सिम्प्लेक्स श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
==औपचारिक परिभाषा==
==औपचारिक परिभाषा==


सिंप्लेक्स श्रेणी को आमतौर पर <math>\Delta</math> द्वारा दर्शाया जाता है। इस श्रेणी के कई समकक्ष विवरण हैं। <math>\Delta</math> को वस्तुओं के रूप में अरिक्‍त परिमित अध्यादेशों की श्रेणी के रूप में वर्णित किया जा सकता है, जिसे पूरी तरह से आदेशित सेट के रूप में माना जाता है, और (गैर-सख़्ती से ) आदेश-संरक्षण कार्यों को [[रूपवाद]] के रूप में माना जाता है। वस्तुओं को आमतौर पर <math> [n] = \{0, 1, \dots, n\} </math> दर्शाया जाता है, ताकि <math> [n] </math> क्रमसूचक <math> n+1 </math> हो, श्रेणी कोफ़ेस और कोडजेनरेसी मानचित्रों द्वारा तैयार की जाती है, जो ऑर्डरिंग के तत्वों को सम्मिलित करने या हटाने के बराबर होती है। (इन मानचित्रों के संबंधों के लिए सरल सेट देख सकते है।)
सिंप्लेक्स श्रेणी को सामान्यतः <math>\Delta</math> द्वारा दर्शाया जाता है। इस श्रेणी के कई समकक्ष विवरण हैं। <math>\Delta</math> को वस्तुओं के रूप में तथा अरिक्‍त परिमित अध्यादेशों की श्रेणी के रूप में वर्णित किया जा सकता है, जिसे पूरे प्रकार से क्रम समुच्चय के रूप में माना जाता है, और (गैर-सख़्ती से ) क्रम-संरक्षण फंक्शन को [[रूपवाद|आकारिता]] के रूप में माना जाता है। वस्तुओं को सामान्यतः <math> [n] = \{0, 1, \dots, n\} </math> द्वारा दर्शाया जाता है, जिससे की <math> [n] </math> क्रमसूचक <math> n+1 </math> हो, श्रेणी कोफ़ेस और कोडजेनरेसी मानचित्रों द्वारा तैयार की जाती है, जो क्रमीकरण के तत्वों को सम्मिलित करने या हटाने के समतुल्य होती है। (इन मानचित्रों के संबंधों के लिए सरल समुच्चय देख सकते है।)


एक [[सरल वस्तु]] <math>\Delta</math> पर एक प्रीशीफ़ है, जो कि <math>\Delta</math> से दूसरी श्रेणी के लिए एक विरोधाभासी फ़ैक्टर है। उदाहरण के लिए, सरल सेट विरोधाभासी होते हैं और कोडोमेन श्रेणी सेट की श्रेणी होती है। एक सहसंयोजक वस्तु को <math>\Delta</math> से उत्पन्न सहसंयोजक फ़ैक्टर के समान परिभाषित किया गया है।
एक [[सरल वस्तु]] <math>\Delta</math> पर एक प्रीशीफ़ है, जो कि <math>\Delta</math> से दूसरी श्रेणी के लिए एक कॉन्ट्रावैरियंट फ़ैक्टर है। उदाहरण के लिए, सरल समुच्चय कॉन्ट्रावैरियंट होते हैं और सहप्रांत श्रेणी समुच्चय की श्रेणी होती है। यहाँ एक सहसंयोजक वस्तु को <math>\Delta</math> से उत्पन्न सहसंयोजक फ़ैक्टर के समान परिभाषित किया गया है।


==संवर्धित सिम्प्लेक्स श्रेणी==
==संवर्धित सिम्प्लेक्स श्रेणी==
संवर्धित सिम्प्लेक्स श्रेणी, जिसे <math>\Delta_+</math> द्वारा दर्शाया गया है, सभी परिमित ऑर्डिनल्स और ऑर्डर-संरक्षण मानचित्रों की श्रेणी है, इस प्रकार <math>\Delta_+=\Delta\cup [-1]</math>, जहां <math>[-1]=\emptyset</math> है। तदनुसार, इस श्रेणी को फिनऑर्ड भी दर्शाया जा सकता है। संवर्धित सिम्प्लेक्स श्रेणी को कभी-कभी बीजगणितज्ञों की सिम्प्लेक्स श्रेणी के रूप में जाना जाता है और उपरोक्त संस्करण को टोपोलॉजिस्ट की सिम्प्लेक्स श्रेणी कहा जाता है।
संवर्धित सिम्प्लेक्स श्रेणी, जिसे <math>\Delta_+</math> द्वारा दर्शाया गया है, सभी परिमित क्रमसूचक और क्रम-संरक्षण मानचित्रों की श्रेणी है, इस प्रकार <math>\Delta_+=\Delta\cup [-1]</math>, जहां <math>[-1]=\emptyset</math> है। अनुसारतः, इस श्रेणी को फिनऑर्ड द्वारा भी दर्शाया जा सकता है। संवर्धित सिम्प्लेक्स श्रेणी को कभी-कभी बीजगणितज्ञों की सिम्प्लेक्स श्रेणी के रूप में जाना जाता है और उपरोक्त संस्करण को टोपोलॉजिस्ट की सिम्प्लेक्स श्रेणी कहा जाता है।


<math>\Delta_+</math> पर परिभाषित एक कॉन्ट्रावेरिएंट फ़ैक्टर को एक संवर्धित सरल वस्तु कहा जाता है और <math>\Delta_+</math> में से एक सहसंयोजक फ़ैक्टर को एक संवर्धित कोसिम्प्लिशियल ऑब्जेक्ट कहा जाता है; उदाहरण के लिए, जब कोडोमेन श्रेणी सेटों की श्रेणी होती है, तो इन्हें क्रमशः संवर्धित सरल सेट और संवर्धित सहसरल सेट कहा जाता है।
<math>\Delta_+</math> पर परिभाषित एक कॉन्ट्रावेरिएंट फ़ैक्टर को एक संवर्धित सरल वस्तु कहा जाता है और <math>\Delta_+</math> में से एक सहसंयोजक फ़ैक्टर को एक संवर्धित सहसरल वस्तु कहा जाता है; उदाहरण के लिए, जब सहप्रांत श्रेणी समुच्चयों की श्रेणी होती है, तो इन्हें क्रमशः संवर्धित सरल समुच्चय और संवर्धित सहसरल समुच्चय कहा जाता है।


संवर्धित सिंप्लेक्स श्रेणी, सिंप्लेक्स श्रेणी के विपरीत, एक प्राकृतिक [[मोनोइडल श्रेणी]] संरचना को स्वीकार करती है। मोनोइडल उत्पाद रैखिक आदेशों के संयोजन द्वारा दिया जाता है, और इकाई खाली क्रमसूचक <math>[-1]</math> है (एक इकाई की कमी इसे <math>\Delta</math> पर एक मोनोइडल संरचना के रूप में अर्हता प्राप्त करने से रोकती है)। वास्तव में, <math>\Delta_+</math>अद्वितीय संभावित इकाई और गुणन के साथ <math>[0]</math> द्वारा दिए गए एकल [[मोनॉइड ऑब्जेक्ट]] द्वारा स्वतंत्र रूप से उत्पन्न मोनोइडल श्रेणी है। यह विवरण यह समझने के लिए उपयोगी है कि मोनोइडल श्रेणी में कोई भी [[कोमोनॉइड]] वस्तु एक सरल वस्तु को कैसे जन्म देती है क्योंकि इसे <math>\Delta_+^\text{op}</math> से कोमोनॉइड युक्त मोनोइडल श्रेणी तक एक फ़नकार की छवि के रूप में देखा जा सकता है; संवर्द्धन को भूलकर हम एक सरल वस्तु प्राप्त करते हैं। इसी तरह, यह [[मोनाड (श्रेणी सिद्धांत)]] (और इसलिए सहायक फ़ैक्टर) से सरल वस्तुओं के निर्माण पर भी प्रकाश डालता है क्योंकि मोनैड को [[एंडोफंक्टर श्रेणियों]] में मोनॉइड ऑब्जेक्ट के रूप में देखा जा सकता है।
संवर्धित सिंप्लेक्स श्रेणी, इसके अतिरिक्त सिंप्लेक्स श्रेणी के विपरीत, एक प्राकृतिक [[मोनोइडल श्रेणी]] संरचना को स्वीकार करती है। मोनोइडल गुणनफल रैखिक क्रमों के संयोजन द्वारा दिया जाता है, और इकाई रिक्त क्रमसूचक <math>[-1]</math> है, (एक इकाई की कमी इसे <math>\Delta</math> पर एक मोनोइडल संरचना के रूप में अर्हता प्राप्त करने से रोकती है)। वास्तव में, <math>\Delta_+</math>अद्वितीय संभावित इकाई और गुणन के साथ <math>[0]</math> द्वारा दिए गए एकल [[मोनॉइड ऑब्जेक्ट|मोनॉइड वस्तुओं]] द्वारा स्वतंत्र रूप से उत्पन्न मोनोइडल श्रेणी है। यह विवरण यह समझने के लिए उपयोगी है कि मोनोइडल श्रेणी में कोई भी [[कोमोनॉइड]] वस्तु एक सरल वस्तु को कैसे उत्पन्न करती है क्योंकि इसे <math>\Delta_+^\text{op}</math> से कोमोनॉइड युक्त मोनोइडल श्रेणी तक एक फ़ैक्टर की छवि के रूप में देखा जा सकता है; संवर्द्धन को भूलकर हम एक सरल वस्तु प्राप्त करते हैं। इसी प्रकार, यह [[मोनाड (श्रेणी सिद्धांत)]] (और इसलिए सहायक फ़ैक्टर) से सरल वस्तुओं के निर्माण पर भी प्रकाश डालता है क्योंकि मोनैड को [[एंडोफंक्टर श्रेणियों]] में मोनॉइड वस्तुओं के रूप में देखा जा सकता है।


== यह भी देखें ==
== यह भी देखें ==


* [[सरल श्रेणी (बहुविकल्पी)]]
* [[सरल श्रेणी (बहुविकल्पी)]]
* [[PROP (श्रेणी सिद्धांत)]]
* [[PROP (श्रेणी सिद्धांत)|पीआरओपी (श्रेणी सिद्धांत)]]
* [[सार सरल जटिल]]
* [[सार सरल जटिल]]



Revision as of 20:33, 23 July 2023

गणित में, सिंप्लेक्स श्रेणी (या सरल श्रेणी या अरिक्‍त परिमित क्रमसूचक श्रेणी) अरिक्‍त परिमित क्रमसूचकों और क्रम-संरक्षण मानचित्रों की श्रेणी सिद्धांत है। इसका उपयोग सरल और सहसरल वस्तुओं को परिभाषित करने के लिए किया जाता है।

औपचारिक परिभाषा

सिंप्लेक्स श्रेणी को सामान्यतः द्वारा दर्शाया जाता है। इस श्रेणी के कई समकक्ष विवरण हैं। को वस्तुओं के रूप में तथा अरिक्‍त परिमित अध्यादेशों की श्रेणी के रूप में वर्णित किया जा सकता है, जिसे पूरे प्रकार से क्रम समुच्चय के रूप में माना जाता है, और (गैर-सख़्ती से ) क्रम-संरक्षण फंक्शन को आकारिता के रूप में माना जाता है। वस्तुओं को सामान्यतः द्वारा दर्शाया जाता है, जिससे की क्रमसूचक हो, श्रेणी कोफ़ेस और कोडजेनरेसी मानचित्रों द्वारा तैयार की जाती है, जो क्रमीकरण के तत्वों को सम्मिलित करने या हटाने के समतुल्य होती है। (इन मानचित्रों के संबंधों के लिए सरल समुच्चय देख सकते है।)

एक सरल वस्तु पर एक प्रीशीफ़ है, जो कि से दूसरी श्रेणी के लिए एक कॉन्ट्रावैरियंट फ़ैक्टर है। उदाहरण के लिए, सरल समुच्चय कॉन्ट्रावैरियंट होते हैं और सहप्रांत श्रेणी समुच्चय की श्रेणी होती है। यहाँ एक सहसंयोजक वस्तु को से उत्पन्न सहसंयोजक फ़ैक्टर के समान परिभाषित किया गया है।

संवर्धित सिम्प्लेक्स श्रेणी

संवर्धित सिम्प्लेक्स श्रेणी, जिसे द्वारा दर्शाया गया है, सभी परिमित क्रमसूचक और क्रम-संरक्षण मानचित्रों की श्रेणी है, इस प्रकार , जहां है। अनुसारतः, इस श्रेणी को फिनऑर्ड द्वारा भी दर्शाया जा सकता है। संवर्धित सिम्प्लेक्स श्रेणी को कभी-कभी बीजगणितज्ञों की सिम्प्लेक्स श्रेणी के रूप में जाना जाता है और उपरोक्त संस्करण को टोपोलॉजिस्ट की सिम्प्लेक्स श्रेणी कहा जाता है।

पर परिभाषित एक कॉन्ट्रावेरिएंट फ़ैक्टर को एक संवर्धित सरल वस्तु कहा जाता है और में से एक सहसंयोजक फ़ैक्टर को एक संवर्धित सहसरल वस्तु कहा जाता है; उदाहरण के लिए, जब सहप्रांत श्रेणी समुच्चयों की श्रेणी होती है, तो इन्हें क्रमशः संवर्धित सरल समुच्चय और संवर्धित सहसरल समुच्चय कहा जाता है।

संवर्धित सिंप्लेक्स श्रेणी, इसके अतिरिक्त सिंप्लेक्स श्रेणी के विपरीत, एक प्राकृतिक मोनोइडल श्रेणी संरचना को स्वीकार करती है। मोनोइडल गुणनफल रैखिक क्रमों के संयोजन द्वारा दिया जाता है, और इकाई रिक्त क्रमसूचक है, (एक इकाई की कमी इसे पर एक मोनोइडल संरचना के रूप में अर्हता प्राप्त करने से रोकती है)। वास्तव में, अद्वितीय संभावित इकाई और गुणन के साथ द्वारा दिए गए एकल मोनॉइड वस्तुओं द्वारा स्वतंत्र रूप से उत्पन्न मोनोइडल श्रेणी है। यह विवरण यह समझने के लिए उपयोगी है कि मोनोइडल श्रेणी में कोई भी कोमोनॉइड वस्तु एक सरल वस्तु को कैसे उत्पन्न करती है क्योंकि इसे से कोमोनॉइड युक्त मोनोइडल श्रेणी तक एक फ़ैक्टर की छवि के रूप में देखा जा सकता है; संवर्द्धन को भूलकर हम एक सरल वस्तु प्राप्त करते हैं। इसी प्रकार, यह मोनाड (श्रेणी सिद्धांत) (और इसलिए सहायक फ़ैक्टर) से सरल वस्तुओं के निर्माण पर भी प्रकाश डालता है क्योंकि मोनैड को एंडोफंक्टर श्रेणियों में मोनॉइड वस्तुओं के रूप में देखा जा सकता है।

यह भी देखें

संदर्भ

  • Goerss, Paul G.; Jardine, John F. (1999). Simplicial Homotopy Theory. Progress in Mathematics. Vol. 174. Basel–Boston–Berlin: Birkhäuser. doi:10.1007/978-3-0348-8707-6. ISBN 978-3-7643-6064-1. MR 1711612.


बाहरी संबंध