पुलबैक (अवकल ज्यामिति): Difference between revisions
(Created page with "{{about|pullback operations in differential geometry, in particular, the pullback of differential forms and tensor fields on smooth man...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{about|pullback operations in differential geometry, in particular, the pullback of [[differential form]]s and [[tensor (intrinsic definition)|tensor fields]] on [[smooth manifold]]s|other uses of the term in [[mathematics]]|pullback}} | {{about|pullback operations in differential geometry, in particular, the pullback of [[differential form]]s and [[tensor (intrinsic definition)|tensor fields]] on [[smooth manifold]]s|other uses of the term in [[mathematics]]|pullback}} | ||
होने देना <math>\phi:M\to N</math> चिकनी मैनिफोल्ड्स के बीच | होने देना <math>\phi:M\to N</math> चिकनी मैनिफोल्ड्स के बीच [[चिकना नक्शा]] बनें <math>M</math> और <math>N</math>. फिर [[One form]]|1-forms के स्थान से संबद्ध [[रेखीय मानचित्र]] है <math>N</math> ([[कोटैंजेंट बंडल]] के [[अनुभाग (फाइबर बंडल)]] का [[रैखिक स्थान]]) 1-फॉर्म के स्थान पर <math>M</math>. इस रेखीय मानचित्र को पुलबैक (द्वारा) के रूप में जाना जाता है <math>\phi</math>), और इसे अक्सर द्वारा दर्शाया जाता है <math>\phi^*</math>. अधिक सामान्यतः, सदिश टेंसर क्षेत्र का कोई भी सहप्रसरण और प्रतिप्रसरण - विशेष रूप से कोई भी [[विभेदक रूप]] - पर <math>N</math> वापस खींचा जा सकता है <math>M</math> का उपयोग करते हुए <math>\phi</math>. | ||
जब नक्शा <math>\phi</math> | जब नक्शा <math>\phi</math> [[भिन्नता]] है, तो पुलबैक, पुशफॉरवर्ड (डिफरेंशियल) के साथ, किसी भी टेंसर फ़ील्ड को बदलने के लिए उपयोग किया जा सकता है <math>N</math> को <math>M</math> या विपरीत। विशेषकर, यदि <math>\phi</math> के खुले उपसमुच्चय के बीच भिन्नता है <math>\R^n</math> और <math>\R^n</math>, निर्देशांक के परिवर्तन के रूप में देखा जाता है (संभवतः मैनिफोल्ड पर विभिन्न मैनिफोल्ड#चार्ट के बीच <math>M</math>), फिर पुलबैक और पुशफॉरवर्ड विषय के अधिक पारंपरिक (समन्वय पर निर्भर) दृष्टिकोण में उपयोग किए जाने वाले वेक्टर टेंसर के सहप्रसरण और विरोधाभास के परिवर्तन गुणों का वर्णन करते हैं। | ||
पुलबैक के पीछे का विचार अनिवार्य रूप से | पुलबैक के पीछे का विचार अनिवार्य रूप से फ़ंक्शन के दूसरे के साथ पुलबैक#प्रीकंपोज़िशन की धारणा है। हालाँकि, इस विचार को कई अलग-अलग संदर्भों में जोड़कर, काफी विस्तृत पुलबैक ऑपरेशन का निर्माण किया जा सकता है। यह लेख सबसे सरल ऑपरेशनों से शुरू होता है, फिर अधिक परिष्कृत ऑपरेशन बनाने के लिए उनका उपयोग करता है। मोटे तौर पर कहें तो, पुलबैक मैकेनिज्म (प्रीकंपोज़िशन का उपयोग करके) [[ विभेदक ज्यामिति ]] में कई निर्माणों को [[कंट्रावेरिएंट [[ऑपरेटर]]]] फ़ैक्टर में बदल देता है। | ||
==सुचारू कार्यों और सुचारु मानचित्रों का पुलबैक== | ==सुचारू कार्यों और सुचारु मानचित्रों का पुलबैक== | ||
होने देना <math>\phi:M\to N</math> (चिकने) मैनिफोल्ड्स के बीच | होने देना <math>\phi:M\to N</math> (चिकने) मैनिफोल्ड्स के बीच चिकना नक्शा बनें <math>M</math> और <math>N</math>, और मान लीजिए <math>f:N\to\R</math> पर सुचारू कार्य है <math>N</math>. फिर का पुलबैक <math>f</math> द्वारा <math>\phi</math> सुचारू कार्य है <math>\phi^*f</math> पर <math>M</math> द्वारा परिभाषित <math>(\phi^*f)(x)=f(\phi(x))</math>. इसी प्रकार, यदि <math>f</math> खुले सेट पर सुचारू कार्य है <math>U</math> में <math>N</math>, तो वही सूत्र खुले सेट पर सुचारू कार्य को परिभाषित करता है <math>f</math> में <math>\phi^{-1}(U)</math>. (शीफ (गणित) की भाषा में, पुलबैक सुचारू कार्यों के शीफ से रूपवाद को परिभाषित करता है <math>N</math> द्वारा प्रत्यक्ष छवि शीफ के लिए <math>\phi</math> सुचारू कार्यों के समूह पर <math>M</math>.) | ||
अधिक सामान्यतः, यदि <math>f:N\to A</math> से | अधिक सामान्यतः, यदि <math>f:N\to A</math> से सहज नक्शा है <math>N</math> किसी अन्य विविधता के लिए <math>A</math>, तब <math>(\phi^*f)(x)=f(\phi(x))</math> से सहज नक्शा है <math>M</math> को <math>A</math>. | ||
==बंडलों और अनुभागों का पुलबैक== | ==बंडलों और अनुभागों का पुलबैक== | ||
अगर <math>E</math> | अगर <math>E</math> [[वेक्टर बंडल]] (या वास्तव में कोई [[फाइबर बंडल]]) है <math>N</math> और <math>\phi:M\to N</math> सहज मानचित्र है, फिर [[पुलबैक बंडल]] <math>\phi^*E</math> वेक्टर बंडल (या फाइबर बंडल) है <math>M</math> जिसका फ़ाइबर (गणित) ख़त्म हो गया <math>x</math> में <math>M</math> द्वारा दिया गया है <math>(\phi^*E)_x=E_{\phi(x)}</math>. | ||
इस स्थिति में, प्रीकंपोज़िशन अनुभागों पर पुलबैक ऑपरेशन को परिभाषित करता है <math>E</math>: अगर <math>s</math> का | इस स्थिति में, प्रीकंपोज़िशन अनुभागों पर पुलबैक ऑपरेशन को परिभाषित करता है <math>E</math>: अगर <math>s</math> का खंड (फाइबर बंडल) है <math>E</math> ऊपर <math>N</math>, फिर पुलबैक बंडल <math>\phi^*s=s\circ\phi</math> का भाग है <math>\phi^*E</math> ऊपर <math>M</math>. | ||
==बहुरेखीय रूपों का पुलबैक== | ==बहुरेखीय रूपों का पुलबैक== | ||
होने देना {{nowrap|Φ: ''V'' → ''W''}} सदिश समष्टि V और W के बीच | होने देना {{nowrap|Φ: ''V'' → ''W''}} सदिश समष्टि V और W के बीच रेखीय मानचित्र बनें (अर्थात, Φ का तत्व है {{nowrap|''L''(''V'', ''W'')}}, भी दर्शाया गया है {{nowrap|Hom(''V'', ''W'')}}), और जाने | ||
:<math>F:W \times W \times \cdots \times W \rightarrow \mathbf{R}</math> | :<math>F:W \times W \times \cdots \times W \rightarrow \mathbf{R}</math> | ||
W पर | W पर बहुरेखीय रूप बनें (जिसे [[ टेन्सर ]] के रूप में भी जाना जाता है - टेंसर फ़ील्ड के साथ भ्रमित न हों - रैंक का) {{nowrap|(0, ''s'')}}, जहां s उत्पाद में W के कारकों की संख्या है)। फिर पुलबैक Φ<sup>∗</sup>Φ द्वारा F का F, V पर बहुरेखीय रूप है जिसे Φ के साथ F को प्रीकंपोज करके परिभाषित किया गया है। अधिक सटीक रूप से, दिए गए वैक्टर वी<sub>1</sub>, में<sub>2</sub>, ..., में<sub>''s''</sub> वी में, Φ<sup>∗</sup>F को सूत्र द्वारा परिभाषित किया गया है | ||
:<math>(\Phi^*F)(v_1,v_2,\ldots,v_s) = F(\Phi(v_1), \Phi(v_2), \ldots ,\Phi(v_s)),</math> | :<math>(\Phi^*F)(v_1,v_2,\ldots,v_s) = F(\Phi(v_1), \Phi(v_2), \ldots ,\Phi(v_s)),</math> | ||
जो V पर | जो V पर बहुरेखीय रूप है। इसलिए Φ<sup>∗</sup> W पर बहुरेखीय रूपों से लेकर V पर बहुरेखीय रूपों तक (रैखिक) ऑपरेटर है। विशेष मामले के रूप में, ध्यान दें कि यदि F, W पर रैखिक रूप (या (0,1)-टेंसर) है, तो F, W का तत्व है<sup>∗</sup>, W का दोहरा स्थान, फिर Φ<sup>∗</sup>F, V का तत्व है<sup>∗</sup>, और इसलिए Φ द्वारा पुलबैक दोहरे स्थानों के बीच रैखिक मानचित्र को परिभाषित करता है जो रैखिक मानचित्र Φ के विपरीत दिशा में कार्य करता है: | ||
:<math>\Phi\colon V\rightarrow W, \qquad \Phi^*\colon W^*\rightarrow V^*.</math> | :<math>\Phi\colon V\rightarrow W, \qquad \Phi^*\colon W^*\rightarrow V^*.</math> | ||
टेंसोरियल दृष्टिकोण से, मनमाने ढंग से रैंक के टेंसरों तक पुलबैक की धारणा को विस्तारित करने का प्रयास करना स्वाभाविक है, यानी, डब्ल्यू की आर प्रतियों के [[टेंसर उत्पाद]] में मान लेने वाले डब्ल्यू पर बहुरेखीय मानचित्रों तक, यानी, {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}}. हालाँकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके बजाय | टेंसोरियल दृष्टिकोण से, मनमाने ढंग से रैंक के टेंसरों तक पुलबैक की धारणा को विस्तारित करने का प्रयास करना स्वाभाविक है, यानी, डब्ल्यू की आर प्रतियों के [[टेंसर उत्पाद]] में मान लेने वाले डब्ल्यू पर बहुरेखीय मानचित्रों तक, यानी, {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}}. हालाँकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके बजाय पुशफॉरवर्ड ऑपरेशन होता है {{nowrap|''V'' ⊗ ''V'' ⊗ ⋅⋅⋅ ⊗ ''V''}} को {{nowrap|''W'' ⊗ ''W'' ⊗ ⋅⋅⋅ ⊗ ''W''}} द्वारा दिए गए | ||
:<math>\Phi_*(v_1\otimes v_2\otimes\cdots\otimes v_r)=\Phi(v_1)\otimes \Phi(v_2)\otimes\cdots\otimes \Phi(v_r).</math> | :<math>\Phi_*(v_1\otimes v_2\otimes\cdots\otimes v_r)=\Phi(v_1)\otimes \Phi(v_2)\otimes\cdots\otimes \Phi(v_r).</math> | ||
फिर भी, इससे यह निष्कर्ष निकलता है कि यदि Φ उलटा है, तो पुलबैक को व्युत्क्रम फ़ंक्शन Φ द्वारा पुशफॉरवर्ड का उपयोग करके परिभाषित किया जा सकता है<sup>−1</sup>. इन दोनों निर्माणों के संयोजन से किसी भी रैंक के टेंसर के लिए | फिर भी, इससे यह निष्कर्ष निकलता है कि यदि Φ उलटा है, तो पुलबैक को व्युत्क्रम फ़ंक्शन Φ द्वारा पुशफॉरवर्ड का उपयोग करके परिभाषित किया जा सकता है<sup>−1</sup>. इन दोनों निर्माणों के संयोजन से किसी भी रैंक के टेंसर के लिए उलटा रैखिक मानचित्र के साथ पुशफॉरवर्ड ऑपरेशन प्राप्त होता है {{nowrap|(''r'', ''s'')}}. | ||
==कोटैंजेन्ट सदिशों और 1-रूपों का पुलबैक== | ==कोटैंजेन्ट सदिशों और 1-रूपों का पुलबैक== | ||
होने देना <math>\phi:M\to N</math> चिकनी मैनिफोल्ड्स के बीच | होने देना <math>\phi:M\to N</math> चिकनी मैनिफोल्ड्स के बीच चिकना नक्शा बनें। फिर का पुशफॉरवर्ड (अंतर)। <math>\phi</math>, लिखा हुआ <math>\phi_*</math>, <math>d\phi</math>, या <math>D\phi</math>, [[ वेक्टर बंडल आकारिकी ]] (ओवर) है <math>M</math>) [[स्पर्शरेखा बंडल]] से <math>TM</math> का <math>M</math> पुलबैक बंडल के लिए <math>\phi^*TN</math>. का दोहरा स्थान <math>\phi_*</math> इसलिए यह बंडल मानचित्र है <math>\phi^*T^*N</math> को <math>T^*M</math>, का कोटैंजेंट बंडल <math>M</math>. | ||
अब मान लीजिये <math>\alpha</math> का | अब मान लीजिये <math>\alpha</math> का खंड (फाइबर बंडल) है <math>T^*N</math> (विभेदक रूप|1-रूप पर <math>N</math>), और पूर्व रचना <math>\alpha</math> साथ <math>\phi</math> का पुलबैक बंडल प्राप्त करने के लिए <math>\phi^*T^*N</math>. उपरोक्त बंडल मानचित्र को इस अनुभाग पर (बिंदुवार) लागू करने से पुलबैक प्राप्त होता है <math>\alpha</math> द्वारा <math>\phi</math>, जो 1-रूप है <math>\phi^*\alpha</math> पर <math>M</math> द्वारा परिभाषित | ||
:<math> (\phi^*\alpha)_x(X) = \alpha_{\phi(x)}(d\phi_x(X))</math> | :<math> (\phi^*\alpha)_x(X) = \alpha_{\phi(x)}(d\phi_x(X))</math> | ||
के लिए <math>x</math> में <math>M</math> और <math>X</math> में <math>T_xM</math>. | के लिए <math>x</math> में <math>M</math> और <math>X</math> में <math>T_xM</math>. | ||
== (सहसंयोजक) टेंसर फ़ील्ड का पुलबैक == | == (सहसंयोजक) टेंसर फ़ील्ड का पुलबैक == | ||
पिछले अनुभाग का निर्माण रैंक के दसियों के लिए तुरंत सामान्यीकृत हो जाता है <math>(0,s)</math> किसी भी प्राकृतिक संख्या के लिए <math>s</math>: ए <math>(0,s)</math> मैनिफोल्ड पर [[टेंसर फ़ील्ड]] <math>N</math> टेंसर बंडल का | पिछले अनुभाग का निर्माण रैंक के दसियों के लिए तुरंत सामान्यीकृत हो जाता है <math>(0,s)</math> किसी भी प्राकृतिक संख्या के लिए <math>s</math>: ए <math>(0,s)</math> मैनिफोल्ड पर [[टेंसर फ़ील्ड]] <math>N</math> टेंसर बंडल का भाग है <math>N</math> जिसका फाइबर पर <math>y</math> में <math>N</math> बहुरेखीय का स्थान है <math>s</math>-रूप | ||
:<math> F: T_y N\times\cdots \times T_y N\to \R.</math> | :<math> F: T_y N\times\cdots \times T_y N\to \R.</math> | ||
ले कर <math>\phi</math> | ले कर <math>\phi</math> चिकने मानचित्र के (बिंदुवार) अंतर के बराबर <math>\phi</math> से <math>M</math> को <math>N</math>, पुलबैक प्राप्त करने के लिए बहुरेखीय रूपों के पुलबैक को अनुभागों के पुलबैक के साथ जोड़ा जा सकता है <math>(0,s)</math> टेंसर फ़ील्ड चालू <math>M</math>. अधिक सटीक रूप से यदि <math>S</math> है <math>(0,s)</math>-टेंसर फ़ील्ड चालू <math>N</math>, फिर का पुलबैक <math>S</math> द्वारा <math>\phi</math> है <math>(0,s)</math>-टेंसर फ़ील्ड <math>\phi^*S</math> पर <math>M</math> द्वारा परिभाषित | ||
:<math> (\phi^*S)_x(X_1,\ldots, X_s) = S_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_s))</math> | :<math> (\phi^*S)_x(X_1,\ldots, X_s) = S_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_s))</math> | ||
के लिए <math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math>. | के लिए <math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math>. | ||
==विभेदक रूपों का पुलबैक== | ==विभेदक रूपों का पुलबैक== | ||
सहसंयोजक टेंसर फ़ील्ड के पुलबैक का | सहसंयोजक टेंसर फ़ील्ड के पुलबैक का विशेष महत्वपूर्ण मामला विभेदक रूपों का पुलबैक है। अगर <math>\alpha</math> अंतर है <math>k</math>-रूप, यानी, [[बाहरी बंडल]] का भाग <math>\Lambda^k(T^*N)</math> (फाइबरवार) बारी-बारी से <math>k</math>-पर प्रपत्र <math>TN</math>, फिर का पुलबैक <math>\alpha</math> अंतर है <math>k</math>-पर प्रपत्र <math>M</math> पिछले अनुभाग के समान सूत्र द्वारा परिभाषित: | ||
:<math> (\phi^*\alpha)_x(X_1,\ldots, X_k) = \alpha_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_k))</math> | :<math> (\phi^*\alpha)_x(X_1,\ldots, X_k) = \alpha_{\phi(x)}(d\phi_x(X_1),\ldots, d\phi_x(X_k))</math> | ||
के लिए <math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math>. | के लिए <math>x</math> में <math>M</math> और <math>X_j</math> में <math>T_xM</math>. | ||
Line 59: | Line 59: | ||
# यह वेज उत्पाद के साथ इस अर्थ में संगत है कि विभेदक रूपों के लिए <math>\alpha</math> और <math>\beta</math> पर <math>N</math>, | # यह वेज उत्पाद के साथ इस अर्थ में संगत है कि विभेदक रूपों के लिए <math>\alpha</math> और <math>\beta</math> पर <math>N</math>, | ||
#: <math>\phi^*(\alpha \wedge \beta)=\phi^*\alpha \wedge \phi^*\beta.</math> | #: <math>\phi^*(\alpha \wedge \beta)=\phi^*\alpha \wedge \phi^*\beta.</math> | ||
# यह [[बाहरी व्युत्पन्न]] के साथ संगत है <math>d</math>: अगर <math>\alpha</math> पर | # यह [[बाहरी व्युत्पन्न]] के साथ संगत है <math>d</math>: अगर <math>\alpha</math> पर विभेदक रूप है <math>N</math> तब | ||
#: <math>\phi^*(d\alpha) = d(\phi^*\alpha).</math> | #: <math>\phi^*(d\alpha) = d(\phi^*\alpha).</math> | ||
==डिफियोमॉर्फिज्म द्वारा पुलबैक== | ==डिफियोमॉर्फिज्म द्वारा पुलबैक== | ||
जब नक्शा <math>\phi</math> मैनिफोल्ड्स के बीच | जब नक्शा <math>\phi</math> मैनिफोल्ड्स के बीच भिन्नता है, यानी, इसमें चिकनी उलटा है, फिर [[वेक्टर फ़ील्ड]] के साथ-साथ 1-फॉर्म के लिए पुलबैक को परिभाषित किया जा सकता है, और इस प्रकार, विस्तार से, मैनिफोल्ड पर मनमाना मिश्रित टेंसर फ़ील्ड के लिए। रेखीय मानचित्र | ||
:<math>\Phi = d\phi_x \in \operatorname{GL}\left(T_x M, T_{\phi(x)}N\right)</math> | :<math>\Phi = d\phi_x \in \operatorname{GL}\left(T_x M, T_{\phi(x)}N\right)</math> | ||
देने के लिए उलटा किया जा सकता है | देने के लिए उलटा किया जा सकता है | ||
:<math>\Phi^{-1} = \left({d\phi_x}\right)^{-1} \in \operatorname{GL}\left(T_{\phi(x)}N, T_x M\right).</math> | :<math>\Phi^{-1} = \left({d\phi_x}\right)^{-1} \in \operatorname{GL}\left(T_{\phi(x)}N, T_x M\right).</math> | ||
फिर | फिर सामान्य मिश्रित टेंसर फ़ील्ड का उपयोग करके रूपांतरित किया जाएगा <math>\phi</math> और <math>\phi^{-1}</math> टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन <math>TN</math> और <math>T^*N</math>. कब <math>M=N</math>, फिर पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) मैनिफोल्ड पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं <math>M</math>. पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है। | ||
==ऑटोमोर्फिज्म द्वारा पुलबैक== | ==ऑटोमोर्फिज्म द्वारा पुलबैक== | ||
पिछले खंड के निर्माण में | पिछले खंड के निर्माण में प्रतिनिधित्व-सैद्धांतिक व्याख्या है जब <math>\phi</math> अनेक गुना से भिन्नता है <math>M</math> खुद को। इस मामले में व्युत्पन्न <math>d\phi</math> का भाग है <math>\operatorname{GM}(TM,\phi^*TM)</math>. यह [[फ़्रेम बंडल]] से जुड़े किसी भी बंडल के अनुभागों पर पुलबैक कार्रवाई को प्रेरित करता है <math>\operatorname{GM}(m)</math> का <math>M</math> [[सामान्य रैखिक समूह]] के प्रतिनिधित्व द्वारा <math>\operatorname{GM}(m)</math> (कहाँ <math>m=\dim M</math>). | ||
==पुलबैक और लेट व्युत्पन्न== | ==पुलबैक और लेट व्युत्पन्न== | ||
ले देख व्युत्पन्न. पूर्ववर्ती विचारों को | ले देख व्युत्पन्न. पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के स्थानीय 1-पैरामीटर समूह पर लागू करके <math>M</math>, और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई व्युत्पन्न की धारणा प्राप्त की जाती है। | ||
==कनेक्शनों का पुलबैक (सहसंयोजक व्युत्पन्न)== | ==कनेक्शनों का पुलबैक (सहसंयोजक व्युत्पन्न)== | ||
अगर <math>\nabla</math> | अगर <math>\nabla</math> वेक्टर बंडल पर [[कनेक्शन (वेक्टर बंडल)]] (या [[सहसंयोजक व्युत्पन्न]]) है <math>E</math> ऊपर <math>N</math> और <math>\phi</math> से सहज नक्शा है <math>M</math> को <math>N</math>, फिर पुलबैक कनेक्शन है <math>\phi^*\nabla</math> पर <math>\phi^*E</math> ऊपर <math>M</math>, उस स्थिति द्वारा विशिष्ट रूप से निर्धारित किया जाता है | ||
:<math>\left(\phi^*\nabla\right)_X\left(\phi^*s\right) = \phi^*\left(\nabla_{d\phi(X)} s\right).</math> | :<math>\left(\phi^*\nabla\right)_X\left(\phi^*s\right) = \phi^*\left(\nabla_{d\phi(X)} s\right).</math> | ||
Revision as of 21:26, 7 July 2023
होने देना चिकनी मैनिफोल्ड्स के बीच चिकना नक्शा बनें और . फिर One form|1-forms के स्थान से संबद्ध रेखीय मानचित्र है (कोटैंजेंट बंडल के अनुभाग (फाइबर बंडल) का रैखिक स्थान) 1-फॉर्म के स्थान पर . इस रेखीय मानचित्र को पुलबैक (द्वारा) के रूप में जाना जाता है ), और इसे अक्सर द्वारा दर्शाया जाता है . अधिक सामान्यतः, सदिश टेंसर क्षेत्र का कोई भी सहप्रसरण और प्रतिप्रसरण - विशेष रूप से कोई भी विभेदक रूप - पर वापस खींचा जा सकता है का उपयोग करते हुए .
जब नक्शा भिन्नता है, तो पुलबैक, पुशफॉरवर्ड (डिफरेंशियल) के साथ, किसी भी टेंसर फ़ील्ड को बदलने के लिए उपयोग किया जा सकता है को या विपरीत। विशेषकर, यदि के खुले उपसमुच्चय के बीच भिन्नता है और , निर्देशांक के परिवर्तन के रूप में देखा जाता है (संभवतः मैनिफोल्ड पर विभिन्न मैनिफोल्ड#चार्ट के बीच ), फिर पुलबैक और पुशफॉरवर्ड विषय के अधिक पारंपरिक (समन्वय पर निर्भर) दृष्टिकोण में उपयोग किए जाने वाले वेक्टर टेंसर के सहप्रसरण और विरोधाभास के परिवर्तन गुणों का वर्णन करते हैं।
पुलबैक के पीछे का विचार अनिवार्य रूप से फ़ंक्शन के दूसरे के साथ पुलबैक#प्रीकंपोज़िशन की धारणा है। हालाँकि, इस विचार को कई अलग-अलग संदर्भों में जोड़कर, काफी विस्तृत पुलबैक ऑपरेशन का निर्माण किया जा सकता है। यह लेख सबसे सरल ऑपरेशनों से शुरू होता है, फिर अधिक परिष्कृत ऑपरेशन बनाने के लिए उनका उपयोग करता है। मोटे तौर पर कहें तो, पुलबैक मैकेनिज्म (प्रीकंपोज़िशन का उपयोग करके) विभेदक ज्यामिति में कई निर्माणों को [[कंट्रावेरिएंट ऑपरेटर]] फ़ैक्टर में बदल देता है।
सुचारू कार्यों और सुचारु मानचित्रों का पुलबैक
होने देना (चिकने) मैनिफोल्ड्स के बीच चिकना नक्शा बनें और , और मान लीजिए पर सुचारू कार्य है . फिर का पुलबैक द्वारा सुचारू कार्य है पर द्वारा परिभाषित . इसी प्रकार, यदि खुले सेट पर सुचारू कार्य है में , तो वही सूत्र खुले सेट पर सुचारू कार्य को परिभाषित करता है में . (शीफ (गणित) की भाषा में, पुलबैक सुचारू कार्यों के शीफ से रूपवाद को परिभाषित करता है द्वारा प्रत्यक्ष छवि शीफ के लिए सुचारू कार्यों के समूह पर .)
अधिक सामान्यतः, यदि से सहज नक्शा है किसी अन्य विविधता के लिए , तब से सहज नक्शा है को .
बंडलों और अनुभागों का पुलबैक
अगर वेक्टर बंडल (या वास्तव में कोई फाइबर बंडल) है और सहज मानचित्र है, फिर पुलबैक बंडल वेक्टर बंडल (या फाइबर बंडल) है जिसका फ़ाइबर (गणित) ख़त्म हो गया में द्वारा दिया गया है .
इस स्थिति में, प्रीकंपोज़िशन अनुभागों पर पुलबैक ऑपरेशन को परिभाषित करता है : अगर का खंड (फाइबर बंडल) है ऊपर , फिर पुलबैक बंडल का भाग है ऊपर .
बहुरेखीय रूपों का पुलबैक
होने देना Φ: V → W सदिश समष्टि V और W के बीच रेखीय मानचित्र बनें (अर्थात, Φ का तत्व है L(V, W), भी दर्शाया गया है Hom(V, W)), और जाने
W पर बहुरेखीय रूप बनें (जिसे टेन्सर के रूप में भी जाना जाता है - टेंसर फ़ील्ड के साथ भ्रमित न हों - रैंक का) (0, s), जहां s उत्पाद में W के कारकों की संख्या है)। फिर पुलबैक Φ∗Φ द्वारा F का F, V पर बहुरेखीय रूप है जिसे Φ के साथ F को प्रीकंपोज करके परिभाषित किया गया है। अधिक सटीक रूप से, दिए गए वैक्टर वी1, में2, ..., मेंs वी में, Φ∗F को सूत्र द्वारा परिभाषित किया गया है
जो V पर बहुरेखीय रूप है। इसलिए Φ∗ W पर बहुरेखीय रूपों से लेकर V पर बहुरेखीय रूपों तक (रैखिक) ऑपरेटर है। विशेष मामले के रूप में, ध्यान दें कि यदि F, W पर रैखिक रूप (या (0,1)-टेंसर) है, तो F, W का तत्व है∗, W का दोहरा स्थान, फिर Φ∗F, V का तत्व है∗, और इसलिए Φ द्वारा पुलबैक दोहरे स्थानों के बीच रैखिक मानचित्र को परिभाषित करता है जो रैखिक मानचित्र Φ के विपरीत दिशा में कार्य करता है:
टेंसोरियल दृष्टिकोण से, मनमाने ढंग से रैंक के टेंसरों तक पुलबैक की धारणा को विस्तारित करने का प्रयास करना स्वाभाविक है, यानी, डब्ल्यू की आर प्रतियों के टेंसर उत्पाद में मान लेने वाले डब्ल्यू पर बहुरेखीय मानचित्रों तक, यानी, W ⊗ W ⊗ ⋅⋅⋅ ⊗ W. हालाँकि, ऐसे टेंसर उत्पाद के तत्व स्वाभाविक रूप से पीछे नहीं हटते हैं: इसके बजाय पुशफॉरवर्ड ऑपरेशन होता है V ⊗ V ⊗ ⋅⋅⋅ ⊗ V को W ⊗ W ⊗ ⋅⋅⋅ ⊗ W द्वारा दिए गए
फिर भी, इससे यह निष्कर्ष निकलता है कि यदि Φ उलटा है, तो पुलबैक को व्युत्क्रम फ़ंक्शन Φ द्वारा पुशफॉरवर्ड का उपयोग करके परिभाषित किया जा सकता है−1. इन दोनों निर्माणों के संयोजन से किसी भी रैंक के टेंसर के लिए उलटा रैखिक मानचित्र के साथ पुशफॉरवर्ड ऑपरेशन प्राप्त होता है (r, s).
कोटैंजेन्ट सदिशों और 1-रूपों का पुलबैक
होने देना चिकनी मैनिफोल्ड्स के बीच चिकना नक्शा बनें। फिर का पुशफॉरवर्ड (अंतर)। , लिखा हुआ , , या , वेक्टर बंडल आकारिकी (ओवर) है ) स्पर्शरेखा बंडल से का पुलबैक बंडल के लिए . का दोहरा स्थान इसलिए यह बंडल मानचित्र है को , का कोटैंजेंट बंडल .
अब मान लीजिये का खंड (फाइबर बंडल) है (विभेदक रूप|1-रूप पर ), और पूर्व रचना साथ का पुलबैक बंडल प्राप्त करने के लिए . उपरोक्त बंडल मानचित्र को इस अनुभाग पर (बिंदुवार) लागू करने से पुलबैक प्राप्त होता है द्वारा , जो 1-रूप है पर द्वारा परिभाषित
के लिए में और में .
(सहसंयोजक) टेंसर फ़ील्ड का पुलबैक
पिछले अनुभाग का निर्माण रैंक के दसियों के लिए तुरंत सामान्यीकृत हो जाता है किसी भी प्राकृतिक संख्या के लिए : ए मैनिफोल्ड पर टेंसर फ़ील्ड टेंसर बंडल का भाग है जिसका फाइबर पर में बहुरेखीय का स्थान है -रूप
ले कर चिकने मानचित्र के (बिंदुवार) अंतर के बराबर से को , पुलबैक प्राप्त करने के लिए बहुरेखीय रूपों के पुलबैक को अनुभागों के पुलबैक के साथ जोड़ा जा सकता है टेंसर फ़ील्ड चालू . अधिक सटीक रूप से यदि है -टेंसर फ़ील्ड चालू , फिर का पुलबैक द्वारा है -टेंसर फ़ील्ड पर द्वारा परिभाषित
के लिए में और में .
विभेदक रूपों का पुलबैक
सहसंयोजक टेंसर फ़ील्ड के पुलबैक का विशेष महत्वपूर्ण मामला विभेदक रूपों का पुलबैक है। अगर अंतर है -रूप, यानी, बाहरी बंडल का भाग (फाइबरवार) बारी-बारी से -पर प्रपत्र , फिर का पुलबैक अंतर है -पर प्रपत्र पिछले अनुभाग के समान सूत्र द्वारा परिभाषित:
के लिए में और में .
विभेदक रूपों के पुलबैक में दो गुण हैं जो इसे बेहद उपयोगी बनाते हैं।
- यह वेज उत्पाद के साथ इस अर्थ में संगत है कि विभेदक रूपों के लिए और पर ,
- यह बाहरी व्युत्पन्न के साथ संगत है : अगर पर विभेदक रूप है तब
डिफियोमॉर्फिज्म द्वारा पुलबैक
जब नक्शा मैनिफोल्ड्स के बीच भिन्नता है, यानी, इसमें चिकनी उलटा है, फिर वेक्टर फ़ील्ड के साथ-साथ 1-फॉर्म के लिए पुलबैक को परिभाषित किया जा सकता है, और इस प्रकार, विस्तार से, मैनिफोल्ड पर मनमाना मिश्रित टेंसर फ़ील्ड के लिए। रेखीय मानचित्र
देने के लिए उलटा किया जा सकता है
फिर सामान्य मिश्रित टेंसर फ़ील्ड का उपयोग करके रूपांतरित किया जाएगा और टेंसर उत्पाद के अनुसार टेंसर बंडल की प्रतियों में अपघटन और . कब , फिर पुलबैक और पुशफॉरवर्ड (डिफरेंशियल) मैनिफोल्ड पर टेंसर के परिवर्तन गुणों का वर्णन करते हैं . पारंपरिक शब्दों में, पुलबैक टेंसर के सहसंयोजक सूचकांकों के परिवर्तन गुणों का वर्णन करता है; इसके विपरीत, सदिश सूचकांकों के सहप्रसरण और प्रतिप्रसरण का परिवर्तन पुशफॉरवर्ड (अंतर) द्वारा दिया जाता है।
ऑटोमोर्फिज्म द्वारा पुलबैक
पिछले खंड के निर्माण में प्रतिनिधित्व-सैद्धांतिक व्याख्या है जब अनेक गुना से भिन्नता है खुद को। इस मामले में व्युत्पन्न का भाग है . यह फ़्रेम बंडल से जुड़े किसी भी बंडल के अनुभागों पर पुलबैक कार्रवाई को प्रेरित करता है का सामान्य रैखिक समूह के प्रतिनिधित्व द्वारा (कहाँ ).
पुलबैक और लेट व्युत्पन्न
ले देख व्युत्पन्न. पूर्ववर्ती विचारों को सदिश क्षेत्र द्वारा परिभाषित भिन्नताओं के स्थानीय 1-पैरामीटर समूह पर लागू करके , और पैरामीटर के संबंध में अंतर करते हुए, किसी भी संबद्ध बंडल पर लाई व्युत्पन्न की धारणा प्राप्त की जाती है।
कनेक्शनों का पुलबैक (सहसंयोजक व्युत्पन्न)
अगर वेक्टर बंडल पर कनेक्शन (वेक्टर बंडल) (या सहसंयोजक व्युत्पन्न) है ऊपर और से सहज नक्शा है को , फिर पुलबैक कनेक्शन है पर ऊपर , उस स्थिति द्वारा विशिष्ट रूप से निर्धारित किया जाता है
यह भी देखें
- पुशफ़ॉरवर्ड (अंतर)
- पुलबैक बंडल
- पुलबैक (श्रेणी सिद्धांत)
संदर्भ
- Jost, Jürgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag. ISBN 3-540-42627-2. See sections 1.5 and 1.6.
- Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. London: Benjamin-Cummings. ISBN 0-8053-0102-X. See section 1.7 and 2.3.