोनों व्यक्तिगत रूप से उपस्थित हैं। यह हमें लिखने की सीमा के लिए गुणांक विधि का उपयोग करने की अनुमति देता है


<math display="block">
<math display="block">
Line 57: Line 57:
= b\lim_{h \to 0}\frac{g(x + h) - g(x)}{h}.
= b\lim_{h \to 0}\frac{g(x + h) - g(x)}{h}.
</math>
</math>
इसके साथ, हम सीमाओं के योग के लिए सीमा कानून को लागू करने के लिए वापस जा सकते हैं, क्योंकि हम यह जानते हैं <math display="inline">\lim_{h \rightarrow 0} a\frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \rightarrow 0} b\frac{g(x + h) - g(x)}{h}</math> दोनों व्यक्तिगत रूप से उपस्थित हैं। यहां से, हम सीधे उस व्युत्पन्न पर वापस जा सकते हैं जिस पर हम काम कर रहे थे।<math display="block">\begin{align}
इसके साथ, हम सीमाओं के योग के लिए सीमा विधि को लागू करने के लिए वापस जा सकते हैं, क्योंकि हम यह जानते हैं <math display="inline">\lim_{h \rightarrow 0} a\frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \rightarrow 0} b\frac{g(x + h) - g(x)}{h}</math> दोनों व्यक्तिगत रूप से उपस्थित हैं। यहां से, हम सीधे उस व्युत्पन्न पर वापस जा सकते हैं जिस पर हम काम कर रहे थे।<math display="block">\begin{align}
j^{\prime}(x) &= \lim_{h \rightarrow 0} \frac{j(x + h) - j(x)}{h} \\
j^{\prime}(x) &= \lim_{h \rightarrow 0} \frac{j(x + h) - j(x)}{h} \\
&\;\;\vdots \\
&\;\;\vdots \\
Line 81: Line 81:
&= \lim_{h \rightarrow 0} \frac{(f(x + h) - f(x)) + (g(x + h) - g(x))}{h} \\
&= \lim_{h \rightarrow 0} \frac{(f(x + h) - f(x)) + (g(x + h) - g(x))}{h} \\
&= \lim_{h \rightarrow 0} \left( \frac{f(x + h) - f(x)}{h} + \frac{g(x + h) - g(x)}{h} \right) \\
&= \lim_{h \rightarrow 0} \left( \frac{f(x + h) - f(x)}{h} + \frac{g(x + h) - g(x)}{h} \right) \\
\end{align}</math>यहां सीमाओं के योग के लिए कानून का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, <math display="inline">\lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math> दोनों उपस्थित हैं. परिभाषा से, <math display="inline">f^{\prime}(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math>और <math display="inline">g^{\prime}(x) = \lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math>, इसलिए जब भी व्युत्पन्न होते हैं तो सीमाएं उपस्थित होती हैं <math>f^{\prime}(x)</math> और <math>g^{\prime}(x)</math> अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न उपस्थित हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं
\end{align}</math>यहां सीमाओं के योग के लिए विधि का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, <math display="inline">\lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math> दोनों उपस्थित हैं. परिभाषा से, <math display="inline">f^{\prime}(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math>और <math display="inline">g^{\prime}(x) = \lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math>, इसलिए जब भी व्युत्पन्न होते हैं तो सीमाएं उपस्थित होती हैं <math>f^{\prime}(x)</math> और <math>g^{\prime}(x)</math> अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न उपस्थित हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 107: Line 107:
&= \lim_{h \rightarrow 0} \left( \frac{f(x + h) - f(x)}{h} - \frac{g(x + h) - g(x)}{h} \right) \\
&= \lim_{h \rightarrow 0} \left( \frac{f(x + h) - f(x)}{h} - \frac{g(x + h) - g(x)}{h} \right) \\
\end{align}</math>
\end{align}</math>
यहां सीमाओं के अंतर के लिए कानून का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, <math display="inline">\lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math> दोनों उपस्थित हैं. परिभाषा से, <math display="inline">f^{\prime}(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> ओर वो <math display="inline">g^{\prime}(x) = \lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math>, इसलिए जब भी व्युत्पन्न होते हैं तो ये सीमाएँ उपस्थित होती हैं <math>f^{\prime}(x)</math> और <math>g^{\prime}(x)</math> अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न उपस्थित हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं
यहां सीमाओं के अंतर के लिए विधि का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, <math display="inline">\lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> और <math display="inline">\lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math> दोनों उपस्थित हैं. परिभाषा से, <math display="inline">f^{\prime}(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> ओर वो <math display="inline">g^{\prime}(x) = \lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}</math>, इसलिए जब भी व्युत्पन्न होते हैं तो ये सीमाएँ उपस्थित होती हैं <math>f^{\prime}(x)</math> और <math>g^{\prime}(x)</math> अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न उपस्थित हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 131: Line 131:
&= \lim_{h \rightarrow 0} a\frac{f(x + h) - f(x)}{h} \\
&= \lim_{h \rightarrow 0} a\frac{f(x + h) - f(x)}{h} \\
\end{align}</math>
\end{align}</math>
अब, यह दिखाने के लिए स्थिर गुणांकों के लिए सीमा कानून का उपयोग करें
अब, यह दिखाने के लिए स्थिर गुणांकों के लिए सीमा विधि का उपयोग करें


<math display="block">
<math display="block">
Line 138: Line 138:
चूँकि , <math display="inline">f^{\prime}(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math>, व्युत्पन्न की परिभाषा के अनुसार। तो यदि <math>f^{\prime}(x)</math> तो उपस्थित है <math display="inline">\lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> उपस्थित ।
चूँकि , <math display="inline">f^{\prime}(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math>, व्युत्पन्न की परिभाषा के अनुसार। तो यदि <math>f^{\prime}(x)</math> तो उपस्थित है <math display="inline">\lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}</math> उपस्थित ।


इस प्रकार, यदि हम ऐसा मान लें <math>f^{\prime}(x)</math> उपस्थित है, हम सीमा कानून का उपयोग कर सकते हैं और अपना प्रमाण जारी रख सकते हैं।
इस प्रकार, यदि हम ऐसा मान लें <math>f^{\prime}(x)</math> उपस्थित है, हम सीमा विधि का उपयोग कर सकते हैं और अपना प्रमाण जारी रख सकते हैं।


<math display="block">\begin{align}
<math display="block">\begin{align}

Revision as of 09:39, 26 July 2023

गणना में, किसी भी फलन (गणित) के रैखिक संयोजन का व्युत्पन्न फलन के यौगिक के समान रैखिक संयोजन के बराबर होता है;[1] इस गुण को विभेदन की रैखिकता के नियम के रूप में जाना जाता है,[2] या विभिन्निता के लिए सुपरपोजीशन नियम के नाम से जाना जाता है।[3] यह मूलभूत गुणसूत्र है जो विभेदीकरण के तत्वों को ही नियम में सम्मिलित करता है, विभेदन में योग नियम (दो फलन के योग का व्युत्पन्न व्युत्पन्नों का योग है) और विभेदन में स्थिर कारक नियम किसी फलन के अचर गुणज का व्युत्पन्न, व्युत्पन्न का ही अचर गुणज होता है)।[4][5] इसलिए इसका कहना है कि विभेदन रैखिक मानचित्र है, या विभेदक संचालिका रेखीय मानचित्र संचालिका है।[6]

कथन और व्युत्पत्ति

मान लीजिए कि f और g फलन बनें, साथ α और β स्थिरांक अब विचार करें

विभेदन में योग नियम के अनुसार, यह है

और विभेदन में स्थिर कारक नियम से, यह कम हो जाता है

इसलिए,

कोष्ठक को हटाकर, इसे अधिकांशतः इस प्रकार लिखा जाता है:

परिभाषा से विस्तृत प्रमाण/व्युत्पन्न

हम संपूर्ण रैखिकता सिद्धांत को ही बार में सिद्ध कर सकते हैं, या हम व्यक्तिगत चरणों (स्थिर कारक और जोड़ने के) को व्यक्तिगत रूप से सिद्ध कर सकते हैं। यहां दोनों को दिखाया जाएगा.

रैखिकता को सीधे सिद्ध करना स्थिर कारक नियम, योग नियम और अंतर नियम को विशेष स्थितियों के रूप में भी सिद्ध करता है। दोनों स्थिर गुणांकों को निर्धारित करके योग नियम प्राप्त किया जाता है . अंतर नियम पहला स्थिरांक गुणांक निर्धारित करके प्राप्त किया जाता है और दूसरा स्थिरांक गुणांक . स्थिर कारक नियम या तो दूसरे स्थिर गुणांक या दूसरे फलन को समुच्चय करके प्राप्त किया जाता है . (तकनीकी दृष्टिकोण से, दूसरे फलन के फलन के डोमेन पर भी विचार किया जाना चाहिए - समस्याओं से बचने का विधि दूसरे फलन को पहले फलन के बराबर और दूसरे निरंतर गुणांक को बराबर समुच्चय करना है . कोई दूसरे स्थिरांक गुणांक और दूसरे फलन दोनों को 0 के रूप में परिभाषित कर सकता है, जहां दूसरे फलन का डोमेन अन्य संभावनाओं के बीच पहले फलन का सुपरसमुच्चय है।)

इसके विपरीत, यदि हम पहले स्थिर कारक नियम और योग नियम को सिद्ध करते हैं, तो हम रैखिकता और अंतर नियम को सिद्ध कर सकते हैं। रैखिकता को सिद्ध करना पहले और दूसरे फलन को दो अन्य फलन के रूप में परिभाषित करके निरंतर गुणांक द्वारा गुणा किया जाता है। फिर, जैसा कि पिछले अनुभाग से व्युत्पत्ति में दिखाया गया है, हम विभेदन करते समय पहले योग विधि का उपयोग कर सकते हैं, और फिर निरंतर कारक नियम का उपयोग कर सकते हैं, जो रैखिकता के लिए हमारे निष्कर्ष तक पहुंचेगा। अंतर नियम को सिद्ध करने के लिए, दूसरे फलन को स्थिर गुणांक द्वारा गुणा किए गए किसी अन्य फलन के रूप में फिर से परिभाषित किया जा सकता है . इसे सरल बनाने पर, हमें विभेदन के लिए अंतर नियम मिलेगा।

नीचे दिए गए प्रमाण/व्युत्पन्न में,[7][8] गुणांक उपयोग किया जाता है; वे गुणांकों के अनुरूप हैं ऊपर।

रैखिकता (सीधे)

मान लीजिए कि . मान लीजिए कि कार्य हो. मान लीजिए कि फलन हो, जहां केवल वहीं परिभाषित किया गया है और दोनों परिभाषित हैं. (दूसरे शब्दों में, का डोमेन के डोमेन का प्रतिच्छेदन है और ।) मान लीजिए कि के क्षेत्र में हो . मान लीजिए कि .

हम यह सिद्ध करना चाहते हैं .

परिभाषा के अनुसार, हम इसे देख सकते हैं

सीमाओं के योग के लिए सीमा विधि का उपयोग करने के लिए, हमें यह जानना आवश्यक है और दोनों व्यक्तिगत रूप से उपस्थित हैं। इन छोटी सीमाओं के लिए, हमें यह जानना आवश्यक है और सीमा के लिए गुणांक विधि का उपयोग करने के लिए दोनों व्यक्तिगत रूप से उपस्थित हैं। परिभाषा से, और . तो, यदि हम यह जानते हैं और दोनों अस्तित्व में हैं, यह हम जान लेंगे और दोनों व्यक्तिगत रूप से उपस्थित हैं। यह हमें लिखने की सीमा के लिए गुणांक विधि का उपयोग करने की अनुमति देता है

और

इसके साथ, हम सीमाओं के योग के लिए सीमा विधि को लागू करने के लिए वापस जा सकते हैं, क्योंकि हम यह जानते हैं और दोनों व्यक्तिगत रूप से उपस्थित हैं। यहां से, हम सीधे उस व्युत्पन्न पर वापस जा सकते हैं जिस पर हम काम कर रहे थे।
अंततः, हमने वही दिखाया जो हमने शुरुआत में दावा किया था: .

योग

मान लीजिए कि कार्य हो. मान लीजिए कि फलन हो, जहां केवल वहीं परिभाषित किया गया है और दोनों परिभाषित हैं. (दूसरे शब्दों में, का डोमेन के डोमेन का प्रतिच्छेदन है और ।) मान लीजिए कि के क्षेत्र में हो . मान लीजिए कि .

हम यह सिद्ध करना चाहते हैं .

परिभाषा के अनुसार, हम इसे देख सकते हैं

यहां सीमाओं के योग के लिए विधि का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, और दोनों उपस्थित हैं. परिभाषा से, और , इसलिए जब भी व्युत्पन्न होते हैं तो सीमाएं उपस्थित होती हैं और अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न उपस्थित हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं

इस प्रकार, हमने वह दिखा दिया जो हम दिखाना चाहते थे, कि: .

अंतर

मान लीजिए कि कार्य हो. मान लीजिए कि फलन हो, जहां केवल वहीं परिभाषित किया गया है और दोनों परिभाषित हैं. (दूसरे शब्दों में, का डोमेन के डोमेन का प्रतिच्छेदन है और ।) मान लीजिए कि के क्षेत्र में हो . मान लीजिए कि .

हम यह सिद्ध करना चाहते हैं .

परिभाषा के अनुसार, हम यह देख सकते हैं:

यहां सीमाओं के अंतर के लिए विधि का उपयोग करने के लिए, हमें यह दिखाना होगा कि व्यक्तिगत सीमाएं, और दोनों उपस्थित हैं. परिभाषा से, ओर वो , इसलिए जब भी व्युत्पन्न होते हैं तो ये सीमाएँ उपस्थित होती हैं और अस्तित्व। इसलिए, यह मानते हुए कि व्युत्पन्न उपस्थित हैं, हम उपरोक्त व्युत्पत्ति को जारी रख सकते हैं

इस प्रकार, हमने वह दिखा दिया जो हम दिखाना चाहते थे, कि: .

स्थिर गुणांक

मान लीजिए कि फलन हो. मान लीजिए कि ; स्थिर गुणांक होगा. मान लीजिए कि फलन बनें, जहां j को केवल वहीं परिभाषित किया गया है परिभाषित किया गया। (दूसरे शब्दों में, का डोमेन के डोमेन के बराबर है ।) मान लीजिए कि के क्षेत्र में हो . मान लीजिए कि .

हम यह सिद्ध करना चाहते हैं .

परिभाषा के अनुसार, हम यह देख सकते हैं:

अब, यह दिखाने के लिए स्थिर गुणांकों के लिए सीमा विधि का उपयोग करें

हमें वह दिखाने की आवश्यकता है उपस्थित । चूँकि , , व्युत्पन्न की परिभाषा के अनुसार। तो यदि तो उपस्थित है उपस्थित ।

इस प्रकार, यदि हम ऐसा मान लें उपस्थित है, हम सीमा विधि का उपयोग कर सकते हैं और अपना प्रमाण जारी रख सकते हैं।

इस प्रकार, हमने यह सिद्ध कर दिया है कि कब , अपने पास .

यह भी देखें

संदर्भ

  1. Blank, Brian E.; Krantz, Steven George (2006), Calculus: Single Variable, Volume 1, Springer, p. 177, ISBN 9781931914598.
  2. Strang, Gilbert (1991), Calculus, Volume 1, SIAM, pp. 71–72, ISBN 9780961408824.
  3. Stroyan, K. D. (2014), Calculus Using Mathematica, Academic Press, p. 89, ISBN 9781483267975.
  4. Estep, Donald (2002), "20.1 Linear Combinations of Functions", Practical Analysis in One Variable, Undergraduate Texts in Mathematics, Springer, pp. 259–260, ISBN 9780387954844.
  5. Zorn, Paul (2010), Understanding Real Analysis, CRC Press, p. 184, ISBN 9781439894323.
  6. Gockenbach, Mark S. (2011), Finite-Dimensional Linear Algebra, Discrete Mathematics and Its Applications, CRC Press, p. 103, ISBN 9781439815649.
  7. "विभेदन नियम". CEMC's Open Courseware. Retrieved 3 May 2022.
  8. Dawkins, Paul. "विभिन्न व्युत्पन्न गुणों का प्रमाण". Paul's Online Notes. Retrieved 3 May 2022.