चरों का परिवर्तन: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
{{Calculus|Differential}} | {{Calculus|Differential}} | ||
गणित में, '''वेरिएबल''' में '''परिवर्तन''' | गणित में, '''वेरिएबल''' में '''परिवर्तन''' मूलभूत विधि द्वारा की जाती है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल [[चर (गणित)|वेरिएबल (गणित)]] को अन्य वेरिएबल के [[फ़ंक्शन (गणित)|फलन (गणित)]] से परिवर्तित कर दिया जाता है। आशय यह है कि जब नए वेरिएबालो में व्यक्त किया जाता है, तब समस्या सरल हो सकती है, या उत्तम समझी जाने वाली समस्या के समान हो सकती है। | ||
इस प्रकार से वेरिएबालो का परिवर्तन | इस प्रकार से वेरिएबालो का परिवर्तन संक्रिया होता है जोकी [[प्रतिस्थापन (बीजगणित)]] से संबंधित होते है। चूंकि ये भिन्न-भिन्न ऑपरेशन होते हैं, जैसा कि व्युत्पन्न ([[श्रृंखला नियम]]) या [[अभिन्न]] ([[प्रतिस्थापन द्वारा एकीकरण]]) पर विचार करते समय देखा जा सकता है। | ||
अतः उपयोगी परिवर्तनीय परिवर्तन का | अतः उपयोगी परिवर्तनीय परिवर्तन का अधिक ही सरल उदाहरण छठे-डिग्री बहुपद की जड़ों को खोजने की समस्या में देखा जा सकता है | | ||
:<math>x^6 - 9 x^3 + 8 = 0.</math> | :<math>x^6 - 9 x^3 + 8 = 0.</math> | ||
किन्तु छठी-डिग्री बहुपद समीकरणों को रेडिकल के संदर्भ में | किन्तु छठी-डिग्री बहुपद समीकरणों को रेडिकल के संदर्भ में समाधान करना सामान्यतः असंभव होता है |(एबेल-रफिनी प्रमेय देखें)। चूंकि , यह विशेष समीकरण लिखा जा सकता है | | ||
:<math>(x^3)^2-9(x^3)+8=0</math> | :<math>(x^3)^2-9(x^3)+8=0</math> | ||
(यह [[बहुपद अपघटन]] | (यह [[बहुपद अपघटन]] की साधारण स्तिथि है)। इस प्रकार नए वेरिएबल को परिभाषित करके समीकरण को सरल बनाया जा सकता है और <math>u = x^3</math>. x को द्वारा प्रतिस्थापित करना <math>\sqrt[3]{u}</math> बहुपद में देता है | | ||
:<math>u^2 - 9 u + 8 = 0 ,</math> | :<math>u^2 - 9 u + 8 = 0 ,</math> | ||
जो दो समाधानों वाला | जो दो समाधानों वाला [[द्विघात समीकरण]] मात्र है | | ||
:<math>u = 1 \quad \text{and} \quad u = 8.</math> | :<math>u = 1 \quad \text{and} \quad u = 8.</math> | ||
इस प्रकार से मूल वेरिएबल | इस प्रकार से मूल वेरिएबल के संदर्भ में समाधान ''x<sup>3</sup>'' को प्रतिस्थापित करके प्राप्त किया जाता है आपके लिए वापस, जो देता है | | ||
:<math>x^3 = 1 \quad \text{and} \quad x^3 = 8.</math> | :<math>x^3 = 1 \quad \text{and} \quad x^3 = 8.</math> | ||
फिर, यह मानते हुए कि किसी की रुचि केवल [[वास्तविक संख्या]] समाधानों में है, मूल समीकरण के समाधान ही हैं | फिर, यह मानते हुए कि किसी की रुचि केवल [[वास्तविक संख्या]] समाधानों में होता है, यह मूल समीकरण के समाधान ही हैं | ||
:<math>x = (1)^{1/3} = 1 \quad \text{and} \quad x = (8)^{1/3} = 2.</math> | :<math>x = (1)^{1/3} = 1 \quad \text{and} \quad x = (8)^{1/3} = 2.</math> | ||
==सरल उदाहरण == | ==सरल उदाहरण == | ||
Line 27: | Line 27: | ||
जहाँ <math>x</math> और <math>y</math> के साथ <math>x>y</math> धनात्मक पूर्णांक हैं . (स्रोत: 1991 [[अमेरिकी आमंत्रण गणित परीक्षा]]) | जहाँ <math>x</math> और <math>y</math> के साथ <math>x>y</math> धनात्मक पूर्णांक हैं . (स्रोत: 1991 [[अमेरिकी आमंत्रण गणित परीक्षा]]) | ||
इसे सामान्य रूप से | इसे सामान्य रूप से समाधान करना अधिक कठिन नहीं होता है, किन्तु यह थोड़ा कठिन हो सकता है। चूंकि , हम दूसरे समीकरण को<math>xy(x+y)=880</math> के रूप में पुनः से लिख सकते हैं। इसे समाधान करना सामान्य रूप से अधिक कठिन नहीं होता है, किन्तु यह थोड़ा कठिन हो सकता है। चूंकि , हम दूसरे समीकरण को पुनः से लिख सकते हैं क्योंकि <math>s=x+y</math> और <math>t=xy</math> परिपथ को <math>s+t=71, st=880</math> तक कम कर देता है इसे समाधान करने पर <math>(s,t)=(16,55)</math> और <math>(s,t)=(55,16)</math> मिलते हैं। प्रथम ऑर्डर किए गए जोड़े को बैक-प्रतिस्थापन करने पर हमें <math>x+y=16, xy=55, x>y</math> प्राप्त किया जाता है, जो समाधान <math>(x,y)=(11,5).</math> देता है। दूसरे ऑर्डर किए गए जोड़े को बैक-प्रतिस्थापन करने पर हमें <math>x+y=55, xy=16, x>y</math> प्राप्त किया जाता है, जो कोई समाधान नहीं देता है। इसलिए परिपथ को समाधान करने वाला समाधान <math>(x,y)=(11,5)</math> है | ||
==औपचारिक परिचय == | ==औपचारिक परिचय == | ||
Line 37: | Line 37: | ||
===समन्वय परिवर्तन === | ===समन्वय परिवर्तन === | ||
इस प्रकार से ध्रुवीय निर्देशांक पर स्विच करने पर कुछ प्रणालियों को अधिक सरलता से | इस प्रकार से ध्रुवीय निर्देशांक पर स्विच करने पर कुछ प्रणालियों को अधिक सरलता से समाधान किया जा सकता है। उदाहरण के लिए समीकरण पर विचार करें: | ||
:<math>U(x, y) := (x^2 + y^2) \sqrt{ 1 - \frac{x^2}{x^2 + y^2} } = 0.</math> | :<math>U(x, y) := (x^2 + y^2) \sqrt{ 1 - \frac{x^2}{x^2 + y^2} } = 0.</math> | ||
किन्तु यह किसी शारीरिक समस्या के लिए संभावित ऊर्जा फलन हो सकता है। यदि किसी को तुरंत कोई समाधान नहीं दिखता है, | किन्तु यह किसी शारीरिक समस्या के लिए संभावित ऊर्जा फलन हो सकता है। यदि किसी को तुरंत कोई समाधान नहीं दिखता है, तब वह प्रतिस्थापन का प्रयास कर सकता है | ||
:<math>\displaystyle (x, y) = \Phi(r, \theta)</math> द्वारा दिए गए <math>\displaystyle \Phi(r,\theta) = (r \cos(\theta), r \sin(\theta)).</math> | :<math>\displaystyle (x, y) = \Phi(r, \theta)</math> द्वारा दिए गए <math>\displaystyle \Phi(r,\theta) = (r \cos(\theta), r \sin(\theta)).</math> | ||
इस प्रकार से ध्यान दें कि यदि <math>\theta</math>, <math>2\pi</math> लंबाई अंतराल के बाहर चलता है, उदाहरण के लिए, <math>[0, 2\pi]</math> | इस प्रकार से ध्यान दें कि यदि <math>\theta</math>, <math>2\pi</math> लंबाई अंतराल के बाहर चलता है, उदाहरण के लिए, <math>[0, 2\pi]</math> तब मानचित्र <math>\Phi</math> अब विशेषण नहीं होते है। इसलिए 0 को सीमित किया जाना चाहिए, किन्तु उदाहरण के लिए <math>(0, \infty] \times [0, 2\pi)</math> ध्यान दें कि कैसे <math>r = 0</math> को बाहर की ओर रखा गया है, क्योंकि <math>\Phi</math> मूल में विशेषण नहीं होते है (<math>\theta</math> कोई भी मान ले सकता है, बिंदु को (''0, 0'') पर मैप किया जाएगा ). फिर, मूल वेरिएबल की सभी घटनाओं को <math>\Phi</math> द्वारा निर्धारित नई अभिव्यक्तियों से प्रतिस्थापित करने और पहचान <math>\sin^2 x + \cos^2 x = 1</math> का उपयोग करने पर हमें प्राप्त होता है: | ||
:<math>V(r, \theta) = r^2 \sqrt{ 1 - \frac{r^2 \cos^2 \theta}{r^2} } = r^2 \sqrt{1 - \cos^2 \theta} = r^2\left|\sin\theta\right|. </math> | :<math>V(r, \theta) = r^2 \sqrt{ 1 - \frac{r^2 \cos^2 \theta}{r^2} } = r^2 \sqrt{1 - \cos^2 \theta} = r^2\left|\sin\theta\right|. </math> | ||
Line 69: | Line 69: | ||
{{Main|प्रतिस्थापन द्वारा एकीकरण}} | {{Main|प्रतिस्थापन द्वारा एकीकरण}} | ||
इस प्रकार से कठिन इंटीग्रल्स का मूल्यांकन सदैव वेरिएबल परिवर्तित किया जा सकता है; यह [[प्रतिस्थापन नियम]] द्वारा सक्षम होता है और उपरोक्त श्रृंखला नियम के उपयोग के अनुरूप होता है। अन्य संबंधित [[जैकोबियन मैट्रिक्स और निर्धारक]] द्वारा दिए गए वेरिएबल के परिवर्तन का उपयोग करके अभिन्न को सरल बनाकर कठिन इंटीग्रल को भी | इस प्रकार से कठिन इंटीग्रल्स का मूल्यांकन सदैव वेरिएबल परिवर्तित किया जा सकता है; यह [[प्रतिस्थापन नियम]] द्वारा सक्षम होता है और उपरोक्त श्रृंखला नियम के उपयोग के अनुरूप होता है। अन्य संबंधित [[जैकोबियन मैट्रिक्स और निर्धारक]] द्वारा दिए गए वेरिएबल के परिवर्तन का उपयोग करके अभिन्न को सरल बनाकर कठिन इंटीग्रल को भी समाधान किया जा सकता है।<ref>{{cite book |first=Wilfred |last=Kaplan |author-link=Wilfred Kaplan |chapter=Change of Variables in Integrals |title=उन्नत कैलकुलस|location=Reading |publisher=Addison-Wesley |edition=Second |year=1973 |pages=269–275 }}</ref> और जैकोबियन निर्धारक और इसके द्वारा दिए गए वेरिएबल के संगत परिवर्तन का उपयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणालियों जैसे समन्वय प्रणालियों का आधार माना जाता है। | ||
==== लेबेस्ग माप के संदर्भ में वेरिएबल सूत्र का परिवर्तन ==== | ==== लेबेस्ग माप के संदर्भ में वेरिएबल सूत्र का परिवर्तन ==== | ||
Line 84: | Line 84: | ||
</math> तब <math>\int_{G(\Omega)} f(x) dx = \int_\Omega f\circ G(x)|\text{det}D_xG|dx | </math> तब <math>\int_{G(\Omega)} f(x) dx = \int_\Omega f\circ G(x)|\text{det}D_xG|dx | ||
</math>. | </math>. | ||
* यदि <math>E\subset \Omega</math> और <math>E</math> | * यदि <math>E\subset \Omega</math> और <math>E</math> तब क्या लेबेस्ग मापने योग्य है <math>G(E)</math> तब क्या लेबेस्ग मापने योग्य है <math>m(G(E)) = \int_E |\text{det}D_xG| dx | ||
</math>. | </math>. | ||
इस प्रमेय के परिणाम के रूप में, हम पुलबैक और पुशफॉरवर्ड दोनों उपायों के रैडॉन-निकोडिम डेरिवेटिव की गणना कर सकते हैं <math>m</math> अंतर्गत <math>T</math>. | इस प्रमेय के परिणाम के रूप में, हम पुलबैक और पुशफॉरवर्ड दोनों उपायों के रैडॉन-निकोडिम डेरिवेटिव की गणना कर सकते हैं <math>m</math> अंतर्गत <math>T</math>. | ||
Line 125: | Line 125: | ||
:<math>\mu \frac{d^2 u}{d y^2} = \frac{d p}{d x} \quad ; \quad u(0) = u(L) = 0</math> | :<math>\mu \frac{d^2 u}{d y^2} = \frac{d p}{d x} \quad ; \quad u(0) = u(L) = 0</math> | ||
दूरी δ द्वारा | दूरी δ द्वारा भिन्न की गई सपाट ठोस दीवारों के मध्य समानांतर द्रव प्रवाह का वर्णन करता है; μ चिपचिपापन है और <math>d p/d x</math> दबाव प्रवणता, दोनों स्थिरांक। वेरिएबल्स को स्केल करने से समस्या बन जाती है | ||
:<math>\frac{d^2 \hat u}{d \hat y^2} = 1 \quad ; \quad \hat u(0) = \hat u(1) = 0</math> | :<math>\frac{d^2 \hat u}{d \hat y^2} = 1 \quad ; \quad \hat u(0) = \hat u(1) = 0</math> | ||
Line 131: | Line 131: | ||
:<math>y = \hat y L \qquad \text{and} \qquad u = \hat u \frac{L^2}{\mu} \frac{d p}{d x}.</math> | :<math>y = \hat y L \qquad \text{and} \qquad u = \hat u \frac{L^2}{\mu} \frac{d p}{d x}.</math> | ||
इस प्रकार से स्केलिंग कई कारणों से उपयोगी होते है. यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। और उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, अर्थात उनमें ''0'' से ''1'' जैसी समझदार इकाई रहित सीमा होती है। अंत में, यदि कोई समस्या संख्यात्मक समाधान को अनिवार्य करती है, | इस प्रकार से स्केलिंग कई कारणों से उपयोगी होते है. यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। और उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, अर्थात उनमें ''0'' से ''1'' जैसी समझदार इकाई रहित सीमा होती है। अंत में, यदि कोई समस्या संख्यात्मक समाधान को अनिवार्य करती है, तब जितने कम पैरामीटर होंगे गणनाओं की संख्या उतनी ही कम होती है । | ||
===संवेग बनाम वेग=== | ===संवेग बनाम वेग=== | ||
Line 165: | Line 165: | ||
जहां ''T'' गतिज ऊर्जा है, और ''V'' स्थितिज ऊर्जा है। | जहां ''T'' गतिज ऊर्जा है, और ''V'' स्थितिज ऊर्जा है। | ||
वास्तव में, जब प्रतिस्थापन को सही प्रकार से चुना जाता है (उदाहरण के लिए परिपथ की समरूपता और बाधाओं का उपयोग करते हुए) | वास्तव में, जब प्रतिस्थापन को सही प्रकार से चुना जाता है (उदाहरण के लिए परिपथ की समरूपता और बाधाओं का उपयोग करते हुए) तब इन समीकरणों को कार्टेशियन निर्देशांक में न्यूटन के समीकरणों की तुलना में समाधान करना अधिक सरल माना जाता है। | ||
==यह भी देखें == | ==यह भी देखें == |
Revision as of 22:04, 30 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
गणित में, वेरिएबल में परिवर्तन मूलभूत विधि द्वारा की जाती है जिसका उपयोग समस्याओं को सरल बनाने के लिए किया जाता है जिसमें मूल वेरिएबल (गणित) को अन्य वेरिएबल के फलन (गणित) से परिवर्तित कर दिया जाता है। आशय यह है कि जब नए वेरिएबालो में व्यक्त किया जाता है, तब समस्या सरल हो सकती है, या उत्तम समझी जाने वाली समस्या के समान हो सकती है।
इस प्रकार से वेरिएबालो का परिवर्तन संक्रिया होता है जोकी प्रतिस्थापन (बीजगणित) से संबंधित होते है। चूंकि ये भिन्न-भिन्न ऑपरेशन होते हैं, जैसा कि व्युत्पन्न (श्रृंखला नियम) या अभिन्न (प्रतिस्थापन द्वारा एकीकरण) पर विचार करते समय देखा जा सकता है।
अतः उपयोगी परिवर्तनीय परिवर्तन का अधिक ही सरल उदाहरण छठे-डिग्री बहुपद की जड़ों को खोजने की समस्या में देखा जा सकता है |
किन्तु छठी-डिग्री बहुपद समीकरणों को रेडिकल के संदर्भ में समाधान करना सामान्यतः असंभव होता है |(एबेल-रफिनी प्रमेय देखें)। चूंकि , यह विशेष समीकरण लिखा जा सकता है |
(यह बहुपद अपघटन की साधारण स्तिथि है)। इस प्रकार नए वेरिएबल को परिभाषित करके समीकरण को सरल बनाया जा सकता है और . x को द्वारा प्रतिस्थापित करना बहुपद में देता है |
जो दो समाधानों वाला द्विघात समीकरण मात्र है |
इस प्रकार से मूल वेरिएबल के संदर्भ में समाधान x3 को प्रतिस्थापित करके प्राप्त किया जाता है आपके लिए वापस, जो देता है |
फिर, यह मानते हुए कि किसी की रुचि केवल वास्तविक संख्या समाधानों में होता है, यह मूल समीकरण के समाधान ही हैं
सरल उदाहरण
समीकरणों की प्रणाली पर विचार करें
जहाँ और के साथ धनात्मक पूर्णांक हैं . (स्रोत: 1991 अमेरिकी आमंत्रण गणित परीक्षा)
इसे सामान्य रूप से समाधान करना अधिक कठिन नहीं होता है, किन्तु यह थोड़ा कठिन हो सकता है। चूंकि , हम दूसरे समीकरण को के रूप में पुनः से लिख सकते हैं। इसे समाधान करना सामान्य रूप से अधिक कठिन नहीं होता है, किन्तु यह थोड़ा कठिन हो सकता है। चूंकि , हम दूसरे समीकरण को पुनः से लिख सकते हैं क्योंकि और परिपथ को तक कम कर देता है इसे समाधान करने पर और मिलते हैं। प्रथम ऑर्डर किए गए जोड़े को बैक-प्रतिस्थापन करने पर हमें प्राप्त किया जाता है, जो समाधान देता है। दूसरे ऑर्डर किए गए जोड़े को बैक-प्रतिस्थापन करने पर हमें प्राप्त किया जाता है, जो कोई समाधान नहीं देता है। इसलिए परिपथ को समाधान करने वाला समाधान है
औपचारिक परिचय
मान लीजिए कि, चिकनी मैनिफोल्ड है और उनके मध्य भिन्नता होती है, अर्थात एक निरंतर भिन्न होने वाला है, से तक का विशेषण मानचित्र जिसमें निरंतर भिन्न होने वाला है, से तक विपरीत है। कोई भी प्राकृतिक संख्या (या शून्य), (सुचारु) या (विश्लेषणात्मक) हो सकती है।
मानचित्र को एक नियमित समन्वय परिवर्तन या नियमित वेरिएबल प्रतिस्थापन कहा जाता है, जहां नियमित रूप से के - नेस को संदर्भित किया जाता है, सामान्यतः कोई में के मान को प्रतिस्थापित करके वेरिएबल द्वारा वेरिएबल के प्रतिस्थापन को इंगित करने के लिए लिखेगा। की प्रत्येक घटना के लिए उपयोग किया जाता है।
अन्य उदाहरण
समन्वय परिवर्तन
इस प्रकार से ध्रुवीय निर्देशांक पर स्विच करने पर कुछ प्रणालियों को अधिक सरलता से समाधान किया जा सकता है। उदाहरण के लिए समीकरण पर विचार करें:
किन्तु यह किसी शारीरिक समस्या के लिए संभावित ऊर्जा फलन हो सकता है। यदि किसी को तुरंत कोई समाधान नहीं दिखता है, तब वह प्रतिस्थापन का प्रयास कर सकता है
- द्वारा दिए गए
इस प्रकार से ध्यान दें कि यदि , लंबाई अंतराल के बाहर चलता है, उदाहरण के लिए, तब मानचित्र अब विशेषण नहीं होते है। इसलिए 0 को सीमित किया जाना चाहिए, किन्तु उदाहरण के लिए ध्यान दें कि कैसे को बाहर की ओर रखा गया है, क्योंकि मूल में विशेषण नहीं होते है ( कोई भी मान ले सकता है, बिंदु को (0, 0) पर मैप किया जाएगा ). फिर, मूल वेरिएबल की सभी घटनाओं को द्वारा निर्धारित नई अभिव्यक्तियों से प्रतिस्थापित करने और पहचान का उपयोग करने पर हमें प्राप्त होता है:
अब समाधान सरलता से पाया जा सकता है: , इसलिए या . का उलटा लगाना दर्शाता है कि यह इसके समान है जबकि . वास्तव में, हम ऐसा देखते हैं मूल को छोड़कर, फलन विलुप्त हो जाता है।
इस प्रकार से ध्यान दें, क्या हमें , अनुमति दी गयी हैउत्पत्ति भी समाधान रही होगी, चूंकि यह मूल समस्या का समाधान नहीं है। यहाँ की वस्तुनिष्ठता अत्यंत महत्वपूर्ण है। और यह फलन सदैव सकारात्मक होता है ( , के लिए ) इसलिए निरपेक्ष मान।
भेदभाव
इस प्रकार से जटिल विभेदीकरण को सरल बनाने के लिए श्रृंखला नियम का उपयोग किया जाता है। उदाहरण के लिए, व्युत्पन्न की गणना की समस्या पर विचार करें
मान लीजिये साथ तब:
एकीकरण
इस प्रकार से कठिन इंटीग्रल्स का मूल्यांकन सदैव वेरिएबल परिवर्तित किया जा सकता है; यह प्रतिस्थापन नियम द्वारा सक्षम होता है और उपरोक्त श्रृंखला नियम के उपयोग के अनुरूप होता है। अन्य संबंधित जैकोबियन मैट्रिक्स और निर्धारक द्वारा दिए गए वेरिएबल के परिवर्तन का उपयोग करके अभिन्न को सरल बनाकर कठिन इंटीग्रल को भी समाधान किया जा सकता है।[1] और जैकोबियन निर्धारक और इसके द्वारा दिए गए वेरिएबल के संगत परिवर्तन का उपयोग ध्रुवीय, बेलनाकार और गोलाकार समन्वय प्रणालियों जैसे समन्वय प्रणालियों का आधार माना जाता है।
लेबेस्ग माप के संदर्भ में वेरिएबल सूत्र का परिवर्तन
निम्नलिखित प्रमेय[2] हमें लेबेस्ग माप के संबंध में इंटीग्रल को पैरामीटराइजेशन जी के तहत पुलबैक माप के संबंध में समतुल्य इंटीग्रल से जोड़ने की अनुमति देता है। प्रमाण जॉर्डन सामग्री के अनुमान के कारण है।
यदि मान लीजिए का खुला उपसमुच्चय है और है भिन्नता.
- यदि लेबेस्ग्यू मापने योग्य फलन है , तब लेब्सग्यू मापने योग्य है . यदि या तब .
- यदि और तब क्या लेबेस्ग मापने योग्य है तब क्या लेबेस्ग मापने योग्य है .
इस प्रमेय के परिणाम के रूप में, हम पुलबैक और पुशफॉरवर्ड दोनों उपायों के रैडॉन-निकोडिम डेरिवेटिव की गणना कर सकते हैं अंतर्गत .
पुलबैक माप और परिवर्तन सूत्र
परिवर्तन के संदर्भ में पुलबैक माप परिभाषित किया जाता है . पुलबैक उपायों के लिए वेरिएबल सूत्र का परिवर्तन है
.
पुशफॉरवर्ड माप और परिवर्तन सूत्र
परिवर्तन के संदर्भ में आगे बढ़ने का उपाय , परिभाषित किया जाता है . पुशफॉरवर्ड उपायों के लिए वेरिएबल सूत्र का परिवर्तन है
.
लेबेस्ग्यू माप के लिए वेरिएबल परिवर्तन सूत्र के परिणाम के रूप में, हमारे पास वह है
- लेबेस्ग माप के संबंध में पुलबैक का रैडॉन-निकोडिम व्युत्पन्न:
- लेबेस्ग माप के संबंध में पुशफॉरवर्ड का रैडॉन-निकोडिम व्युत्पन्न:
जिससे हम प्राप्त कर सकते हैं
- पुलबैक माप के लिए वेरिएबल सूत्र का परिवर्तन:
- पुशफॉरवर्ड माप के लिए वेरिएबल सूत्र का परिवर्तन:
विभेदक समीकरण
इस प्रकार से विभेदीकरण और एकीकरण के लिए परिवर्तनीय परिवर्तन प्राथमिक कलन में सिखाए जाते हैं और चरणों को संभवतः ही कभी पूर्ण रूप से पूरा किया जाता है।
किन्तु अंतर समीकरणों पर विचार करते समय परिवर्तनीय परिवर्तनों का अधिक व्यापक उपयोग स्पष्ट होता है, जहां श्रृंखला नियम का उपयोग करके स्वतंत्र वेरिएबल को परिवर्तित किया जा सकता है या आश्रित वेरिएबल को परिवर्तित कर दिया जाता है जिसके परिणामस्वरूप कुछ भेदभाव किया जाता है। विदेशी परिवर्तन, जैसे बिंदु परिवर्तन और संपर्क परिवर्तन में आश्रित और स्वतंत्र वेरिएबल का मिश्रण, अधिक जटिल हो सकते हैं किन्तु अधिक अधिक स्वतंत्रता की अनुमति देते हैं।
अधिक बार, परिवर्तन के लिए सामान्य फॉर्म को किसी समस्या में प्रतिस्थापित कर दिया जाता है और समस्या को सर्वोत्तम रूप से सरल बनाने के लिए रास्ते में पैरामीटर चुने जाते हैं।
स्केलिंग और शिफ्टिंग
इस प्रकार से संभवतः सबसे सरल परिवर्तन वेरिएबल्स की स्केलिंग और शिफ्टिंग है, जो उन्हें नए वेरिएबल्स से प्रतिस्थापित करना है जोकी निरंतर मात्राओं द्वारा फैलाए और स्थानांतरित किए जाते हैं। भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह अधिक समान होते है। nth के लिए क्रम व्युत्पन्न, परिवर्तन का परिणाम इस प्रकार से सरल होता है
जहाँ
इसे श्रृंखला नियम और विभेदन की रैखिकता के माध्यम से सरलता से दिखाया जा सकता है। अर्थात भौतिक मापदंडों को समस्याओं से बाहर निकालने के लिए व्यावहारिक अनुप्रयोगों में यह परिवर्तन अधिक समान होते है, इस प्रकार से सीमा मूल्य समस्या उदाहरण के लिए,
दूरी δ द्वारा भिन्न की गई सपाट ठोस दीवारों के मध्य समानांतर द्रव प्रवाह का वर्णन करता है; μ चिपचिपापन है और दबाव प्रवणता, दोनों स्थिरांक। वेरिएबल्स को स्केल करने से समस्या बन जाती है
जहाँ
इस प्रकार से स्केलिंग कई कारणों से उपयोगी होते है. यह मापदंडों की संख्या को कम करके और समस्या को सरल बनाकर विश्लेषण को सरल बनाता है। और उचित स्केलिंग वेरिएबल्स को सामान्य कर सकती है, अर्थात उनमें 0 से 1 जैसी समझदार इकाई रहित सीमा होती है। अंत में, यदि कोई समस्या संख्यात्मक समाधान को अनिवार्य करती है, तब जितने कम पैरामीटर होंगे गणनाओं की संख्या उतनी ही कम होती है ।
संवेग बनाम वेग
समीकरणों की प्रणाली पर विचार करें
किसी दिए गए फलन के लिए .
द्रव्यमान को (तुच्छ) प्रतिस्थापन द्वारा समाप्त किया जा सकता है .
स्पष्टतः यह वस्तुनिष्ठ मानचित्र है को . प्रतिस्थापन के अंतर्गत परिपथ बन जाता है
लैग्रेंजियन यांत्रिकी
बल क्षेत्र दिया गया , आइजैक न्यूटन के गति के समीकरण हैं
लैग्रेंज ने जांच की कि गति के ये समीकरण वेरिएबल के मनमाने प्रतिस्थापन के तहत कैसे परिवर्तित होते हैं ,
उन्होंने पाया कि समीकरण
इस प्रकार से फलन , के लिए न्यूटन के समीकरणों के समतुल्य हैं
जहां T गतिज ऊर्जा है, और V स्थितिज ऊर्जा है।
वास्तव में, जब प्रतिस्थापन को सही प्रकार से चुना जाता है (उदाहरण के लिए परिपथ की समरूपता और बाधाओं का उपयोग करते हुए) तब इन समीकरणों को कार्टेशियन निर्देशांक में न्यूटन के समीकरणों की तुलना में समाधान करना अधिक सरल माना जाता है।
यह भी देखें
- वेरिएबालो का परिवर्तन (पीडीई)
- संभाव्यता घनत्व के लिए वेरिएबल का परिवर्तन
- समानता का प्रतिस्थापन गुण
- सार्वभौमिक तात्कालिकता
संदर्भ
- ↑ Kaplan, Wilfred (1973). "Change of Variables in Integrals". उन्नत कैलकुलस (Second ed.). Reading: Addison-Wesley. pp. 269–275.
- ↑ Folland, G. B. (1999). Real analysis : modern techniques and their applications (2nd ed.). New York: Wiley. pp. 74–75. ISBN 0-471-31716-0. OCLC 39849337.